
EngineeringMechanics: Machine Learning
Introduction to ML

Iuri Rocha

A long, long time ago (1.5 years)

Two teddy bears discovering a new metamaterialA Finite Element model knitted out of wool

Some DALL-E generations we showed at the EM Symposium 2022:

2 / 55

Today

[Vlassis and Sun (2023), CMAME 413:116126]

Denoising diffusion for microstructure design:
■ Tailored hyperelastic potential

3 / 55

Today

[Zheng et al (2023), Nat Comm 2023(14):7563]

Inverse design of spinodoid metamaterials:
■ Tailored stiffness tensor

4 / 55

Today

[Buehler (2024), Appl Mech Rev 76(2):021001]

MechGPT, a large language model fine-tuned for mechanics:
■ Multimodality, non-trivial connections between different areas of knowledge

5 / 55

Today

[Maia et al (2024), Coming soon]

Combining machine learning and physics in creative ways:
■ Sparse connectivities, invariances, real material models embedded in architecture

6 / 55

Machine Learning — an extremely quick primer

Narrow versus General AI:
■ Narrow AI can only perform one specific task ⇐ ML techniques live here
■ General AI can perform a multitude of tasks and program itself ⇐ just a dream (for now...)

Supervised Learning: Tasks with known target outcomes, requires labeled data:
■ Regression: Map input features to noisy observations of continuous outputs ⇐ this course
■ Classification: Map input features to discrete class labels

Unsupervised Learning: Explain patterns in unlabeled data with latent (hidden) variables:
■ Clustering: Split data into groups explained by discrete latents
■ Dimensionality reduction: Explain the data with a manifold described by continuous latents
■ These models are often generative

Reinforcement Learning: Learn a task through reward/punishment mechanisms:
■ Agent(s) interacting with an environment, evolving interaction policy

7 / 55

Machine Learning — an extremely quick primer

Narrow versus General AI:
■ Narrow AI can only perform one specific task ⇐ ML techniques live here
■ General AI can perform a multitude of tasks and program itself ⇐ just a dream (for now...)

Supervised Learning: Tasks with known target outcomes, requires labeled data:
■ Regression: Map input features to noisy observations of continuous outputs ⇐ this course
■ Classification: Map input features to discrete class labels

Unsupervised Learning: Explain patterns in unlabeled data with latent (hidden) variables:
■ Clustering: Split data into groups explained by discrete latents
■ Dimensionality reduction: Explain the data with a manifold described by continuous latents
■ These models are often generative

Reinforcement Learning: Learn a task through reward/punishment mechanisms:
■ Agent(s) interacting with an environment, evolving interaction policy

7 / 55

Machine Learning — an extremely quick primer

Narrow versus General AI:
■ Narrow AI can only perform one specific task ⇐ ML techniques live here
■ General AI can perform a multitude of tasks and program itself ⇐ just a dream (for now...)

Supervised Learning: Tasks with known target outcomes, requires labeled data:
■ Regression: Map input features to noisy observations of continuous outputs ⇐ this course
■ Classification: Map input features to discrete class labels

Unsupervised Learning: Explain patterns in unlabeled data with latent (hidden) variables:
■ Clustering: Split data into groups explained by discrete latents
■ Dimensionality reduction: Explain the data with a manifold described by continuous latents
■ These models are often generative

Reinforcement Learning: Learn a task through reward/punishment mechanisms:
■ Agent(s) interacting with an environment, evolving interaction policy

7 / 55

Machine Learning — an extremely quick primer

Narrow versus General AI:
■ Narrow AI can only perform one specific task ⇐ ML techniques live here
■ General AI can perform a multitude of tasks and program itself ⇐ just a dream (for now...)

Supervised Learning: Tasks with known target outcomes, requires labeled data:
■ Regression: Map input features to noisy observations of continuous outputs ⇐ this course
■ Classification: Map input features to discrete class labels

Unsupervised Learning: Explain patterns in unlabeled data with latent (hidden) variables:
■ Clustering: Split data into groups explained by discrete latents
■ Dimensionality reduction: Explain the data with a manifold described by continuous latents
■ These models are often generative

Reinforcement Learning: Learn a task through reward/punishment mechanisms:
■ Agent(s) interacting with an environment, evolving interaction policy

7 / 55

Introduction to ML

Contents for this part of the course:
■ Decision theory for regression
■ Intuitive model building with k-Nearest Neighbors
■ Robust model selection, bias-variance tradeoff
■ From linear models to neural networks
■ Bayesian ML with Gaussian Processes
■ The curse of dimensionality, inductive biases

8 / 55

Regression problems

0 2 4 6

−2

−1

0

1

2

x [-]

t[
-]

The problem we would like to solve:
■ Given: Some complex process p (x, t), usually highly nonlinear

■ Goal: Construct a model y(x) that explains it
■ In practice: We do not know p (x, t), but only have N observations of it:

9 / 55

Regression problems

0 2 4 6

−2

−1

0

1

2

x [-]

t[
-]

0 2 4 6

− 2

− 1

0

1

2

x [-]

t[
-]

The problem we would like to solve:
■ Given: Some complex process p (x, t), usually highly nonlinear
■ Goal: Construct a model y(x) that explains it

■ In practice: We do not know p (x, t), but only have N observations of it:

9 / 55

Regression problems

0 2 4 6

−2

−1

0

1

2

x [-]

t[
-]

0 2 4 6

−2

−1

0

1

2

x [-]

t[
-]

The problem we would like to solve:
■ Given: Some complex process p (x, t), usually highly nonlinear
■ Goal: Construct a model y(x) that explains it
■ In practice: We do not know p (x, t), but only have N observations of it:

9 / 55

Choosing the model y(x)

Two main types:
■ Parametric models: Knowledge of data encapsulated by a set of parameters: y(x,w)

■ Non-parametric models: The whole dataset is directly used to make predictions: y(x,D)

Let us start with a very simple non-parametric model for y(x):
■ For a given x0, we look at a neighborhood Nk around it until we find k data points
■ We then average these points, resulting in a k-Nearest Neighbors (kNN) estimator

10 / 55

Choosing the model y(x)

Two main types:
■ Parametric models: Knowledge of data encapsulated by a set of parameters: y(x,w)

■ Non-parametric models: The whole dataset is directly used to make predictions: y(x,D)

Let us start with a very simple non-parametric model for y(x):
■ For a given x0, we look at a neighborhood Nk around it until we find k data points

■ We then average these points, resulting in a k-Nearest Neighbors (kNN) estimator

10 / 55

Choosing the model y(x)

y(x0) =
1

k

∑
xi∈Nk

ti

Two main types:
■ Parametric models: Knowledge of data encapsulated by a set of parameters: y(x,w)

■ Non-parametric models: The whole dataset is directly used to make predictions: y(x,D)

Let us start with a very simple non-parametric model for y(x):
■ For a given x0, we look at a neighborhood Nk around it until we find k data points
■ We then average these points, resulting in a k-Nearest Neighbors (kNN) estimator

10 / 55

Decision Theory for regression

0 2 4 6

−2

−1

0

1

2

x [-]

t[
-]

We formalize our problem again from the beginning:
■ Given: Some process p (x, t) we would like to explain with a model
■ Goal: Construct a model y(x) that is as close as possible to t

■ How to measure this "closeness"? The squared loss function is a popular choice:

L (t, y(x)) = (y(x)− t)2

11 / 55

Decision Theory for regression

We formalize our problem again from the beginning:
■ Given: Some process p (x, t) we would like to explain with a model
■ Goal: Construct a model y(x) that is as close as possible to t

■ How to measure this "closeness"? The squared loss function is a popular choice:

L (t, y(x)) = (y(x)− t)2

11 / 55

Decision Theory for regression

We formalize our problem again from the beginning:
■ Given: Some process p (x, t) we would like to explain with a model
■ Goal: Construct a model y(x) that is as close as possible to t

■ Here it is natural to go for the expectation:

E [L] =

∫ ∫
(y(x)− t)2 p (x, t) dx dt

■ Solving for the regression function y(x) gives:

y(x) =

∫
tp (t|x) dt = Et [t|x]

12 / 55

Decision Theory for regression

We formalize our problem again from the beginning:
■ Given: Some process p (x, t) we would like to explain with a model
■ Goal: Construct a model y(x) that is as close as possible to t

■ Here it is natural to go for the expectation:

E [L] =

∫ ∫
(y(x)− t)2 p (x, t) dx dt

■ Solving for the regression function y(x) gives:

y(x) =

∫
tp (t|x) dt = Et [t|x]

12 / 55

Decision Theory for regression

0 2 4 6

− 2

− 1

0

1

2

x [-]

t[
-]

We formalize our problem again from the beginning:
■ Given: Some process p (x, t) we would like to explain with a model
■ Goal: Construct a model y(x) that is as close as possible to t

■ Here it is natural to go for the expectation:

E [L] =

∫ ∫
(y(x)− t)2 p (x, t) dx dt

■ Solving for the regression function y(x) gives:

y(x) =

∫
tp (t|x) dt = Et [t|x]

12 / 55

Decision Theory for regression

0 2 4 6

− 2

− 1

0

1

2

x [-]

t[
-]

parallel with kNN?

We formalize our problem again from the beginning:
■ Given: Some process p (x, t) we would like to explain with a model
■ Goal: Construct a model y(x) that is as close as possible to t

■ Here it is natural to go for the expectation:

E [L] =

∫ ∫
(y(x)− t)2 p (x, t) dx dt

■ Solving for the regression function y(x) gives:

y(x) =

∫
tp (t|x) dt = Et [t|x]

12 / 55

Decision Theory for regression

0 2 4 6

−2

−1

0

1

2

x [-]

t[
-]

0 2 4 6

−2

−1

0

1

2

x [-]

t[
-]

We formalize our problem again from the beginning:
■ Goal: Construct a model y(x) that is as close as possible to t

■ In practice we do not know p (x, t) exactly and make decisions based on limited data:∫ ∫
(y(x)− t)2 p (x, t) dx dt ≈ 1

N

N∑
i

(y(xi)− ti)
2

13 / 55

Now let us try this out

Go to bit.ly/engmechml or scan the QR code:
■ Look at the first interactive plot
■ Change the value of k until you are satisfied with the model
■ Change the value of k until the training loss is as small as possible:

E [L] ≈ 1

N

N∑
i

(y(xi, k)− ti)
2

14 / 55

Overfitting and underfitting

0 2 4 6

−2

−1

0

1

2

x [-]

t[
-]

y(x) (k = 1)

Ground truth

This is the model we get if we are just trying to minimize the training loss:
■ Model fits the noise in the dataset and cannot generalize
■ The error is exactly zero, but this is not a good model

■ Too much freedom? What if we increase k?

15 / 55

Overfitting and underfitting

0 2 4 6

−2

−1

0

1

2

x [-]

t[
-]

y(x) (k = 1)

Ground truth

0 2 4 6

−2

−1

0

1

2

x [-]

t[
-]

y(x) (k = 100)

Ground truth

increasing k

(a bit too much)

This is the model we get if we are just trying to minimize the training loss:
■ Model fits the noise in the dataset and cannot generalize
■ The error is exactly zero, but this is not a good model
■ Too much freedom? What if we increase k?

15 / 55

Let us do this one more time

Go to bit.ly/engmechml or scan the QR code:
■ Look at the second interactive plot
■ Change the value of k until it is as close as possible to the ground truth

16 / 55

Model selection

In practice we do not know the ground truth, so choosing k is tricky:
■ Too low: we fit the noise in the data ⇒ overfitting!
■ Too high: we oversmooth and lose detail ⇒ underfitting!
■ The training set cannot be trusted to give us k, it will always lead to k = 1

The solution is to introduce a validation dataset:
■ A new dataset that cannot be used for training
■ We can then use it to find the hyperparameter k:

k = argmin
k

1

Nval

Nval∑
i

(
y(xi, k)− ti

)2

17 / 55

Model selection

In practice we do not know the ground truth, so choosing k is tricky:
■ Too low: we fit the noise in the data ⇒ overfitting!
■ Too high: we oversmooth and lose detail ⇒ underfitting!
■ The training set cannot be trusted to give us k, it will always lead to k = 1

The solution is to introduce a validation dataset:
■ A new dataset that cannot be used for training
■ We can then use it to find the hyperparameter k:

k = argmin
k

1

Nval

Nval∑
i

(
y(xi, k)− ti

)2

17 / 55

Model selection

0 2 4 6

−2

−1

0

1

2

x [-]

t[
-]

100 samples

But how do we pick a validation set?

18 / 55

Model selection

0 2 4 6

−2

−1

0

1

2

x [-]

t[
-]

100 samples

0 2 4 6

−2

−1

0

1

2

x [-]

t[
-]

Training data

Validation data

split 80/20

80 training samples
20 validation samples

But how do we pick a validation set?

18 / 55

Model selection

0 2 4 6

−2

−1

0

1

2

x [-]

t[
-]

100 samples

0 2 4 6

−2

−1

0

1

2

x [-]

t[
-]

Training data

Validation data

split 80/20

80 training samples
20 validation samples

0 2 4 6

−2

−1

0

1

2

x [-]

t[
-]

y(x) (k = 1)

Training data

tra
in

Ltrain = 0But how do we pick a validation set?

18 / 55

Model selection

0 2 4 6

−2

−1

0

1

2

x [-]

t[
-]

100 samples

0 2 4 6

−2

−1

0

1

2

x [-]

t[
-]

Training data

Validation data

split 80/20

80 training samples
20 validation samples

0 2 4 6

−2

−1

0

1

2

x [-]

t[
-]

y(x) (k = 1)

Training data

tra
in

Ltrain = 0

0 2 4 6

−2

−1

0

1

2

x [-]

t[
-]

y(x) (k = 1)

Validation data

validate
Lvali = 0.75

But how do we pick a validation set?

18 / 55

Model selection

0 20 40 60 80

0

0.2

0.4

0.6

0.8

k [-]

L
os

s
[-

]

Training loss

Validation loss
Irreducible loss

0 2 4 6

−2

−1

0

1

2

x [-]

t[
-]

y(x) (k = 10)

Ground truth

pick k

at minimum loss

The bias-variance tradeoff:
■ Overly flexible models have low bias and high variance
■ Overly rigid models have high bias and low variance
■ We may accept some bias in exchange for a lower variance... but not too much

19 / 55

Model selection

0 20 40 60 80

0

0.2

0.4

0.6

0.8

k [-]

L
os

s
[-

]

Training loss

Validation loss
Irreducible loss

0 2 4 6

−2

−1

0

1

2

x [-]

t[
-]

y(x) (k = 10)

Ground truth

pick k

at minimum loss

overfitting underfitting

The bias-variance tradeoff:
■ Overly flexible models have low bias and high variance
■ Overly rigid models have high bias and low variance
■ We may accept some bias in exchange for a lower variance... but not too much

19 / 55

Let us do it one last time

Go to bit.ly/engmechml or scan the QR code:
■ Look at the third interactive plot
■ Change the value of k until the validation loss is as low as possible

20 / 55

The bias-variance tradeoff

0 2 4 6

−2

0

2

x [-]

t[
-]

y(x) (k = 1)

Ground truth

0 2 4 6

−2

0

2

x [-]

t[
-]

y(x) (k = 50)

Ground truth

Why do we say flexible models have high variance? A closer look:
■ Same example as before, but now 1000 different datasets of N = 50 each
■ How much does the choice of dataset affect the final model?

L(x) = (ED [y(x,D)]− h(x))2︸ ︷︷ ︸
bias2

+ED
[
(y(x,D)− ED [y(x,D)])2

]︸ ︷︷ ︸
variance

+

∫
(h (x)− t)2 p(t|x) dt︸ ︷︷ ︸

irreducible noise

21 / 55

The bias-variance tradeoff

0 2 4 6

−2

0

2

x [-]

t[
-]

y(x) (k = 1)

Ground truth

0 2 4 6

−2

0

2

x [-]

t[
-]

y(x) (k = 50)

Ground truth

Why do we say flexible models have high variance? A closer look:
■ Same example as before, but now 1000 different datasets of N = 50 each
■ How much does the choice of dataset affect the final model?

L(x) = (ED [y(x,D)]− h(x))2︸ ︷︷ ︸
bias2

+ED
[
(y(x,D)− ED [y(x,D)])2

]︸ ︷︷ ︸
variance

+

∫
(h (x)− t)2 p(t|x) dt︸ ︷︷ ︸

irreducible noise

21 / 55

The bias-variance tradeoff

0 2 4 6

−2

0

2

x [-]

t[
-]

y(x) (k = 1)

Ground truth

0 2 4 6

−2

0

2

x [-]

t[
-]

y(x) (k = 50)

Ground truth

Why do we say flexible models have high variance? A closer look:
■ Same example as before, but now 1000 different datasets of N = 50 each
■ How much does the choice of dataset affect the final model?

L(x) = (ED [y(x,D)]− h(x))2︸ ︷︷ ︸
bias2

+ED
[
(y(x,D)− ED [y(x,D)])2

]︸ ︷︷ ︸
variance

+

∫
(h (x)− t)2 p(t|x) dt︸ ︷︷ ︸

irreducible noise

21 / 55

The bias-variance tradeoff

0 2 4 6

−2

0

2

x [-]

t[
-]

ED[y(x)] (k = 1)

Variance
Ground truth

0 2 4 6

−2

0

2

x [-]

t[
-]

ED[y(x)] (k = 50)

Variance
Ground truth

Why do we say flexible models have high variance? A closer look:
■ Same example as before, but now 1000 different datasets of N = 50 each
■ How much does the choice of dataset affect the final model?

L(x) = (ED [y(x,D)]− h(x))2︸ ︷︷ ︸
bias2

+ED
[
(y(x,D)− ED [y(x,D)])2

]︸ ︷︷ ︸
variance

+

∫
(h (x)− t)2 p(t|x) dt︸ ︷︷ ︸

irreducible noise

21 / 55

The bias-variance tradeoff

0 2 4 6

−2

0

2

x [-]

t[
-]

ED[y(x)] (k = 1)

Variance
Ground truth

0 2 4 6

−2

0

2

x [-]

t[
-]

ED[y(x)] (k = 50)

Variance
Ground truth

high variance

no bias!
high bias

low variance

Why do we say flexible models have high variance? A closer look:
■ Same example as before, but now 1000 different datasets of N = 50 each
■ How much does the choice of dataset affect the final model?

L(x) = (ED [y(x,D)]− h(x))2︸ ︷︷ ︸
bias2

+ED
[
(y(x,D)− ED [y(x,D)])2

]︸ ︷︷ ︸
variance

+

∫
(h (x)− t)2 p(t|x) dt︸ ︷︷ ︸

irreducible noise

21 / 55

Linear basis function models

Simple linear regression, assuming D input features in x:
■ Parametric model, linear in its arguments:

y(x,w) = w0 + w1x1 + · · ·+ wDxD

Here we make them more flexible:
■ General nonlinear functions of x as regressors:

y(x,w) =

M∑
j

wjϕj(x) = wTϕ(x)

■ A bias term ϕ0 = 1 is usually included in ϕ

■ We are now unshackled from the original dimensionality D

22 / 55

Linear basis function models

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1
ϕj = xj

x [-]

t[
-]

−1 −0.5 0 0.5 1

0

0.5

1

ϕj = exp
(
− (x−µj)

2

2s2

)

x [-]

t[
-]

Simple linear regression, assuming D input features in x:
■ Parametric model, linear in its arguments:

y(x,w) = w0 + w1x1 + · · ·+ wDxD

Here we make them more flexible:
■ General nonlinear functions of x as regressors:

y(x,w) =
M∑
j

wjϕj(x) = wTϕ(x)

■ A bias term ϕ0 = 1 is usually included in ϕ

■ We are now unshackled from the original dimensionality D

22 / 55

Linear basis function models

Observation model:
■ We adopt a parametric model and assume additive Gaussian noise:

t = y(x,w) + ϵ with ϵ ∼ N
(
0, β−1)

■ Under the squared loss we have seen before, the regression function is simply:

Et [t |x] =
∫

tp (t |x) dt = y(x,w)

We are implicitly assuming:
■ Noise is Gaussian
■ Response is unimodal

23 / 55

Linear basis function models

Observation model:
■ We adopt a parametric model and assume additive Gaussian noise:

t = y(x,w) + ϵ with ϵ ∼ N
(
0, β−1)

■ Under the squared loss we have seen before, the regression function is simply:

Et [t |x] =
∫

tp (t |x) dt = y(x,w)

We are implicitly assuming:
■ Noise is Gaussian
■ Response is unimodal

23 / 55

Linear basis function models

Observation model:
■ We adopt a parametric model and assume additive Gaussian noise:

t = y(x,w) + ϵ with ϵ ∼ N
(
0, β−1)

■ Under the squared loss we have seen before, the regression function is simply:

Et [t |x] =
∫

tp (t |x) dt = y(x,w)

We are implicitly assuming:
■ Noise is Gaussian
■ Response is unimodal

23 / 55

Maximum Likelihood Estimation

Computing the likelihood of our data:
■ The probability density of a given value t is:

p (t |w) = N
(
t |y(x,w), β−1)

■ Given a dataset D with observations X = {x1, · · · ,xN} / t = [t1, · · · , tN],

■ The likelihood of drawing our whole dataset from this Gaussian is therefore:

p (D |w) =

N∏
n=1

N
(
tn |wTϕ(xn), β

−1
)

■ Applying the natural logarithm to both sides, we get:

ln p (D |w) =

N∑
n=1

lnN
(
tn |wTϕ(xn), β

−1
)
=

N

2
lnβ − N

2
ln(2π)− β

{
1

2

N∑
n=1

(
tn −wTϕ(xn)

)2}

■ Maximizing the likelihood is therefore equivalent to minimizing the error in red
■ This is where the usual loss function for ML regression comes from

24 / 55

Maximum Likelihood Estimation

Computing the likelihood of our data:
■ The probability density of a given value t is:

p (t |w) = N
(
t |y(x,w), β−1)

■ Given a dataset D with observations X = {x1, · · · ,xN} / t = [t1, · · · , tN],
■ The likelihood of drawing our whole dataset from this Gaussian is therefore:

p (D |w) =
N∏

n=1

N
(
tn |wTϕ(xn), β

−1
)

■ Applying the natural logarithm to both sides, we get:

ln p (D |w) =

N∑
n=1

lnN
(
tn |wTϕ(xn), β

−1
)
=

N

2
lnβ − N

2
ln(2π)− β

{
1

2

N∑
n=1

(
tn −wTϕ(xn)

)2}

■ Maximizing the likelihood is therefore equivalent to minimizing the error in red
■ This is where the usual loss function for ML regression comes from

24 / 55

Maximum Likelihood Estimation

Computing the likelihood of our data:
■ The probability density of a given value t is:

p (t |w) = N
(
t |y(x,w), β−1)

■ Given a dataset D with observations X = {x1, · · · ,xN} / t = [t1, · · · , tN],
■ The likelihood of drawing our whole dataset from this Gaussian is therefore:

p (D |w) =
N∏

n=1

N
(
tn |wTϕ(xn), β

−1
)

■ Applying the natural logarithm to both sides, we get:

ln p (D |w) =
N∑

n=1

lnN
(
tn |wTϕ(xn), β

−1
)
=

N

2
lnβ − N

2
ln(2π)− β

{
1

2

N∑
n=1

(
tn −wTϕ(xn)

)2}

■ Maximizing the likelihood is therefore equivalent to minimizing the error in red
■ This is where the usual loss function for ML regression comes from

24 / 55

Maximum Likelihood Estimation

Computing the likelihood of our data:
■ The probability density of a given value t is:

p (t |w) = N
(
t |y(x,w), β−1)

■ Given a dataset D with observations X = {x1, · · · ,xN} / t = [t1, · · · , tN],
■ The likelihood of drawing our whole dataset from this Gaussian is therefore:

p (D |w) =
N∏

n=1

N
(
tn |wTϕ(xn), β

−1
)

■ Applying the natural logarithm to both sides, we get:

ln p (D |w) =
N∑

n=1

lnN
(
tn |wTϕ(xn), β

−1
)
=

N

2
lnβ − N

2
ln(2π)− β

{
1

2

N∑
n=1

(
tn −wTϕ(xn)

)2}

■ Maximizing the likelihood is therefore equivalent to minimizing the error in red
■ This is where the usual loss function for ML regression comes from

24 / 55

Maximum Likelihood Estimation

0 2 4 6
−2

−1

0

1

2

ϕj = xj

x [-]

t[
-]

y(x) (M = 6)

Normalized ϕj

Ground truth

0 2 4 6
−2

−1

0

1

2

ϕj = exp
(
− (x−µj)

2

2s2

)

x [-]

t[
-]

y(x) (M = 6)

ϕj

Ground truth

How does this look like? An example:
■ Dataset with N = 100 observations, M = 6 basis functions (polynomials or Gaussians)

25 / 55

Overfitting and underfitting MLE models

0 2 4 6
−2

−1

0

1

2

x [-]

t[
-]

y(x) (M = 9)

Ground truth

0 2 4 6
−2

−1

0

1

2

x [-]

t[
-]

y(x) (M = 1)

Ground truth

Also here, flexibility is not always a good thing:
■ Dataset with N = 10 observations, model with complete order M polynomials
■ Again a tradeoff between bias and variance

26 / 55

Stochastic Gradient Descent

For now we have trained with the complete dataset at once:
■ The error function contains all N data points:

ED =
1

2

N∑
n=1

(
tn −wTϕ(xn)

)2
Situations when it is interesting (or necessary) to deviate from this:

■ N is too large and computing
(
ΦTΦ

)−1 becomes prohibitive
■ The model is nonlinear (in w) and wML does not have a closed-form solution
■ The dataset is arriving sequentially (e.g. in real time from a sensor)

27 / 55

Stochastic Gradient Descent

Instead of solving directly for wML, we can use Gradient Descent:
■ Pick a (random) subset B of the dataset with NB observations

■ Update w with gradients coming from B and with a fixed learning rate η:

w(τ+1) = w(τ) − η∇EB with ∇EB = −
NB∑
n=1

(
tn −w(τ)Tϕ(xn)

)
ϕ(xn)

T

■ Every time the complete dataset has been seen, we say an epoch has passed

Variations:
■ NB = 1: Online stochastic gradient descent
■ 1 < NB < N : Minibatch SGD (most popular)
■ NB = N : Full batch gradient descent

28 / 55

Stochastic Gradient Descent

Instead of solving directly for wML, we can use Gradient Descent:
■ Pick a (random) subset B of the dataset with NB observations
■ Update w with gradients coming from B and with a fixed learning rate η:

w(τ+1) = w(τ) − η∇EB with ∇EB = −
NB∑
n=1

(
tn −w(τ)Tϕ(xn)

)
ϕ(xn)

T

■ Every time the complete dataset has been seen, we say an epoch has passed

Variations:
■ NB = 1: Online stochastic gradient descent
■ 1 < NB < N : Minibatch SGD (most popular)
■ NB = N : Full batch gradient descent

28 / 55

Stochastic Gradient Descent

Instead of solving directly for wML, we can use Gradient Descent:
■ Pick a (random) subset B of the dataset with NB observations
■ Update w with gradients coming from B and with a fixed learning rate η:

w(τ+1) = w(τ) − η∇EB with ∇EB = −
NB∑
n=1

(
tn −w(τ)Tϕ(xn)

)
ϕ(xn)

T

■ Every time the complete dataset has been seen, we say an epoch has passed

Variations:
■ NB = 1: Online stochastic gradient descent
■ 1 < NB < N : Minibatch SGD (most popular)
■ NB = N : Full batch gradient descent

28 / 55

Stochastic Gradient Descent

Instead of solving directly for wML, we can use Gradient Descent:
■ Pick a (random) subset B of the dataset with NB observations
■ Update w with gradients coming from B and with a fixed learning rate η:

w(τ+1) = w(τ) − η∇EB with ∇EB = −
NB∑
n=1

(
tn −w(τ)Tϕ(xn)

)
ϕ(xn)

T

■ Every time the complete dataset has been seen, we say an epoch has passed

Variations:
■ NB = 1: Online stochastic gradient descent
■ 1 < NB < N : Minibatch SGD (most popular)
■ NB = N : Full batch gradient descent

28 / 55

Stochastic Gradient Descent

0 2 4 6
−2

−1

0

1

2

x [-]

t[
-]

y(x) (0 epochs)

Ground truth

0 20 40 60 80 100
10

20

30

40

50

60

Epoch [-]

E
rr

or
fu

nc
tio

n
(E

D
)[

-]

An example:
■ Same example as before, with N = 100 and M = 6 polynomial basis functions
■ We fix the learning rate η = 0.001 and minibatch size NB = 10

29 / 55

Stochastic Gradient Descent

0 2 4 6
−2

−1

0

1

2

x [-]

t[
-]

y(x) (1 epoch)

Ground truth

0 20 40 60 80 100
10

20

30

40

50

60

Epoch [-]

E
rr

or
fu

nc
tio

n
(E

D
)[

-]

An example:
■ Same example as before, with N = 100 and M = 6 polynomial basis functions
■ We fix the learning rate η = 0.001 and minibatch size NB = 10

29 / 55

Stochastic Gradient Descent

0 2 4 6
−2

−1

0

1

2

x [-]

t[
-]

y(x) (5 epochs)

Ground truth

0 20 40 60 80 100
10

20

30

40

50

60

Epoch [-]

E
rr

or
fu

nc
tio

n
(E

D
)[

-]

An example:
■ Same example as before, with N = 100 and M = 6 polynomial basis functions
■ We fix the learning rate η = 0.001 and minibatch size NB = 10

29 / 55

Stochastic Gradient Descent

0 2 4 6
−2

−1

0

1

2

x [-]

t[
-]

y(x) (10 epochs)

Ground truth

0 20 40 60 80 100
10

20

30

40

50

60

Epoch [-]

E
rr

or
fu

nc
tio

n
(E

D
)[

-]

An example:
■ Same example as before, with N = 100 and M = 6 polynomial basis functions
■ We fix the learning rate η = 0.001 and minibatch size NB = 10

29 / 55

Stochastic Gradient Descent

0 2 4 6
−2

−1

0

1

2

x [-]

t[
-]

y(x) (50 epochs)

Ground truth

0 20 40 60 80 100
10

20

30

40

50

60

Epoch [-]

E
rr

or
fu

nc
tio

n
(E

D
)[

-]

An example:
■ Same example as before, with N = 100 and M = 6 polynomial basis functions
■ We fix the learning rate η = 0.001 and minibatch size NB = 10

29 / 55

Stochastic Gradient Descent

0 2 4 6
−2

−1

0

1

2

x [-]

t[
-]

y(x) (100 epochs)

Ground truth

0 20 40 60 80 100
10

20

30

40

50

60

Epoch [-]

E
rr

or
fu

nc
tio

n
(E

D
)[

-]

An example:
■ Same example as before, with N = 100 and M = 6 polynomial basis functions
■ We fix the learning rate η = 0.001 and minibatch size NB = 10

29 / 55

Stochastic Gradient Descent

0 2 4 6
−2

−1

0

1

2

x [-]

t[
-]

y(x) (0 epochs)

Ground truth

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

Epoch [-]

E
D
/N

or
E

v
a
l/
N

v
a
l

[-
]

Training error

Validation error

Using SGD progress to spot signs of overfitting:
■ Tracking the error on a validation dataset after every epoch
■ This motivates the early stopping strategy popular in the deep learning community

30 / 55

Stochastic Gradient Descent

0 2 4 6
−2

−1

0

1

2

x [-]

t[
-]

y(x) (5 epochs)

Ground truth

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

Epoch [-]

E
D
/N

or
E

v
a
l/
N

v
a
l

[-
]

Training error

Validation error

Using SGD progress to spot signs of overfitting:
■ Tracking the error on a validation dataset after every epoch
■ This motivates the early stopping strategy popular in the deep learning community

30 / 55

Stochastic Gradient Descent

0 2 4 6
−2

−1

0

1

2

x [-]

t[
-]

y(x) (20 epochs)

Ground truth

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

Epoch [-]

E
D
/N

or
E

v
a
l/
N

v
a
l

[-
]

Training error

Validation error

Using SGD progress to spot signs of overfitting:
■ Tracking the error on a validation dataset after every epoch
■ This motivates the early stopping strategy popular in the deep learning community

30 / 55

Stochastic Gradient Descent

0 2 4 6
−2

−1

0

1

2

x [-]

t[
-]

y(x) (40 epochs)

Ground truth

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

Epoch [-]

E
D
/N

or
E

v
a
l/
N

v
a
l

[-
]

Training error

Validation error

Using SGD progress to spot signs of overfitting:
■ Tracking the error on a validation dataset after every epoch
■ This motivates the early stopping strategy popular in the deep learning community

30 / 55

Stochastic Gradient Descent

0 2 4 6
−2

−1

0

1

2

x [-]

t[
-]

y(x) (100 epochs)

Ground truth

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

Epoch [-]

E
D
/N

or
E

v
a
l/
N

v
a
l

[-
]

Training error

Validation error

Using SGD progress to spot signs of overfitting:
■ Tracking the error on a validation dataset after every epoch
■ This motivates the early stopping strategy popular in the deep learning community

30 / 55

Stochastic Gradient Descent

0 2 4 6
−2

−1

0

1

2

x [-]

t[
-]

y(x) (200 epochs)

Ground truth

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

Epoch [-]

E
D
/N

or
E

v
a
l/
N

v
a
l

[-
]

Training error

Validation error

Using SGD progress to spot signs of overfitting:
■ Tracking the error on a validation dataset after every epoch
■ This motivates the early stopping strategy popular in the deep learning community

30 / 55

Stochastic Gradient Descent

0 2 4 6
−2

−1

0

1

2

x [-]

t[
-]

y(x) (300 epochs)

Ground truth

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

Epoch [-]

E
D
/N

or
E

v
a
l/
N

v
a
l

[-
]

Training error

Validation error

Using SGD progress to spot signs of overfitting:
■ Tracking the error on a validation dataset after every epoch
■ This motivates the early stopping strategy popular in the deep learning community

30 / 55

Adaptive basis functions

x

ϕ1

··
·

ϕM

y

ϕ1(x)

ϕM (x)

w1

wM

y = ϕ1(x)w1 + ϕ2(x)w2 + · · ·+ ϕM (x)wM

Up until now, the basis functions have been fixed a priori:
■ Polynomials: number of terms M , polynomial degrees of each term
■ Gaussians: bandwidth s, basis function centers µj

31 / 55

Adaptive basis functions

x

ϕ1

··
·

ϕM

y

ϕ1(x)

ϕM (x)

w1

wM

input layer

latent (hidden) layer

output layer

For now, only half of the model is trainable:
■ Input to hidden encoding (ϕ1 · · ·ϕM) fixed, hidden to output decoding (w) trained
■ What if we could also train the first half?

32 / 55

Artificial Neural Networks

x

z11

··
·

z1M
··
·

··
·

zL1

··
·

zLM

y

w(1) w(2) w(L) w(L+1)

· · ·

Replacing basis functions by several layers of nonlinear transformations:
■ Neural Network: layers of neurons linked by weighted synaptic connections
■ Computing gradients becomes more complex, but all layers now have trainable weights

33 / 55

Neural Networks – Activation functions

−6 −4 −2 0 2 4 6

−1

−0.5

0

0.5

1

a [-]

z
[-

]

Sigmoid

Tanh

−6 −4 −2 0 2 4 6

0

2

4

6

a [-]

z
[-

]

reLU
Softplus

For a given neuron, forward propagation happens in two steps:
■ A linear combination of values from the previous layer:

alj =

D∑
i

w
(l)
ji z

(l−1)
i + w

(l)
j0

■ A nonlinear transformation with an activation function:

zlj = h (alj)

Choosing the activation function:
■ Application dependent
■ Can be seen as a hyperparameter

34 / 55

Neural Networks – Example

0 2 4 6
−2

−1

0

1

2

x [-]

t[
-]

y(x) (0 epochs)

Ground truth

0 0.5 1 1.5 2

·104

0

0.5

1

1.5

Epoch [-]

E
D
/N

or
E

v
a
l/
N

v
a
l

[-
]

Training error

Validation error

Same example as before, but now with a neural network:
■ Full batch Adam SGD (variable learning rate)
■ Two hidden layers, 10 neurons each, ReLU activation

35 / 55

Neural Networks – Example

0 2 4 6
−2

−1

0

1

2

x [-]

t[
-]

y(x) (1000 epochs)

Ground truth

0 0.5 1 1.5 2

·104

0

0.5

1

1.5

Epoch [-]

E
D
/N

or
E

v
a
l/
N

v
a
l

[-
]

Training error

Validation error

Same example as before, but now with a neural network:
■ Full batch Adam SGD (variable learning rate)
■ Two hidden layers, 10 neurons each, ReLU activation

35 / 55

Neural Networks – Example

0 2 4 6
−2

−1

0

1

2

x [-]

t[
-]

y(x) (5000 epochs)

Ground truth

0 0.5 1 1.5 2

·104

0

0.5

1

1.5

Epoch [-]

E
D
/N

or
E

v
a
l/
N

v
a
l

[-
]

Training error

Validation error

Same example as before, but now with a neural network:
■ Full batch Adam SGD (variable learning rate)
■ Two hidden layers, 10 neurons each, ReLU activation

35 / 55

Neural Networks – Example

0 2 4 6
−2

−1

0

1

2

x [-]

t[
-]

y(x) (10000 epochs)

Ground truth

0 0.5 1 1.5 2

·104

0

0.5

1

1.5

Epoch [-]

E
D
/N

or
E

v
a
l/
N

v
a
l

[-
]

Training error

Validation error

Same example as before, but now with a neural network:
■ Full batch Adam SGD (variable learning rate)
■ Two hidden layers, 10 neurons each, ReLU activation

35 / 55

Neural Networks – Example

0 2 4 6
−2

−1

0

1

2

x [-]

t[
-]

y(x) (15000 epochs)

Ground truth

0 0.5 1 1.5 2

·104

0

0.5

1

1.5

Epoch [-]

E
D
/N

or
E

v
a
l/
N

v
a
l

[-
]

Training error

Validation error

Same example as before, but now with a neural network:
■ Full batch Adam SGD (variable learning rate)
■ Two hidden layers, 10 neurons each, ReLU activation

35 / 55

Neural Networks – Example

0 2 4 6
−2

−1

0

1

2

x [-]

t[
-]

y(x) (20000 epochs)

Ground truth

0 0.5 1 1.5 2

·104

0

0.5

1

1.5

Epoch [-]

E
D
/N

or
E

v
a
l/
N

v
a
l

[-
]

Training error

Validation error

Same example as before, but now with a neural network:
■ Full batch Adam SGD (variable learning rate)
■ Two hidden layers, 10 neurons each, ReLU activation

35 / 55

Break

Let us take a 20-minute break

For later:
■ Read the content in the book pages
■ Play with a bunch of other interactive plots
■ Look at Bayesian linear regression and try the exercises

Up next:
■ The curse of dimensionality
■ Breaking the curse — Bayesian ML and inductive biases
■ Gaussian Processes for regression

36 / 55

The Curse of Dimensionality

x x x x x x x x x x

x x x x x
x x x x x
x x x x x
x x x x x

x x x x x
x x x x x
x x x x x
x x x x x
x x x x x

x x x x x
x x x x x
x x x x x
x x x x x
x x x x x

x x x x x
x x x x x
x x x x x
x x x x x
x x x x x

x x x x x
x x x x x
x x x x x
x x x x x
x x x x x

x x x x x
x x x x x
x x x x x
x x x x x
x x x x x

When building ML models, we rely on covering our feature space well enough. However...
■ We need exponentially more samples to keep up as we go to higher dimensions

This is a huge issue for all sorts of tasks:
■ From surrogate modeling to image processing

37 / 55

The Curse of Dimensionality

x x x x xx x x xxxx

When building ML models, we rely on covering our feature space well enough. However...
■ We need exponentially more samples to keep up as we go to higher dimensions

This is a huge issue for all sorts of tasks:
■ From surrogate modeling to image processing

37 / 55

The Curse of Dimensionality

[-]

[-]

[-]

[-]

[-]

[-]

[-]

[
]

[-]

[
]

[-]

[
]

When building ML models, we rely on covering our feature space well enough. However...
■ We need exponentially more samples to keep up as we go to higher dimensions

This is a huge issue for all sorts of tasks:
■ From surrogate modeling to image processing

37 / 55

The Curse of Dimensionality

When building ML models, we rely on covering our feature space well enough. However...
■ We need exponentially more samples to keep up as we go to higher dimensions

This is a huge issue for all sorts of tasks:
■ From surrogate modeling to image processing

37 / 55

Breaking the curse

0 1 2 3 4 5 6 7

−1

0

1

x [-]

t
[-

]

E [t∗|x∗]

70% conf. interval

Observations (D)

Exact function

Bad news: fully breaking the curse is impossible. But with some extra tricks it can be alleviated:
■ Introduce bias through prior beliefs ⇒ Bayesian ML (up next)
■ Assume Euclidean or non-Euclidean spatial bias ⇒ Convolutional NNs, Graph NNs
■ Explain patterns in lower dimensions with dimensionality reduction ⇒ PCA, Autoencoders
■ Assume the data is explained by latent time dependencies ⇒ 1D CNNs, Recurrent NNs
■ Introduce bias coming from physics knowledge ⇒ PINNs, hybrid models

38 / 55

Breaking the curse

[Alzubaidi et al (2022), Rock Mech Rock Eng 55:3719-3734] [Vlassis and Sun (2022), arXiv:2208.00246v1]

Bad news: fully breaking the curse is impossible. But with some extra tricks it can be alleviated:
■ Introduce bias through prior beliefs ⇒ Bayesian ML (up next)
■ Assume Euclidean or non-Euclidean spatial bias ⇒ Convolutional NNs, Graph NNs
■ Explain patterns in lower dimensions with dimensionality reduction ⇒ PCA, Autoencoders
■ Assume the data is explained by latent time dependencies ⇒ 1D CNNs, Recurrent NNs
■ Introduce bias coming from physics knowledge ⇒ PINNs, hybrid models

38 / 55

Breaking the curse

[Wang et al (2020), CMAME 372:113377] [Rocha et al (2019), CMAME 345:644-670]

= α1 +α2 +α3

Bad news: fully breaking the curse is impossible. But with some extra tricks it can be alleviated:
■ Introduce bias through prior beliefs ⇒ Bayesian ML (up next)
■ Assume Euclidean or non-Euclidean spatial bias ⇒ Convolutional NNs, Graph NNs
■ Explain patterns in lower dimensions with dimensionality reduction ⇒ PCA, Autoencoders
■ Assume the data is explained by latent time dependencies ⇒ 1D CNNs, Recurrent NNs
■ Introduce bias coming from physics knowledge ⇒ PINNs, hybrid models

38 / 55

Breaking the curse

Classical RNN Gated Recurrent Unit (GRU) Long Short Term Memory (LSTM)
[Maia et al (2022), CMAME 407:115934]

Bad news: fully breaking the curse is impossible. But with some extra tricks it can be alleviated:
■ Introduce bias through prior beliefs ⇒ Bayesian ML (up next)
■ Assume Euclidean or non-Euclidean spatial bias ⇒ Convolutional NNs, Graph NNs
■ Explain patterns in lower dimensions with dimensionality reduction ⇒ PCA, Autoencoders
■ Assume the data is explained by latent time dependencies ⇒ 1D CNNs, Recurrent NNs
■ Introduce bias coming from physics knowledge ⇒ PINNs, hybrid models

38 / 55

Breaking the curse

[Haghighat et al (2020), arXiv:2003.02751v2]

σij,j + fi = 0

σij = λδijεkk + 2µεij

εij = 1
2
(ui,j + uj,i)

L = |σij,j + fi|Ω

+|u− u∗|Γu+|σij − σ∗
ij |Γσ

Collocation
loss

Bad news: fully breaking the curse is impossible. But with some extra tricks it can be alleviated:
■ Introduce bias through prior beliefs ⇒ Bayesian ML (up next)
■ Assume Euclidean or non-Euclidean spatial bias ⇒ Convolutional NNs, Graph NNs
■ Explain patterns in lower dimensions with dimensionality reduction ⇒ PCA, Autoencoders
■ Assume the data is explained by latent time dependencies ⇒ 1D CNNs, Recurrent NNs
■ Introduce bias coming from physics knowledge ⇒ PINNs, hybrid models

38 / 55

Breaking the curse

[Haghighat et al (2020), arXiv:2003.02751v2]

σij,j + fi = 0

σij = λδijεkk + 2µεij

εij = 1
2
(ui,j + uj,i)

L = |σij,j + fi|Ω+|u− u∗|Γu

+|σij − σ∗
ij |Γσ

Collocation
loss

Dirichlet
loss

Bad news: fully breaking the curse is impossible. But with some extra tricks it can be alleviated:
■ Introduce bias through prior beliefs ⇒ Bayesian ML (up next)
■ Assume Euclidean or non-Euclidean spatial bias ⇒ Convolutional NNs, Graph NNs
■ Explain patterns in lower dimensions with dimensionality reduction ⇒ PCA, Autoencoders
■ Assume the data is explained by latent time dependencies ⇒ 1D CNNs, Recurrent NNs
■ Introduce bias coming from physics knowledge ⇒ PINNs, hybrid models

38 / 55

Breaking the curse

[Haghighat et al (2020), arXiv:2003.02751v2]

σij,j + fi = 0

σij = λδijεkk + 2µεij

εij = 1
2
(ui,j + uj,i)

L = |σij,j + fi|Ω+|u− u∗|Γu+|σij − σ∗
ij |Γσ

Collocation
loss

Dirichlet
loss

Neumann
loss

Bad news: fully breaking the curse is impossible. But with some extra tricks it can be alleviated:
■ Introduce bias through prior beliefs ⇒ Bayesian ML (up next)
■ Assume Euclidean or non-Euclidean spatial bias ⇒ Convolutional NNs, Graph NNs
■ Explain patterns in lower dimensions with dimensionality reduction ⇒ PCA, Autoencoders
■ Assume the data is explained by latent time dependencies ⇒ 1D CNNs, Recurrent NNs
■ Introduce bias coming from physics knowledge ⇒ PINNs, hybrid models

38 / 55

Interlude — Probabilistic Graphs

Graphs with more than one variable imply a joint probability distribution:
■ Two independent variables:

p(a, b) = p(a)p(b)

■ We can use arrows to indicate dependency, causality or correlation through the Product Rule:

p(a, b) = p(a)p(b|a)

p(a, b) = p(b)p(a|b)

39 / 55

Interlude — Probabilistic Graphs

Graphs with more than one variable imply a joint probability distribution:
■ Two independent variables:

p(a, b) = p(a)p(b)

■ We can use arrows to indicate dependency, causality or correlation through the Product Rule:

p(a, b) = p(a)p(b|a)

p(a, b) = p(b)p(a|b)

39 / 55

Interlude — Bayes’ Theorem

Consider a model with two variables x and y. We can use the Product Rule of probability to write:

p(x, y) = p(y|x)p(x)

p(x, y) = p(x|y)p(y)

Substituting one expression into the other we get the very important result:

p(y|x) = p(x|y)p(y)
p(x)

We can use Bayes’ Theorem to model and update beliefs and uncertainties:
■ The prior p(y) expresses what we know about y before observing x

■ The likelihood p(x|y) models how much y can explain x

■ The posterior p(y|x) expresses how the knowledge about y changed after observing x

Bayes’ Theorem states our willingness to change what we know about y after observing x:

posterior ∝ likelihood× prior

40 / 55

Interlude — Bayes’ Theorem

Consider a model with two variables x and y. We can use the Product Rule of probability to write:

p(x, y) = p(y|x)p(x)

p(x, y) = p(x|y)p(y)

Substituting one expression into the other we get the very important result:

p(y|x) = p(x|y)p(y)
p(x)

We can use Bayes’ Theorem to model and update beliefs and uncertainties:
■ The prior p(y) expresses what we know about y before observing x

■ The likelihood p(x|y) models how much y can explain x

■ The posterior p(y|x) expresses how the knowledge about y changed after observing x

Bayes’ Theorem states our willingness to change what we know about y after observing x:

posterior ∝ likelihood× prior

40 / 55

Interlude — Bayes’ Theorem

Consider a model with two variables x and y. We can use the Product Rule of probability to write:

p(x, y) = p(y|x)p(x)

p(x, y) = p(x|y)p(y)

Substituting one expression into the other we get the very important result:

p(y|x) = p(x|y)p(y)
p(x)

We can use Bayes’ Theorem to model and update beliefs and uncertainties:
■ The prior p(y) expresses what we know about y before observing x

■ The likelihood p(x|y) models how much y can explain x

■ The posterior p(y|x) expresses how the knowledge about y changed after observing x

Bayes’ Theorem states our willingness to change what we know about y after observing x:

posterior ∝ likelihood× prior

40 / 55

Interlude — Bayes’ Theorem

Consider a model with two variables x and y. We can use the Product Rule of probability to write:

p(x, y) = p(y|x)p(x)

p(x, y) = p(x|y)p(y)

Substituting one expression into the other we get the very important result:

p(y|x) = p(x|y)p(y)
p(x)

We can use Bayes’ Theorem to model and update beliefs and uncertainties:
■ The prior p(y) expresses what we know about y before observing x

■ The likelihood p(x|y) models how much y can explain x

■ The posterior p(y|x) expresses how the knowledge about y changed after observing x

Bayes’ Theorem states our willingness to change what we know about y after observing x:

posterior ∝ likelihood× prior
40 / 55

Bayes’ Theorem — Example

Let us consider a simple probabilistic model for predicting student performance:
study pass

prior

p(study,pass) = p(study)p(pass|study)

Let us set some reasonable expectations:

p(S = 1) = 0.6 p(S = 0) = ?

p(P = 1|S = 1) = 0.9 p(P = 1|S = 0) = 0.3

p(P = 0|S = 1) = ? p(P = 0|S = 0) = ?

Now suppose we observe someone passed. How certain should we be that they studied?
study passed

observation

41 / 55

Bayes’ Theorem — Example

Let us consider a simple probabilistic model for predicting student performance:
study pass

prior

p(study,pass) = p(study)p(pass|study)

Let us set some reasonable expectations:

p(S = 1) = 0.6 p(S = 0) = ?

p(P = 1|S = 1) = 0.9 p(P = 1|S = 0) = 0.3

p(P = 0|S = 1) = ? p(P = 0|S = 0) = ?

Now suppose we observe someone passed. How certain should we be that they studied?
study passed

observation

41 / 55

Bayes’ Theorem — Example

Let us consider a simple probabilistic model for predicting student performance:
study pass

prior

p(study,pass) = p(study)p(pass|study)

Let us set some reasonable expectations:

p(S = 1) = 0.6 p(S = 0) = ?

p(P = 1|S = 1) = 0.9 p(P = 1|S = 0) = 0.3

p(P = 0|S = 1) = ? p(P = 0|S = 0) = ?

Now suppose we observe someone passed. How certain should we be that they studied?
study passed

observation
41 / 55

Bayes’ Theorem — Example

Keeping our prior assumptions ignores important evidence. We use Bayes’ Theorem instead:

studied? passed

posterior

p(S = 1|P = 1) =
p(P = 1|S = 1)p(S = 1)

p(P = 1)

Get together with someone and use the values below (10 minutes):
■ Use the Sum Rule to compute the marginal p(P = 1) from the joint P (P = 1, S)

■ Use the values of p(P = 1|S = 1) and p(S = 1) from below
■ Put it all together above and compute the posterior p(S = 1|P = 1)

How much did our knowledge shift? How does this compare to the prior? Does it make sense?

p(S = 1|P = 1) =
0.9 · 0.6

0.9 · 0.6 + 0.3 · 0.4 = 0.818

42 / 55

Bayes’ Theorem — Example

p(S = 1) = 0.6 p(S = 0) = 0.4

p(P = 1|S = 1) = 0.9 p(P = 1|S = 0) = 0.3

p(P = 0|S = 1) = 0.1 p(P = 0|S = 0) = 0.7

p(P = 1, S) = p(S)p(P = 1|S)

Keeping our prior assumptions ignores important evidence. We use Bayes’ Theorem instead:

studied? passed

posterior

p(S = 1|P = 1) =
p(P = 1|S = 1)p(S = 1)

p(P = 1)

Get together with someone and use the values below (10 minutes):
■ Use the Sum Rule to compute the marginal p(P = 1) from the joint P (P = 1, S)

■ Use the values of p(P = 1|S = 1) and p(S = 1) from below
■ Put it all together above and compute the posterior p(S = 1|P = 1)

How much did our knowledge shift? How does this compare to the prior? Does it make sense?

p(S = 1|P = 1) =
0.9 · 0.6

0.9 · 0.6 + 0.3 · 0.4 = 0.818

42 / 55

Bayes’ Theorem — Example

Keeping our prior assumptions ignores important evidence. We use Bayes’ Theorem instead:

studied? passed

posterior

p(S = 1|P = 1) =
p(P = 1|S = 1)p(S = 1)

p(P = 1)

Get together with someone and use the values below (10 minutes):
■ Use the Sum Rule to compute the marginal p(P = 1) from the joint P (P = 1, S)

■ Use the values of p(P = 1|S = 1) and p(S = 1) from below
■ Put it all together above and compute the posterior p(S = 1|P = 1)

How much did our knowledge shift? How does this compare to the prior? Does it make sense?

p(S = 1|P = 1) =
0.9 · 0.6

0.9 · 0.6 + 0.3 · 0.4 = 0.818

42 / 55

Bayesian linear regression

Finally, let us use Bayes’ Theorem properly and end up with a distribution for w:

p(w|t) = p(t|w)p(w)

p(t)
with p(w) = N

(
w|0, α−1I

)
and p(t|w) = N

(
t|Φw, β−1I

)

The result takes the simple form:

p(w|t) = N (w|m,S) with m = βSΦTt and S−1 = αI+ βΦTΦ

43 / 55

Bayesian linear regression

0 2 4 6
x

2

1

0

1

2

t

Observations
Ground truth
MLE fit

0 2 4 6
x

2

1

0

1

2

t

Observations
Ground truth
Predictive mean
95% conf. interval

Bayes!

Finally, let us use Bayes’ Theorem properly and end up with a distribution for w:

p(w|t) = p(t|w)p(w)

p(t)
with p(w) = N

(
w|0, α−1I

)
and p(t|w) = N

(
t|Φw, β−1I

)
The result takes the simple form:

p(w|t) = N (w|m,S) with m = βSΦTt and S−1 = αI+ βΦTΦ

43 / 55

Sampling models from the posterior

0 2 4 6
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

t

Ground truth
y(x) samples

0 2 4 6
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5 Ground truth
Predictive mean
95% conf. interval

Since w is probabilistic, we have a bag of models at our disposal:
■ Take a sample w̃ from N (w|0, α−1I)

■ Compute y(x, w̃) for our whole range of x

After conditioning we can do the same for the posterior, and that can evolve as more samples are added:

44 / 55

Sampling models from the posterior

0 2 4 6
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

t

Ground truth
Observations
y(x) samples

0 2 4 6
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5 Ground truth
Predictive mean
Observations
95% conf. interval

Since w is probabilistic, we have a bag of models at our disposal:
■ Take a sample w̃ from N (w|0, α−1I)

■ Compute y(x, w̃) for our whole range of x

After conditioning we can do the same for the posterior, and that can evolve as more samples are added:

44 / 55

Sampling models from the posterior

0 2 4 6
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

t

Ground truth
Observations
y(x) samples

0 2 4 6
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5 Ground truth
Predictive mean
Observations
95% conf. interval

Since w is probabilistic, we have a bag of models at our disposal:
■ Take a sample w̃ from N (w|0, α−1I)

■ Compute y(x, w̃) for our whole range of x

After conditioning we can do the same for the posterior, and that can evolve as more samples are added:

44 / 55

Sampling models from the posterior

0 2 4 6
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

t

Ground truth
Observations
y(x) samples

0 2 4 6
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5 Ground truth
Predictive mean
Observations
95% conf. interval

Since w is probabilistic, we have a bag of models at our disposal:
■ Take a sample w̃ from N (w|0, α−1I)

■ Compute y(x, w̃) for our whole range of x

After conditioning we can do the same for the posterior, and that can evolve as more samples are added:

44 / 55

Sampling models from the posterior

0 2 4 6
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

t

Ground truth
Observations
y(x) samples

0 2 4 6
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5 Ground truth
Predictive mean
Observations
95% conf. interval

Since w is probabilistic, we have a bag of models at our disposal:
■ Take a sample w̃ from N (w|0, α−1I)

■ Compute y(x, w̃) for our whole range of x

After conditioning we can do the same for the posterior, and that can evolve as more samples are added:

44 / 55

Sampling models from the posterior

0 2 4 6
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

t

Ground truth
Observations
y(x) samples

0 2 4 6
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5 Ground truth
Predictive mean
Observations
95% conf. interval

Since w is probabilistic, we have a bag of models at our disposal:
■ Take a sample w̃ from N (w|0, α−1I)

■ Compute y(x, w̃) for our whole range of x

After conditioning we can do the same for the posterior, and that can evolve as more samples are added:

44 / 55

From weights to functions

Now we gather all values of y for a single realization of w into a vector:

y = Φw with Φnk = ϕk(xn)

Because Φ is a linear deterministic operator, y is also Gaussian:

p(y) = N
(
y|0, α−1ΦΦT

)
■ Note that w is now gone. This is now officially a non-parametric model!
■ Instead of sampling from p(w), we can now sample models from p(y)

We can write the above in a more compact way:
■ Define a kernel that relates two values of x and returns a scalar:

k(x,x′) =
1

α
ϕ(x)Tϕ(x′)

■ Express p(y) in terms of the kernel:

p(y) = N (y|0,K) with Kij = k(xi,xj)

45 / 55

From weights to functions

Now we gather all values of y for a single realization of w into a vector:

y = Φw with Φnk = ϕk(xn)

Because Φ is a linear deterministic operator, y is also Gaussian:

p(y) = N
(
y|0, α−1ΦΦT

)
■ Note that w is now gone. This is now officially a non-parametric model!
■ Instead of sampling from p(w), we can now sample models from p(y)

We can write the above in a more compact way:
■ Define a kernel that relates two values of x and returns a scalar:

k(x,x′) =
1

α
ϕ(x)Tϕ(x′)

■ Express p(y) in terms of the kernel:

p(y) = N (y|0,K) with Kij = k(xi,xj)

45 / 55

From weights to functions

Now we gather all values of y for a single realization of w into a vector:

y = Φw with Φnk = ϕk(xn)

Because Φ is a linear deterministic operator, y is also Gaussian:

p(y) = N
(
y|0, α−1ΦΦT

)
■ Note that w is now gone. This is now officially a non-parametric model!
■ Instead of sampling from p(w), we can now sample models from p(y)

We can write the above in a more compact way:
■ Define a kernel that relates two values of x and returns a scalar:

k(x,x′) =
1

α
ϕ(x)Tϕ(x′)

■ Express p(y) in terms of the kernel:

p(y) = N (y|0,K) with Kij = k(xi,xj)

45 / 55

From weights to functions

p(y1, y2) = N

(
y12 |

[
m(x1)

m(x2)

]
,

[
k(x1,x1) k(x1,x2)

k(x2,x1) k(x2,x2)

])
≡ N (y12 | m12,K12)

As always, we can represent this model with a graph
■ Starting with just a few variables

■ We can generalize this for any number of nodes. Assuming zero mean

:

■ Finally, we can use a more compact version:

46 / 55

From weights to functions

p(y12, y3) = N

y123 |

[
m12

m(x3)

]
,

 K12

k(x1,x3)

k(x2,x3)

k(x3,x1) k(x3,x2) k(x3,x3)


 ≡ N (y123 | m123,K123)

As always, we can represent this model with a graph
■ Starting with just a few variables

■ We can generalize this for any number of nodes. Assuming zero mean

:

■ Finally, we can use a more compact version:

46 / 55

From weights to functions

p(y123, y4) = N

y1234 |
[
m123

m(x4)

]
,

 K123

k(x1,x4)

k(x2,x4)

k(x3,x4)

k(x4,x1) k(x4,x2) k(x4,x3) k(x4,x4)


 ≡ N (y1234 | m1234,K1234)

As always, we can represent this model with a graph
■ Starting with just a few variables

■ We can generalize this for any number of nodes. Assuming zero mean

:

■ Finally, we can use a more compact version:

46 / 55

From weights to functions

p(y) = N (y|0,K)

As always, we can represent this model with a graph
■ Starting with just a few variables
■ We can generalize this for any number of nodes. Assuming zero mean:

■ Finally, we can use a more compact version:

46 / 55

From weights to functions

As always, we can represent this model with a graph
■ Starting with just a few variables
■ We can generalize this for any number of nodes. Assuming zero mean

:

■ Finally, we can use a more compact version:

46 / 55

Gaussian Processes

Because we can include any number of variables in the joint, we can fully switch to a function view:
■ A process is a probability density over functions
■ Sampling a function means sampling an arbitrary number of points from it

A Gaussian Process (GP) is a process dictated by joint Gaussian densities:
■ Any number of points from a GP is jointly Gaussian

A GP is fully described by a mean function and a covariance kernel:

y(x) ∼ GP
(
m(x), k(x,x′)

)
■ The kernel dictates the correlation between function values
■ Edge case: k(x,x′) = σ2

fδ(x− x′)⇒K = σ2
fI (white noise random walk)

47 / 55

Gaussian Processes

Because we can include any number of variables in the joint, we can fully switch to a function view:
■ A process is a probability density over functions
■ Sampling a function means sampling an arbitrary number of points from it

A Gaussian Process (GP) is a process dictated by joint Gaussian densities:
■ Any number of points from a GP is jointly Gaussian

A GP is fully described by a mean function and a covariance kernel:

y(x) ∼ GP
(
m(x), k(x,x′)

)
■ The kernel dictates the correlation between function values
■ Edge case: k(x,x′) = σ2

fδ(x− x′)⇒K = σ2
fI (white noise random walk)

47 / 55

Gaussian Processes

Because we can include any number of variables in the joint, we can fully switch to a function view:
■ A process is a probability density over functions
■ Sampling a function means sampling an arbitrary number of points from it

A Gaussian Process (GP) is a process dictated by joint Gaussian densities:
■ Any number of points from a GP is jointly Gaussian

A GP is fully described by a mean function and a covariance kernel:

y(x) ∼ GP
(
m(x), k(x,x′)

)
■ The kernel dictates the correlation between function values
■ Edge case: k(x,x′) = σ2

fδ(x− x′)⇒K = σ2
fI (white noise random walk)

47 / 55

Kernel engineering — squared exponential

0 50 100 150
x

0

50

100

150

x'

Covariance matrix

1.0 0.5 0.0 0.5 1.0
x

2

1

0

1

y

Samples from process
process variance σ2

f = 1, length scale ℓ = 1

A very popular kernel in many applications, powerful and flexible:

k(x,x′) = σ2
f exp

(
−∥x− x′∥2

2ℓ2

)
■ Hyperparameters: process variance σ2

f , length scale ℓ

■ Equivalent to an RBF kernel with infinite (!) basis functions

48 / 55

Kernel engineering — squared exponential

0 50 100 150
x

0

50

100

150

x'

Covariance matrix

1.0 0.5 0.0 0.5 1.0
x

3

2

1

0

1

2

y

Samples from process
process variance σ2

f = 1, length scale ℓ = 0.5

A very popular kernel in many applications, powerful and flexible:

k(x,x′) = σ2
f exp

(
−∥x− x′∥2

2ℓ2

)
■ Hyperparameters: process variance σ2

f , length scale ℓ

■ Equivalent to an RBF kernel with infinite (!) basis functions

48 / 55

Kernel engineering — squared exponential

0 50 100 150
x

0

50

100

150

x'

Covariance matrix

1.0 0.5 0.0 0.5 1.0
x

2

1

0

1

2

y

Samples from process
process variance σ2

f = 1, length scale ℓ = 0.1

A very popular kernel in many applications, powerful and flexible:

k(x,x′) = σ2
f exp

(
−∥x− x′∥2

2ℓ2

)
■ Hyperparameters: process variance σ2

f , length scale ℓ

■ Equivalent to an RBF kernel with infinite (!) basis functions

48 / 55

Kernel engineering — Matérn

0 50 100 150
x

0

50

100

150

x'

Covariance matrix

1.0 0.5 0.0 0.5 1.0
x

2

1

0

1

2

y

Samples from process

ν → ∞ (infinitely differentiable)

A kernel for when differentiability is an issue:

k(x,x′) =
σ2
f

Γ(ν)2ν−1

(√
2ν

ℓ
∥x− x′∥

)ν

Kν

(√
2ν

ℓ
∥x− x′∥

)

■ Hyperparameters: process variance σ2
f , length scale ℓ, differentiability parameter ν

49 / 55

Kernel engineering — Matérn

0 50 100 150
x

0

50

100

150

x'

Covariance matrix

1.0 0.5 0.0 0.5 1.0
x

2

1

0

1

2

y

Samples from process

ν = 1.5 (once differentiable)

A kernel for when differentiability is an issue:

k(x,x′) =
σ2
f

Γ(ν)2ν−1

(√
2ν

ℓ
∥x− x′∥

)ν

Kν

(√
2ν

ℓ
∥x− x′∥

)

■ Hyperparameters: process variance σ2
f , length scale ℓ, differentiability parameter ν

49 / 55

Kernel engineering — Matérn

0 50 100 150
x

0

50

100

150

x'

Covariance matrix

1.0 0.5 0.0 0.5 1.0
x

2

1

0

1

2

3

y

Samples from process

ν = 0.5 (not differentiable)

A kernel for when differentiability is an issue:

k(x,x′) =
σ2
f

Γ(ν)2ν−1

(√
2ν

ℓ
∥x− x′∥

)ν

Kν

(√
2ν

ℓ
∥x− x′∥

)

■ Hyperparameters: process variance σ2
f , length scale ℓ, differentiability parameter ν

49 / 55

Gaussian processes for regression

For regression, we need to observe some targets and predict for new inputs
■ Assume targets are Gaussian-distributed around y(x):

p(t|y) = N
(
t|y(x), β−1)

■ The targets are conditionally independent on y(x) (i.i.d. assumption):

■ From the standard expressions for the Gaussian, we have a marginal over the targets:

p(t) =

∫
p(t|y)p(y) dy = N

(
t|0,K(X,X) + β−1I

)

50 / 55

Gaussian processes for regression

For regression, we need to observe some targets and predict for new inputs
■ Assume targets are Gaussian-distributed around y(x):

p(t|y) = N
(
t|y(x), β−1)

■ The targets are conditionally independent on y(x) (i.i.d. assumption):

■ From the standard expressions for the Gaussian, we have a marginal over the targets:

p(t) =

∫
p(t|y)p(y) dy = N

(
t|0,K(X,X) + β−1I

)

50 / 55

Gaussian processes for regression

For regression, we need to observe some targets and predict for new inputs
■ Assume targets are Gaussian-distributed around y(x):

p(t|y) = N
(
t|y(x), β−1)

■ The targets are conditionally independent on y(x) (i.i.d. assumption):

■ From the standard expressions for the Gaussian, we have a marginal over the targets:

p(t) =

∫
p(t|y)p(y) dy = N

(
t|0,K(X,X) + β−1I

)

50 / 55

GPs for regression — joint distribution

How to make new predictions? We need a joint between t and t̂:

p(t, t̂) = N

(
t, t̂ | 0,

[
K (X,X) + β−1I K (X, x̂)

K (x̂,X) k (x̂, x̂) + β−1

])

Note the meaning and sizes of these submatrices:
■ K(X,X) + β−1I: Correlation between training inputs, with added observation noise (N ×N)
■ K(X, x̂): Correlation between training targets and the new target (N × 1)
■ K(x̂,X): Correlation between the new target and training targets (1×N)
■ k(x̂, x̂): Variance of the new target, with added observation noise (1× 1)

Note that we are predicting a single new value at x̂
■ What would be the sizes of these matrices if we were predicting at 1000 new locations?

51 / 55

GPs for regression — joint distribution

How to make new predictions? We need a joint between t and t̂:

p(t, t̂) = N

(
t, t̂ | 0,

[
K (X,X) + β−1I K (X, x̂)

K (x̂,X) k (x̂, x̂) + β−1

])

Note the meaning and sizes of these submatrices:
■ K(X,X) + β−1I: Correlation between training inputs, with added observation noise (N ×N)
■ K(X, x̂): Correlation between training targets and the new target (N × 1)
■ K(x̂,X): Correlation between the new target and training targets (1×N)
■ k(x̂, x̂): Variance of the new target, with added observation noise (1× 1)

Note that we are predicting a single new value at x̂
■ What would be the sizes of these matrices if we were predicting at 1000 new locations?

51 / 55

GPs for regression — joint distribution

How to make new predictions? We need a joint between t and t̂:

p(t, t̂) = N

(
t, t̂ | 0,

[
K (X,X) + β−1I K (X, x̂)

K (x̂,X) k (x̂, x̂) + β−1

])

Note the meaning and sizes of these submatrices:
■ K(X,X) + β−1I: Correlation between training inputs, with added observation noise (N ×N)
■ K(X, x̂): Correlation between training targets and the new target (N × 1)
■ K(x̂,X): Correlation between the new target and training targets (1×N)
■ k(x̂, x̂): Variance of the new target, with added observation noise (1× 1)

Note that we are predicting a single new value at x̂
■ What would be the sizes of these matrices if we were predicting at 1000 new locations?

51 / 55

GPs for regression — predictive posterior

We have a joint but this is all still our a prior distribution:
■ We still have a whole density p(t) for the training targets

Since we know t, we should update our prior using Bayes’ Theorem:

p(t̂|t) = p(t|t̂)p(t̂)
p(t)

But given that we already have a joint Gaussian, we can just use our old conditioning expressions:

p(t̂|t) = N
(
t̂|m̂, σ̂2)

m̂ = K (x̂,X)
[
K (X,X) + β−1I

]−1
t

σ̂2 = k (x̂, x̂)−K (x̂,X)
[
K (X,X) + β−1I

]−1
K (X, x̂) + β−1

52 / 55

GPs for regression — predictive posterior

We have a joint but this is all still our a prior distribution:
■ We still have a whole density p(t) for the training targets

Since we know t, we should update our prior using Bayes’ Theorem:

p(t̂|t) = p(t|t̂)p(t̂)
p(t)

But given that we already have a joint Gaussian, we can just use our old conditioning expressions:

p(t̂|t) = N
(
t̂|m̂, σ̂2)

m̂ = K (x̂,X)
[
K (X,X) + β−1I

]−1
t

σ̂2 = k (x̂, x̂)−K (x̂,X)
[
K (X,X) + β−1I

]−1
K (X, x̂) + β−1

52 / 55

GPs for regression — predictive posterior

We have a joint but this is all still our a prior distribution:
■ We still have a whole density p(t) for the training targets

Since we know t, we should update our prior using Bayes’ Theorem:

p(t̂|t) = p(t|t̂)p(t̂)
p(t)

But given that we already have a joint Gaussian, we can just use our old conditioning expressions:

p(t̂|t) = N
(
t̂|m̂, σ̂2)

m̂ = K (x̂,X)
[
K (X,X) + β−1I

]−1
t

σ̂2 = k (x̂, x̂)−K (x̂,X)
[
K (X,X) + β−1I

]−1
K (X, x̂) + β−1

52 / 55

GPs for regression — example

Let us go back to our running sine-wave example. We observe N = 5 data points with a SE GP:

0 1 2 3 4 5 6
x

1.0

0.5

0.0

0.5

1.0
y

Prior

Ground truth
95% conf. interval
Mean
y(x) samples

0 1 2 3 4 5 6
x

1.5

1.0

0.5

0.0

0.5

1.0

t

Posterior

Ground truth
95% conf. interval
Mean
Observations
y(x) samples

■ We have a prior and a posterior process, we can sample from both
■ All posterior samples pass close to the observations (this closeness is proportional to β)
■ Away from data the samples spread out and the variance increases
■ The model avoids overfitting even for this very small dataset

53 / 55

GPs for regression — example

Let us go back to our running sine-wave example. We observe N = 5 data points with a SE GP:

0 1 2 3 4 5 6
x

1.0

0.5

0.0

0.5

1.0
y

Prior

Ground truth
95% conf. interval
Mean
y(x) samples

0 1 2 3 4 5 6
x

1.5

1.0

0.5

0.0

0.5

1.0

t

Posterior

Ground truth
95% conf. interval
Mean
Observations
y(x) samples

■ We have a prior and a posterior process, we can sample from both

■ All posterior samples pass close to the observations (this closeness is proportional to β)
■ Away from data the samples spread out and the variance increases
■ The model avoids overfitting even for this very small dataset

53 / 55

GPs for regression — example

Let us go back to our running sine-wave example. We observe N = 5 data points with a SE GP:

0 1 2 3 4 5 6
x

1.0

0.5

0.0

0.5

1.0
y

Prior

Ground truth
95% conf. interval
Mean
y(x) samples

0 1 2 3 4 5 6
x

1.5

1.0

0.5

0.0

0.5

1.0

t

Posterior

Ground truth
95% conf. interval
Mean
Observations
y(x) samples

■ We have a prior and a posterior process, we can sample from both
■ All posterior samples pass close to the observations (this closeness is proportional to β)

■ Away from data the samples spread out and the variance increases
■ The model avoids overfitting even for this very small dataset

53 / 55

GPs for regression — example

Let us go back to our running sine-wave example. We observe N = 5 data points with a SE GP:

0 1 2 3 4 5 6
x

1.0

0.5

0.0

0.5

1.0
y

Prior

Ground truth
95% conf. interval
Mean
y(x) samples

0 1 2 3 4 5 6
x

1.5

1.0

0.5

0.0

0.5

1.0

t

Posterior

Ground truth
95% conf. interval
Mean
Observations
y(x) samples

■ We have a prior and a posterior process, we can sample from both
■ All posterior samples pass close to the observations (this closeness is proportional to β)
■ Away from data the samples spread out and the variance increases

■ The model avoids overfitting even for this very small dataset

53 / 55

GPs for regression — example

Let us go back to our running sine-wave example. We observe N = 5 data points with a SE GP:

0 1 2 3 4 5 6
x

1.0

0.5

0.0

0.5

1.0
y

Prior

Ground truth
95% conf. interval
Mean
y(x) samples

0 1 2 3 4 5 6
x

1.5

1.0

0.5

0.0

0.5

1.0

t

Posterior

Ground truth
95% conf. interval
Mean
Observations
y(x) samples

■ We have a prior and a posterior process, we can sample from both
■ All posterior samples pass close to the observations (this closeness is proportional to β)
■ Away from data the samples spread out and the variance increases
■ The model avoids overfitting even for this very small dataset

53 / 55

Learning and model selection

Hyperparameters can be learned without a validation set!
■ We look at the marginal likelihood, which is quite easy in this case:

p(t) = N
(
t|0,K(X,X) + β−1I

)

We take the log of this PDF and get to an expression we can maximize:

ln p(t) = −1

2
ln|K+ β−1I| − 1

2
tT
(
K+ β−1I

)−1
t− N

2
ln (2π)

■ This is called empirical Bayes or Type-2 MLE

54 / 55

Learning and model selection

0 1 2 3 4 5 6
x

20

10

0

10

20

y

Prior

Ground truth
95% conf. interval
Mean
y(x) samples

0 1 2 3 4 5 6
x

1.5

1.0

0.5

0.0

0.5

1.0

t

Posterior
Ground truth
95% conf. interval
Mean
Observations
y(x) samples

Hyperparameters can be learned without a validation set!
■ We look at the marginal likelihood, which is quite easy in this case:

p(t) = N
(
t|0,K(X,X) + β−1I

)
We take the log of this PDF and get to an expression we can maximize:

ln p(t) = −1

2
ln|K+ β−1I| − 1

2
tT
(
K+ β−1I

)−1
t− N

2
ln (2π)

■ This is called empirical Bayes or Type-2 MLE

54 / 55

Learning and model selection

0 1 2 3 4 5 6
x

10

0

10

y

Prior
Ground truth
95% conf. interval
Mean
y(x) samples

0 1 2 3 4 5 6
x

2.0

1.5

1.0

0.5

0.0

0.5

1.0

t

Posterior
Ground truth
95% conf. interval
Mean
Observations
y(x) samples

Hyperparameters can be learned without a validation set!
■ We look at the marginal likelihood, which is quite easy in this case:

p(t) = N
(
t|0,K(X,X) + β−1I

)
We take the log of this PDF and get to an expression we can maximize:

ln p(t) = −1

2
ln|K+ β−1I| − 1

2
tT
(
K+ β−1I

)−1
t− N

2
ln (2π)

■ This is called empirical Bayes or Type-2 MLE

54 / 55

Learning and model selection

0 1 2 3 4 5 6
x

4

2

0

2

4

y

Prior
Ground truth
95% conf. interval
Mean
y(x) samples

0 1 2 3 4 5 6
x

2

0

2

t

Posterior
Ground truth
95% conf. interval
Mean
Observations
y(x) samples

Hyperparameters can be learned without a validation set!
■ We look at the marginal likelihood, which is quite easy in this case:

p(t) = N
(
t|0,K(X,X) + β−1I

)
We take the log of this PDF and get to an expression we can maximize:

ln p(t) = −1

2
ln|K+ β−1I| − 1

2
tT
(
K+ β−1I

)−1
t− N

2
ln (2π)

■ This is called empirical Bayes or Type-2 MLE

54 / 55

Learning and model selection

0 1 2 3 4 5 6
x

2

1

0

1

y

Prior

Ground truth
95% conf. interval
Mean
y(x) samples

0 1 2 3 4 5 6
x

2

1

0

1

t

Posterior

Ground truth
95% conf. interval
Mean
Observations
y(x) samples

Hyperparameters can be learned without a validation set!
■ We look at the marginal likelihood, which is quite easy in this case:

p(t) = N
(
t|0,K(X,X) + β−1I

)
We take the log of this PDF and get to an expression we can maximize:

ln p(t) = −1

2
ln|K+ β−1I| − 1

2
tT
(
K+ β−1I

)−1
t− N

2
ln (2π)

■ This is called empirical Bayes or Type-2 MLE

54 / 55

Learning and model selection

0 1 2 3 4 5 6
x

1.0

0.5

0.0

0.5

1.0

1.5

y

Prior

Ground truth
95% conf. interval
Mean
y(x) samples

0 1 2 3 4 5 6
x

1.0

0.5

0.0

0.5

1.0

t

Posterior

Ground truth
95% conf. interval
Mean
Observations
y(x) samples

Hyperparameters can be learned without a validation set!
■ We look at the marginal likelihood, which is quite easy in this case:

p(t) = N
(
t|0,K(X,X) + β−1I

)
We take the log of this PDF and get to an expression we can maximize:

ln p(t) = −1

2
ln|K+ β−1I| − 1

2
tT
(
K+ β−1I

)−1
t− N

2
ln (2π)

■ This is called empirical Bayes or Type-2 MLE

54 / 55

End of this part

Key takeaways:
■ ML inherits much of its foundation from statistics
■ Bias/variance tradeoff is an everyday struggle
■ Bayesian ML can lead to very robust models
■ Nevertheless, high-dimensional feature spaces

require clever solutions

Up next:
■ Introducing physics-based bias to ML models
■ Structural bias through operator architectures
■ Regression with ML across the scales

We hope you enjoyed this part!

55 / 55

