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Happy 60th!
Twin pillars of theoretical physics

Many thanks for all the brilliant contributions propelling the field forward!  
My own research owes much to Erik’s and Herman’s works for decades,  
recent synergy in solvable versions of (A)dS patch-wise holography. 

Herman and Erik’s incisive creativity inspire and enrich the entire community.     



Indeed, much like S. Hawking,   Erik and Herman are embedded in the universe:

E H

Twin  Highly Mixed Sectors

• `de Sitter Holography with a finite number of states’
• `Holography and Compactification’
• ‘Moving the CFT into the bulk with 𝑇𝑇ത’
• `Quasi-local energy and microcanonical entropy in 

two-dimensional nearly de Sitter gravity’’
• …

• ‘de Sitter Holography and entanglement entropy’, 
dS/dS and 𝑇𝑇ത , 𝑇𝑇ത and EE, de Sitter microstates from 
the 𝑇𝑇ത + Λଶ deformation and the Hawking/Page 
transition’ w/Coleman, Dong, Gorbenko, Lewkowycz, Liu, Mazenc, 
Soni, Shyam, Torroba, Yang,…

• `Matrix string theory’:  

Question:  Do Dirichlet walls exist in string/M theory?   Generalized Liouville wall?  If so, 
Non-fluctuating timelike boundaries possible in more general spacetimes than AdS

𝑀𝑎𝑡𝑟𝑖𝑥 𝑇ℎ𝑒𝑜𝑟𝑦 𝐻𝑎𝑚𝑖𝑙𝑡𝑜𝑛𝑖𝑎𝑛 = ∑𝑇𝑟(𝑋ଶ)̇ + 𝑇𝑟 𝑋ெ, 𝑋ே ଶ + Tr O఑exp(𝜅𝑋(ଵ଴))

String theory worldsheet action = 𝑡𝑒𝑛𝑠𝑖𝑜𝑛 ∗ ∫ (𝐺ெே𝜕𝑋ெ𝜕𝑋ே + 𝑂఑ exp (𝜅𝑋(ଽ)))



Exec summary: real dressed spectrum of the universal and solvable

deformation
Zamalodchikov et al, Dubovsky et al, Cavaglia et al … Gorbenko ES Torroba ‘18

of a CFT on a cylinder captures (only) the microstates and 
the geometry of the ଷ observer patch Shyam, Coleman et al ‘21 

BPS black hole state 
counting (Strominger/Vafa…), 
used extended SUSY to 
control weak strong 
coupling deformations 
preserving state count.  Here 
we have a new type of 
controlled deformation 
applicable to dS, again 
preserving state count:  
‘integrable deformation’ of 
non-integrable seed theory. 
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• For many problems one needs to minimize an objective (`Loss’) function 
V, descending a generally non-convex high dimensional landscape.

--data analysis/machine learning
-- PDE solving,  Loss = ଶ ଶ:   want global min

Gradient descent methods and variants can work well w/modern tweaks, 
but sometimes get stuck and/or don’t sample all desired solutions.

Early U cosmology:  models for 
descending a potential landscape V.
--Example: DBI: relativistic speed limit 

as without friction, 
consistent with energy conservation 
calculability

cf Relativistic Gradient Descent Franca et al ‘19 (with constant speed limit)

• Another common goal is Sampling from a distribution, e.g. 
multimodal.



Schematic of NN’s for ML & PDE solving  
Lagaris, Likas, Fotiadis ‘97,…, 
Douglas, Lakchminarasimhan, Qi 
‘20, …

Repeated application builds up nonlinear 
output functions/ansatzes

Points sampled from 
domain of PDE

Then form loss functional: e.g.

ଶ

 

௣௧௦,௘௤௦

ଶ

Output functions (ansatzes for
functions being solved for)

Descend the loss landscape via gradient 
descent or generalizations

Also ML beyond classical PDEs:  QFTs

(Supervised) Machine Learning: e.g. ௢௨௧௣௨௧ ௧௥௨௘
ଶ 

{௫}

Quantum Chemistry: ௧௥௜௔௟ ௪௔௩௘௙௨௡௖௧௜௢௡ 



Early Universe inflation requires nearly constant potential 

• Slow roll (flat potential, Hubble friction dominates)
• Interactions slow the field, e.g. DBI inflation: speed limit -

dependent

Testable (falsifiable(?)) via 
non-Gaussianity
( equilateral shape)
Alishahiha, ES, Tong ‘04

Planck

Distinct behavior and predictions from slow roll 



Non-gravitational 
version conserves 
energy (no friction), 
only stopping at 
V=0

Phase space volume strongly dominated near global minimum:

 Cannot stop at local min, 
even without stochastic noise 
(but can get stuck in orbit).  
Cannot overshoot V=0.  
Faster in shallow valleys.Distinct behavior from gradient descent 

Many variations on this theme, e.g. 2-derivative action with mass ~ 1/Loss

Energy Conserving Descent (ECD)



As an energy conserving dynamical system in a rich loss landscape (without 
symmetries), BI can easily be chaotic, with random initialization avoiding stable orbits.  

But if a particular problem (NN & Loss function) leads to long-lived orbits, we can add 
extra features to the algorithm (as in chaotic billiards problems) to stimulate faster 
mixing 
Toy Example:    𝟐 𝟐 ,   

With added feature (unstuck):Original problem (stuck in orbit):



Our redshifted BI 
dynamics is a bit like 
galactic dynamics, 
solar system, … 
where chaos (as well 
as long lived orbits) 
is familiar.

We add elements 
aimed at ensuring 
rapid mixing.

(Manos and Machado MNRAS ‘14).  



Adding dispersing elements, (e.g. billiards or negative curvature)  supports 
mixing (decay of correlations) 

After some time, for a particle in a droplet and phase space region R, 

(>ergodicity: ௧ ௣௛௔௦௘ ௦௣௔௖௘)



Ackley 2d (nonconvex) Zakharov 10d (shallow)

Overview: Optimization of an objective function F

• Data analysis/Machine Learning [F = loss]
• Solving (Partial) Differential Equations

[F = Σ (PDEs)²+(boundary conditions)²]
• Many scientific applications

Gradient Descent with Momentum (GDM) can work well with modern tweaks.

Our proposal: Energy Conserving Descent (ECD): discretized physical evolution, 
without friction, nonetheless slowing near minimal F. Examples include:

Physical analogue: particle motion on potential energy V = F, with friction, discretized.

• BBI: relativistic, (speed limit)² = V = F-ΔV [or more general (speed limit)²= g(V)]
• Ruthless: non-relativistic, mass 1/g(V) 

No friction Energy Conservation favorable properties and improved calculability:

concrete formula for distribution of results: in all dims weighted toward small V = F-ΔV

[Image from Li et al. , '18]

+ other synthetics, PDEs,
small ML (Cifar, MNIST, 
Tiny ImageNet [new]),
chemistry, sampling [new]



Particle descending a potential energy landscape V

Force = mass × acceleration

Friction coefficient Energy not conserved

First-order form:

Discretization → GD with Momentum (GDM) + minibatches → SGDM

• Energy not conserved because of friction

• would conserve energy, but the particle 
flies quickly past V 0, spending very little time 
there (especially in high dimensions)

ECD: physical dynamics can conserve energy yet slow near V=0
Next: explicit realizations

Familiar law of motion:

Physics of 
GDM



Explicit realizations of ECD

Change the dynamics to conserve Energy E and favor V 0

General structure:

Position vector
(parameters)

Momentum vector

Dynamical equations (cf. Newton's laws of motion):

1. BI: (speed limit)² = V = F-ΔV, [or general funcƟon g(V)]  

2. Rootless (Ruthless): mass 1/g(V)

• Slows as the particle gets heavy:

• Cannot exceed relativistic speed limit: [ES, Tong, +Alishahiha
'04, cf. França et al. '20]



Modest (~50) statistics and 
limited hyper-parameter tuning 
(without all the tweaks on 
either side); just a check of 
basic competence. "Bouncing" 
not required here.

Building ECD optimization algorithms

1. Discretize the continuum equations of motion
• e.g. BI with 

g(V) = V:

0. Choose the continuum dynamical system

2. Choose an initialization
• Common choice: Π(0) => E = V(0)
• Option: E > 0 => choice of Π(0) compatible with Energy eq.

3. Use discretized equation as update rules

4. Add other features
• Enforce strict Energy conservation rescaling Π
• Adaptive tuning of shift DV = F-V (next page)
• Option: random rotation of momenta ("bouncing", explained later)

5. Test it!



The value of the loss function F at the objective is not always known:

DV is a hyperparameter that can automatically adjust (recover from an
over-estimate). New upgrade to optimizer code.

Automatic (adaptive) Tuning of ΔV 

Given a too-high initial guess 
for ∆V, the loss extends to 
V = F − ∆V < 0 and the 
trajectory will jump to a small 
negative value V < 0 due to 
the discreteness. Conditioned 
on this, ∆V may be lowered, 
iteratively tuning it.

V=0

V

New 
V=0



Recap so far: • Optimization of an objective function F

• Descent dynamics as (discrete) physical evolution on a potential V = F-ΔV

• Equations of motion (update rules) obtained from a Hamiltonian H

• Gradient Descent with Momentum: a time-dependent H(P, Q, t)

• Alternative physics: Energy Conserving dynamical systems converging to V→0

• Energy not conserved:

• Simply removing friction (f =0) does not converge

• Discretization gives update rules → new optimization algorithms

Simple benchmarks show that the idea works: friction not needed for optimization.
Next: advantages of conserving energy

• Energy is conserved:
• 2 explicit examples: BI [relativistic], Ruthless [m = 1/g(V)].



• Phase space (positions & momenta) volume is preserved under the 
evolution.

• Past the mixing time, the probability to find a particle from a droplet (bundle 
of trajectories) in a region M of phase space is Vol(M)

Can get stuck in orbit at high V. Generically such orbits are unstable: chaos –
sensitive dependence on initial conditions – is typical in physical 
systems. Nearby trajectories disperse roughly on a mixing timescale.

Energy 
Conservation

Chaos and mixing has been 
proven in mathematical 
billiards problems.

[Image from Encyclopedia of 
Nonlinear Science, '04]

[Image from Dong, Yuan, Du et al. '19]

• Cannot stop unless V=E or V=0, so cannot stop in high local minimum

This inspires optional 
Bounces in BI algorithm above 
to reduce the mixing time
BBI



For ECD, phase space volume is strongly dominated near V=0:

• In contrast, pure momentum would not favor small V:

• The volume formula would not apply at all with friction (less 
predictive in that sense).

(g(V) also useful for sampling, in addition to optimization)
[GBDL, Roblik, Seljak, ES in progress]



• Enhancement of volume density for η>1 near a quadratic minimum V ~ θ²:

*ResNet-18, epochs: 100, batch size: 128, weight decay: 10⁻⁴, loss: Cross Entropy

m=1/V^η Accuracy Accuracy (weights averaged)

η=1 55.44 62.12

η=1.75 61.3 64.1

Protocol: lr = 0.01, no lr drop needed, 500 bounces,
Averaging of late-epoch weights (SWA)

• Small Tests on Tiny-ImageNet* with D. Kunin
(+ImageNet 1K in progress)

Exploiting the volume formula for image classification (preliminary)

[Izmailov et al. '19]
Training loss decreases 
monotonically with η, 
improving test accuracy for 
intermediate η>1

[ECD also > best comparable SGDM in cf. Li et al. '21, Tanaka, Kunin et al. '20...]

Compared with SGD: with lr drops 
(start 0.1, drop factor 0.1@ep. [30,60,80]) :

Accuracy: 62.52, Accuracy (weights averaged): 62.93
SGD: without lr drops is worse, as well as with loss → loss²

h=1

h=1.75
h=2.5

h=1.75
h=1.0
h=2.5



Testing the volume formula
Evaluated in different regions predicts distribution of results (given mixing)

For g(V) = V:

Near a minimum:

Empirical check:

V = 

Prediction of ratio 
of convergence:

Results:

Agreement 
within 10%

Bouncing trajectories 
find the 2 basins:



Behavior in shallow regions

Volume formula prefers flatter minima

Prediction: BI is faster on shallow directions than GD

Empirical check:

V = 10-dimensional Zakharov function 

Results:

Hyperparameters tuned with 
hyperopt

vs

ML lore: flatter minima generalize better



Avoiding high local minima

Energy conservation: ECD cannot stop in high local minima

Empirical check:

V = 2-dim Ackley function :

Highly non-convex function

Results:

Hyperoptimized fixed lr, and for GDM also 
momentum. GDM either stuck in initial basin or 
helped out by `catapult’ mechanism [Lewkowycz et 
al. ‘20], , then more erratic (not settling in global 
minimum).

BBI explores and 
finds the global 
minimum



Statements persist with noise (mini-batches) in our prescription:
BBI speed limit tamps down noise, while the bounces (when needed) provide 
controlled stochasticity for short mixing time.

Generalization ok:
speed limit kicks in for
V E, Vol(phase space) 
favors flat basins.

Summary comparison



Application: Solving Partial Differential Equations

• Most common strategy with ML tools: a NN as ansatz for the PDE:

1d slices of known 
solutions:

• We reverse-engineered hard (highly nonlinear) 2d PDEs with known multiple solution 
and checked if ECD optimization finds them

Found both from same initialization: bounces distribute results (mixing)

1d slices of learned 
solutions

Sol1: analytic Sol2: numerical

[Lagaris et al. '98, 
…, Raissi et al. '19,..]



Another common goal is Sampling from a distribution.  To sample

using ECD, e.g. the version with Hamiltonian:

ଶ

we again use the fixed-energy phase space volume formula:

௡ ௡  exp(−F) ௡ requires 
ி

௡

Reproduces distributions in warmups.
Will compare performance to 
existing sampling methods, 
e.g. Hamiltonian Monte Carlo (very
different).   With Robnik, Seljak; Cheng



[Roblik/Seljak]



Feature/Representation Learning:

Output layer linear

Hidden layer updates required for feature learning (otherwise linear regression)

Std large-width limit linear => feature learning ~ Depth/Width
Roberts, Yaida, Hanin

Other large-width limits preserve feature learning Yang/Hu

Optimizer-dependent…



Feature Learning and BBI (in progress)

To Do/in progress: larger experiments including those requiring feature learning.  
ImageNet and variants in progress modulo resource requirements.

Theory/intuition:  Chaos (with or without bounces) => diverging trajectories => feature 
learning even for `standard’/NTK initialization choices.  cf Roberts/Yaida (criticality, large-width RG and 
minimal models), Yang/Hu (initialization enhancing hidden updates)

Compared to situation with hidden layers not updating ( SGD at infinite width with NTK 
initialization), our chaotic dynamics contains diverging trajectories introducing ௛௜ௗௗ௘௡

Computational Quantum Chemistry 
(in progress w/Zhiyong Zhang, Stanford data science/nwchem developer)

Other analyses (sampling)/comparisons to additional global optimizers 
(w/Uros Seljak)



Ongoing work:

• Larger scale Machine Learning experiments (with Kunin)
• Exploit the volume formula from frictionless dynamics for 

better generalization

• Efficient sampling from a function exp(-F) (with Robnik, Seljak)
• Reverse engineer g(V) such that

Future directions:

• Quantum Chemistry (with Zhang)
• Find the minimum energy configuration of a molecule

F = binding energy < 0 requires ΔV
• Automatic tuning tested successfully

• Feature learning theory and experiment
• Bounces along the directions of hidden layer parameters

• In contrast to Hamiltonian Monte Carlo, no momentum sampling needed  

Vol(phase space)=



Happy 60th!



Extra Slides



Noisy case (mini-batches):

஻
஻ ஻ ௙௨௟௟

஻ ஻

 

௫ ಳ

 

஻

Time dependent potential (nonetheless we renormalize to the original E).
One can think of a given batch trajectory as deterministic.
Retains the main features:

• Cannot stop at local minimum (V>0)
• Will stop near V=0 due to speed limit

Also interesting to study ensemble averages, generalized Brownian motion:
Yaida ’18,… . Kunin Sagastuy-Brena, Gillespie, Tanaka, Ganguli, Yamins ‘21

BI: …+ d
ఏమ

ௗ௧
ଶ (speed limit) vs Brownian motion:

ୢ ఏమ

ௗ௧
ଶ



String theory & 
Cosmology

Structure of dS and inflation in string theory

--model-dependent UV sensitive observational tests

--microphysics of dS quantum gravity

--targets and methods for modern numerical 
methods and machine learning

Application to PDEs in string compactifications
(w/G.B. De Luca, G. Torroba ‘21),  cf e.g.



4d effective potential 

Mostly positive:
௖

஽ିସ
ଵ ଶ

ଶ

Intermediate negative:
O-planes, quantum

u(y) satisfies GR constraint (its eq. of motion): 

Like a Schrodinger 
problem for 

ଶ ଶ ଶ

Rୱୣୡ < 0 rigid             𝑅௜௝ = 0 CY  
(cf Trodden et al,         (cf KKLT, LVS…)
Saltman-ES, DLST)

Douglas ’09

Net
curvature

Warp factor stabilizes runaway
negativity (e.g. ᇱଶ) 



• Power-law stabilization 

--(D-Dc), O-planes, flux, asymmetric 
orbifold (large-D expansion) ’01-’02

(…other examples…)
--hyperbolic space,  Casimir, flux ‘21 

-- RG logs & powers Burgess/Quevedo ‘22

--including explicit uplifts of AdS/CFT 
[D1-D5 theory -> dS3 ‘10,  
M2 brane theory -> dS4 ‘21]

KK scale SUSY breaking

• Non-perturbative stabilization

--GKP ‘01/KKLT ’03 and many 
followups, e.g.
--large volume scenario 

Sub-KK scale SUSY breaking

dS examples
stabilizing
extra dimensions:

Reviews of various aspects:  Polchinski, Baumann/McAllister,  Douglas/Kachru,
Denef, Frey, Hebecker; ES TASI ’16, …  

Weak-coupling EFT/large-N/Large-D/small ଴ control.  
Ongoing studies of internal equations of motion in various cases & models, including ones 
with significant gradients e.g. Cordova et al, …  



Curved internal dim’s:  recent mechanism for from string/M 
theory   

M theory (EFT:  11d SUGRA) on explicit infinite discrete 
family of finite-volume hyperbolic spaces with 
∫ − 𝑅 − 3𝑢ᇱଶ ≪ −∫ 𝑅 parametrically, automatically-
generated Casimir energy, 7-form flux yields immediate 
volume stabilization and approximate piecewise solution 
dressed with warp & conformal variations, small residual
tadpoles. 

Strong positive Hessian 
contributions from hyperbolic 
rigidity and from warping
(redshifting) effects on 
conformal factor and on Casimir 
energy.



4d effective potential 

Douglas ‘09

u(y) satisfies GR constraint (its equation of motion): 

Like a Schrodinger 
problem for 

ଶ ଶ ଶ



Tune small to compete with 
Casimir withℓଵଵ ≪ 𝑅௖ ≪ ℓ

Hyperbolic manifold dressed 
with warp and conformal 
factor variations



• If a is too large, increase volume of non-Casimir regions 
(e.g. via short filled cusps or covers k-fold -> (k+1)-fold)

• If a is too small, reduce flux quantum number

Work with simple concrete hyperbolic manifolds with comparable cusp 
and bulk volumes Italiano et al ‘20.   Explicit radial solution illustrates a << 1.

Parametric suppression of residual tadpoles. 



warmup example:

Loss 

Slice of approximate  
solution for warp and 
conformal factors

Numerical PDE solutions yields further details of solutions 
(interesting for exploring beyond perturbative regime)



Numerical study of this class of compactifications is fully specified 
and well-posed, including the stress-energy sources relevant for 
dS:

• explicit projection of , can also be constructed as 
gluing of explicit set of polygons. 

• Casimir energy
• solution explicit in terms of metric
• Parametric limit(s) involving covers and filled cusps to 

compare to.

For ML, can consider PDE’s, , or slow roll functionals as 
natural loss functions to explore. 


