Engineering Mechanics: Machine Learning

Introduction to ML

e
TUDelft

A long, long time ago (1.5 years)

Some DALL-E generations we showed at the EM Symposium 2022:

Two teddy bears discovering a new metamaterial

2
TUDelft
2/55

Today

Denoising diffusion for microstructure design:
= Tailored hyperelastic potential

[Vlassis and Sun (2023), CMAME 413:116126]

Context embedded Behavi
feature vectors chavior
Topology context G J
{, SCTETETETTE module enerate
Cl’ﬂse’l(t microstructures,
module
{A 7 m-m‘m w
T T~
HHID |5 e e B
B [peCrealx) AN
\ N
\

Y
AY
N \
\ Po(Xe-11%0, 8
- x 1
3 i 1 =
e } fm - ¥’ Po(Xe-11%e, 84 88) 4
- 3

Ié

o]]

Ty
! LSRN 1
T ’ \ 8 Surrogate
’ ! ! model filter
——f 7 1
‘e=f] 4

1
1 Po(xe-alxe,$p) ;1
U-net Architecture (Denoising) !

2
TUDelft

Today

Inverse design of spinodoid metamaterials:
= Tailored stiffness tensor

[Zheng et al (2023), Nat Comm 2023(14):7563]

Generative modeling of truss metamaterials
S = Flu]

003

%% Stiffness

S X
Property
fw@ predictor
PN
= 4

Input lattice Encoder Latent space Decoder Recalr;:?'cucted
ice

G=(4,x) =~ (p,0) ¢'= (4

2
TUDelft

4/ 55

2
TUDelft

Today

MechGPT, a large language model fine-tuned for mechanics:
= Multimodality, non-trivial connections between different areas of knowledge
[Buehler (2024), Appl Mech Rev 76(2):021001]

Probabilty dstributon
over the vocabulary

(a) ou

Autoregressive Transformer

aded Graon | |

Building blocks:

(= Describe what happens at a crack + Words, ltters/characters

s
tip during failure. N Emlm’:ma LaTex)
ey P
oput Tokenizer (©
- \<§§

5/55

Today

Combining machine learning and physics in creative ways:

= Sparse connectivities, invariances, real material models embedded in architecture

[Maia et al (2024), Coming soon]

Constitutive model

(000 [©0©6]
el ©00 g ©© ®
O re ® © e N [« o]
o |_©° e
o L™ @\ feeelrlTeee]
® @00 |-i~| ©0
“ Leee]l L~ o] |8

Encoder Material layer Decoder

2
TUDelft

/) E
'
'
Bl — " — @) At o[
2 — (@)
Fl—

6/55

Machine Learning — an extremely quick primer

Narrow versus General Al:
= Narrow Al can only perform one specific task < ML techniques live here
= General Al can perform a multitude of tasks and program itself <= just a dream (for now...)

2
TUDelft
7/55

Machine Learning — an extremely quick primer

Narrow versus General Al:
= Narrow Al can only perform one specific task < ML techniques live here
= General Al can perform a multitude of tasks and program itself < just a dream (for now...)

Supervised Learning: Tasks with known target outcomes, requires labeled data:
= Regression: Map input features to noisy observations of continuous outputs <« this course
= Classification: Map input features to discrete class labels

2
TUDelft

7/55

Machine Learning — an extremely quick primer

Narrow versus General Al:
= Narrow Al can only perform one specific task < ML techniques live here
= General Al can perform a multitude of tasks and program itself < just a dream (for now...)

Supervised Learning: Tasks with known target outcomes, requires labeled data:
= Regression: Map input features to noisy observations of continuous outputs <« this course
= Classification: Map input features to discrete class labels

Unsupervised Learning: Explain patterns in unlabeled data with latent (hidden) variables:
= Clustering: Split data into groups explained by discrete latents
= Dimensionality reduction: Explain the data with a manifold described by continuous latents

= These models are often generative

2
TUDelft

7/55

2
TUDelft

Machine Learning — an extremely quick primer

Narrow versus General Al:
= Narrow Al can only perform one specific task < ML techniques live here
= General Al can perform a multitude of tasks and program itself < just a dream (for now...)

Supervised Learning: Tasks with known target outcomes, requires labeled data:
= Regression: Map input features to noisy observations of continuous outputs <« this course
= Classification: Map input features to discrete class labels

Unsupervised Learning: Explain patterns in unlabeled data with latent (hidden) variables:
= Clustering: Split data into groups explained by discrete latents
= Dimensionality reduction: Explain the data with a manifold described by continuous latents
= These models are often generative

Reinforcement Learning: Learn a task through reward/punishment mechanisms:
= Agent(s) interacting with an environment, evolving interaction policy

7/55

Introduction to ML

Contents for this part of the course:
= Decision theory for regression
= |ntuitive model building with k-Nearest Neighbors

Robust model selection, bias-variance tradeoff
= From linear models to neural networks

= Bayesian ML with Gaussian Processes

= The curse of dimensionality, inductive biases

2
TUDelft

T

statistics

i

Machine Learning

]
A

Artificial intelligence,

/55

Regression problems

The problem we would like to solve:
= Given: Some complex process p (x, t), usually highly nonlinear

2
TUDelft
9/55

Regression problems

The problem we would like to solve:
= Given: Some complex process p (x, t), usually highly nonlinear
= Goal: Construct a model y(x) that explains it

x[]

2
TUDelft
9/55

Regression problems

The problem we would like to solve:
= Given: Some complex process p (x, t), usually highly nonlinear
= Goal: Construct a model y(x) that explains it
= |n practice: We do not know p (x, t), but only have N observations of it:

2
TUDelft
9/55

Choosing the model y(x)

Two main types:
= Parametric models: Knowledge of data encapsulated by a set of parameters: y(x, w)
= Non-parametric models: The whole dataset is directly used to make predictions: y(x, D)

2
TUDelft
10/ 55

Choosing the model y(x)

Two main types:
= Parametric models: Knowledge of data encapsulated by a set of parameters: y(x, w)
= Non-parametric models: The whole dataset is directly used to make predictions: y(x, D)

Let us start with a very simple non-parametric model for y(x):
= For a given xo, we look at a neighborhood N, around it until we find % data points

] x Zo x) x

2
TUDelft
10/ 55

Choosing the model y(x)

Two main types:
= Parametric models: Knowledge of data encapsulated by a set of parameters: y(x, w)
= Non-parametric models: The whole dataset is directly used to make predictions: y(x, D)

Let us start with a very simple non-parametric model for y(x):
= For a given xo, we look at a neighborhood N, around it until we find % data points
= We then average these points, resulting in a k-Nearest Neighbors (kNN) estimator

k=1 k=2 k=4
t t o t
x y(xo) % x
~—y(2o) y y !/(m)x
.
x x x
X X X X X X zo) = = t;
X x X X x X X x X y(o) Z
X X X z;, EN},
] T Zo x) x

2
TUDelft
10/ 55

Decision Theory for regression

We formalize our problem again from the beginning:
= Given: Some process p (x,t) we would like to explain with a model
= Goal: Construct a model y(x) that is as close as possible to ¢

s s

2
TUDelft
11/55

Decision Theory for regression

We formalize our problem again from the beginning:

= Given: Some process p (x,t) we would like to explain with a model

= Goal: Construct a model y(x) that is as close as possibleto ¢

= How to measure this "closeness"? The squared loss function is a popular choice:

2
TUDelft

L(t,y(x) = (y(x) — t)?

to

11/55

Decision Theory for regression

We formalize our problem again from the beginning:
= Given: Some process p (x,t) we would like to explain with a model
= Goal: Construct a model y(x) that is as close as possibleto ¢
= Here it is natural to go for the expectation:

Bl = [[w0~ 0pxo) dxar

2
TUDelft

12/ 55

Decision Theory for regression

We formalize our problem again from the beginning:
= Given: Some process p (x,t) we would like to explain with a model
= Goal: Construct a model y(x) that is as close as possibleto ¢
= Here it is natural to go for the expectation:

elr)= [[x,) dxdt

= Solving for the regression function y(x) gives:

Mw:/wM@&:&Mﬂ

2
TUDelft

12/ 55

Decision Theory for regression

We formalize our problem again from the beginning:
= Given: Some process p (x,t) we would like to explain with a model
= Goal: Construct a model y(x) that is as close as possibleto ¢

Eq [t|zo] 7.

T
—

2
TUDelft

12/ 55

Decision Theory for regression

We formalize our problem again from the beginning:
= Given: Some process p (x,t) we would like to explain with a model
= Goal: Construct a model y(x) that is as close as possibleto ¢

parallel with kNN?
k=4

T
—

E; [t|zo] 7‘ . y(zo)
x ez X

Zo o

2
TUDelft

12/ 55

Decision Theory for regression

We formalize our problem again from the beginning:
= Goal: Construct a model y(x) that is as close as possibleto ¢
= |n practice we do not know p (z, t) exactly and make decisions based on limited data:

N

| [w60 =0 px.t) dxae Z

2
TUDelft
13/55

Now let us try this out

Go to bit.ly/engmechml or scan the QR code:
= Look at the first interactive plot
= Change the value of k until you are satisfied with the model
= Change the value of k until the training loss is as small as possible:

2
TUDelft
14/ 55

Overfitting and underfitting

This is the model we get if we are just trying to minimize the training loss:
= Model fits the noise in the dataset and cannot generalize
= The error is exactly zero, but this is not a good model

P T |
20]

1 1

z of]
= |

; —y@) k=1 E

—2 |- —— Ground truth B
S R R RN B

0 2 4 6

2
TUDelft
15/ 55

Overfitting and underfitting

This is the model we get if we are just trying to minimize the training loss:
= Model fits the noise in the dataset and cannot generalize
= The error is exactly zero, but this is not a good model
= Too much freedom? What if we increase k?

N N
F 1 F = 1
2] ok x]
H 1 increasing k H XK x .
i] /\ i N |
r | - - & |
H 1 (a bit too much) P REAEY]
Tz of b = ol % XX L.
-0] = U x Y
L N . x X X x X i
. B L % X X X X B
-1F . —1F U ¥k
— @) k=1] | — @ E=100 x| x|
—2 |- —— Ground truth j —2| —— Ground truth e j
0 1 L L L 1 L L L 1 L L L 1 | 0 1 L L L 1 L L L 1 L L L 1 |
0 2 4 6 0 2 4 6

2
TUDelft
15/ 55

Let us do this one more time

Go to bit.ly/engmechml or scan the QR code:

= Look at the second interactive plot

= Change the value of k until it is as close as possible to the ground truth

] _...m... H..” .\ s

m : “.“_“._." 1l _m_

2

TUDelft

16 /55

Model selection

In practice we do not know the ground truth, so choosing k& is tricky:
= Too low: we fit the noise in the data = overfitting!
= Too high: we oversmooth and lose detail = underfitting!
= The training set cannot be trusted to give us k, it will always leadto k = 1

2
TUDelft
17 /55

Model selection

In practice we do not know the ground truth, so choosing k& is tricky:
= Too low: we fit the noise in the data = overfitting!
= Too high: we oversmooth and lose detail = underfitting!
= The training set cannot be trusted to give us k, it will always leadto k = 1

The solution is to introduce a validation dataset:
= A new dataset that cannot be used for training
= We can then use it to find the hyperparameter k:

Nyal

Z_ (y(xi, k) — 1)

k= arg mln
val

2
TUDelft
17 /55

Model selection

But how do we pick a validation set?

:
2+ x ><>< X 4
Ky
b o X
I ox o XXx %5 xX
= 0r %) X &X& x Xx ¥
- X x| Xx
X x X
—1F < &;;x X"’&X&XX
X *
»x X
ol SExx E
0 2 4 6
x[-]
100 samples
2
TUDelft

18/ 55

Model selection

But how do we pick a validation set?

split 80/20

o x XX X] Pys x XX x 1
X [%X]
1 K o X 1: X X o X i
[« X X % XX Lo« X 3¢ % X B
X; X X:XXXX k2 X % F X; % XXXXXX& x x X]
T ol X X % Xx X = of X ny& < XX]
= W % KT Fx <k xx LI
% % %% X ¥x 1
b KR K b X X;g:(%]
X * I X 1
x ;x X [x Training data % ;x X]
—2f XXX 1 —2 | X Validation data X E
0 2 4 6 0 2 4 6
x[-] x[-]
80 training samples
100 samples aining P
20 validation samples
2
TUDelft

18/ 55

Model selection

But how do we pick a validation set? 2r]
s 1
- = of -
split 80/20 . 2
b ut
NS T T ——— 5 — @) k=1 1
o Jox 1 2 x X b Q& 2 X Training data -
ot R U 1 & i
kxxxxix . 11XXX>§<:X L] < e R—"
X; %XXXXXX;: k2 X % r ><>><< >%<><><><><><>S;: ; X >§< 1 x[_]
- x X - KX 1
= 0f ») x Ko x Xx ¥ = 0F « x>§<>¥< x XXX B
T L AR B ST AN S
717x xxx x»&&(X 711X X><X X»&&]
X * I X 3]
x ;x X [x Training data % ;x X]
—2f XXX 1 —2 | X Validation data X E
0 2 4 6 0 2 4 6
x[-] x[-]
100 samples 80 training samples
20 validation samples
2
TUDelft

18/ 55

Model selection

But how do we pick a validation set? 2f

split 80/20
< | ‘ FT T s] — @) k=1
2t 0Ky * 1 2 ; X * E [X Training data
o ox X y [y Mo x L) (\) P é T ji T (\‘
1 Xxe X %X 1F Xxx % xX B 4 6
X %XX:XXXX % <k [X% S <] X[
T ol X « Koxg o« Xx ¥ T ol X K K]
= W % KT Fx <k xx LI
% x [ox x 1
af % KK K L RS S
x 5 [x x 1 _———
X ;‘ X [x Training data x ;X X] b -
-2} R 9 ~2 | X Validation data XX x j -
| | | | L. | | L -
0 2 4 6 0 2 4 6 [a
xI-] X[.
100 samples 80 training samples r 3
20 validation samples . i
— yl@) k=1
—2| X Validation data 1
S N
0 4 6
Fupeitt x[-]

18/ 55

Model selection

The bias-variance tradeoff:
= Qverly flexible models have low bias and high variance
= Qverly rigid models have high bias and low variance
= We may accept some bias in exchange for a lower variance... but not too much

—— T F T
) 2r]
pick k b
. 1k 1
at minimum loss [
2 = ol]
& = [
= [
0.2 —— Training loss B -1 R]
Il 1 . X
—— Validation loss | F— y(z) (k =10) X ¥ XX]
0 Irreducible loss | —2 | —— Ground truth * 1
C o v g B
0 20 40 60 80 0 2 4 6
k[-] x[-]

2
TUDelft
19 /55

Model selection

The bias-variance tradeoff:
= Qverly flexible models have low bias and high variance
= Qverly rigid models have high bias and low variance
= We may accept some bias in exchange for a lower variance... but not too much

N [e e R E B R R P T
2l B
08 H pick k b
r — s]
0.6 at minimum loss [
g 04l = Of]
= [[
0.2 : —— [Training loss E -1 » R]
H —— Yalidation loss | E — y(z) (k= 10) X g R x]
0 Tfreducible loss | —2 | —— Ground truth »]
L | | | Lo | | | I | | | L ul | | L L | L L L | L L L |
0 20 40 60 80 0 2 4 6
overfitting k[-] underfitting x[-]

2
TUDelft
19 /55

Let us do it one last time

Go to bit.ly/engmechml or scan the QR code:

= Look at the third interactive plot

= Change the value of k until the validation loss is as low as possible

] _...m... H..” .\ s

m : “.“_“._." 1l _m_

2

TUDelft

20/ 55

The bias-variance tradeoff

Why do we say flexible models have high variance? A closer look:
= Same example as before, but now 1000 different datasets of NV = 50 each

= How much does the choice of dataset affect the final model?

L(x) = (Ep [y(x, D)] — h(x))* +Ep [(y(x,D) — Ep [y(x, D)])*] + /(h (x) — 1) p(t]x) dt

bias?

2/
T uﬂﬂ
= [
20—y k=1
Ground truth

b

muﬁﬂ

>

2
TUDelft

variance

irreducible noise

X X X 5 "Xx
) X xx X X - XXX
X
B X
I — y(@) (k=50) L
Ground truth

| | ! | ! |
0 2 4 [§

21/55

The bias-variance tradeoff

Why do we say flexible models have high variance? A closer look:
= Same example as before, but now 1000 different datasets of NV = 50 each
= How much does the choice of dataset affect the final model?

l\')

t[-]
o

2
TUDelft

L(x) = (Ep [y(x, D)] — h(x))* +Ep [(y(x,D) — Ep [y(x, D)])*] + /(h (x) — 1) p(t]x) dt

bias?

Hﬂﬂm
U

| — @) k=1

Ground truth

variance

irreducible noise

T T T T
xx X
x X
20 & X
x XX X X
X
X RN X
= 7Tx X
- 0 X XX %
X X XX X
« X
X X
L XX
2| — y(@) (k=50 X
Ground truth
! | ! ! ! | ! ! ! | ! ! !

0 2 4

21/55

The bias-variance tradeoff

Why do we say flexible models have high variance? A closer look:

= Same example as before, but now 1000 different datasets of NV = 50 each

= How much does the choice of dataset affect the final model?

L(x) = (Ep [y(x, D)] — h(x))* +Ep [(y(x,D) — Ep [y(x, D)])*] + /(h (x) — 1) p(t]x) dt

bias?

t[-]
o

| x”uu“u“ Uﬂw

2 — Y@ k=1
Ground truth

HP

2
TUDelft

variance

irreducible noise

X x XX
X
X x X
X
o % X X
X
w X X N X
XX X
L X
X
| — y(z) (k= 50) X X ox

Ground truth

21/55

The bias-variance tradeoff

Why do we say flexible models have high variance? A closer look:
= Same example as before, but now 1000 different datasets of NV = 50 each
= How much does the choice of dataset affect the final model?

2
TUDelft

L(x) =

(Ep [y(x, D)] — h(x))* +Ep [(y(x,D) —

Ep [y

bias?

Ep[y(z)] (k

Variance
Ground truth

|
0

variance

/(h) — 1) plt]) dt

irreducible noise

e

— Eply(2)] (k = 50)

| Variance

~ Ground truth
I IR R I
0 2 4

x[-]

21/55

The bias-variance tradeoff

Why do we say flexible models have high variance? A closer look:
= Same example as before, but now 1000 different datasets of NV = 50 each
= How much does the choice of dataset affect the final model?

L(x) = (Ep [y(x, D)] — h(x))* + Ep [(y(x, D) —En [y /(h) —) p(t]x) dt
bias2 variance X N -
irreducible noise
ol no bias! ; 1 ol low variance |
i] high bias
z of high variance z of 1
| = Eply(«)] (b] | — Eoly(@)] (k = 50)]
-2 L Variance } -2 | Variance i
Ground truth 1 [— Ground truth
0 2 1 % 0 2 1 %
s x[-] x[-]
Fupelft

21/55

Linear basis function models

Simple linear regression, assuming D input features in x:
= Parametric model, linear in its arguments:

y(x,w) = wo + wiz1 + -+ wpxp

2
TUDelft
22/55

Linear basis function models

Simple linear regression, assuming D input features in x:
= Parametric model, linear in its arguments:

y(x,w) = wo + wiz1 + -+ wpTp

Here we make them more flexible:
= General nonlinear functions of x as regressors:

y(x, w) = ij¢j(x) =w'p(x)

= A bias term ¢o = 1 is usually included in ¢
= We are now unshackled from the original dimensionality D

2
TUDelft

L
-1

I
-0.5

0

x[-]

0.5

22/55

Linear basis function models

Observation model:
= We adopt a parametric model and assume additive Gaussian noise:

t=y(x,w)+e with e~N (0,,371)

2
TUDelft
23/55

Linear basis function models

Observation model:
= We adopt a parametric model and assume additive Gaussian noise:

t=y(x,w)+e with e~N (0,,371)

= Under the squared loss we have seen before, the regression function is simply:

Et[tlx]:/tp(t\x) dt = y(x,w)

2
TUDelft
23/55

Linear basis function models

Observation model:
= We adopt a parametric model and assume additive Gaussian noise:

t=y(x,w)+e with e~N (0,,371)

= Under the squared loss we have seen before, the regression function is simply:

Et[tlx]:/tp(t\x) dt = y(x,w)

We are implicitly assuming:
= Noise is Gaussian
= Response is unimodal

2
TUDelft
23/55

Maximum Likelihood Estimation

Computing the likelihood of our data:
= The probability density of a given value ¢ is:

pt|w) =N (tly(x,w),57")

= Given a dataset D with observations X = {x1, -+ ,xny}/t = [t1, -

2
TUDelft

,tN],

24/ 55

Maximum Likelihood Estimation

Computing the likelihood of our data:
= The probability density of a given value ¢ is:

pt|w) =N (tly(x,w),57")

= Given a dataset D with observations X = {x1, - ,xn}/t = [t1, -+ ,tnN],

= The likelihood of drawing our whole dataset from this Gaussian is therefore:

p(D|w) = HN(tn|w $(xa). 57"

2
TUDelft

24/ 55

Maximum Likelihood Estimation

Computing the likelihood of our data:
= The probability density of a given value ¢ is:

pt|w) =N (tly(x,w),57")

= Given a dataset D with observations X = {x1, - ,xn}/t = [t1, -+ ,tnN],
= The likelihood of drawing our whole dataset from this Gaussian is therefore:

p(D|w) = HN(tn|w $(xa). 57"

= Applying the natural logarithm to both sides, we get:

i (D1w) = 310 (1 70t 57) = 108 - F a5 {i > (i w"¢<x,,,>>2}

n=1

2
TUDelft
24/ 55

Maximum Likelihood Estimation

Computing the likelihood of our data:
= The probability density of a given value ¢ is:

pt|w) =N (tly(x,w),57")

= Given a dataset D with observations X = {x1, - ,xn}/t = [t1, -+ ,tnN],

The likelihood of drawing our whole dataset from this Gaussian is therefore:

p(D|w) = HN(tn|w $(xa). 57"

Applying the natural logarithm to both sides, we get:

i (D1w) = 310 (1 70t 57) = 108 - F a5 {i > (i w"¢<x,,,,>>2}

n=1

= Maximizing the likelihood is therefore equivalent to minimizing the error in red

This is where the usual loss function for ML regression comes from

2
TUDelft
24/ 55

Maximum Likelihood Estimation

How does this look like? An example:
= Dataset with N = 100 observations, A/ = 6 basis functions (polynomials or Gaussians)

2 r — —] 2 r T T
i % G =" i o o mew(-5EE)
I ><><><><><>< X 4 . ><><><><><>< X B
1r B 1r B
[| L |
i * i *
z of] z of]
e y(x) (M =6) * 1 b —< y(z) (M = 6) B
I Normalized ¢; x % i r & x X i
[—— Ground truth % b [—— Ground truth % b
72 7\ 1 1 1 I 1 1 72 7\ 1 1 1 I 1 1
0 2 4 6 0 2 4 6
x[-] x[-]
2
TuDelft

25/55

Overfitting and underfitting MLE models

Also here, flexibility is not always a good thing:
= Dataset with V = 10 observations, model with complete order M polynomials
= Again a tradeoff between bias and variance

2 2r
1k 8 1 i
= | T |
1k i 1 i
[T y(@) M =9 [—ylz) M =1 «
[—t—| Ground truth [—— Ground truth
oL | I I . I] ol
0 2 4 6 0 2 4 6

x [-] x[-]

2
TUDelft
26/ 55

Stochastic Gradient Descent

For now we have trained with the complete dataset at once:
= The error function contains all NV data points:

)

Situations when it is interesting (or necessary) to deviate from this:
= N is too large and computing (<I>T<I>)71 becomes prohibitive
= The model is nonlinear (in w) and wy, does not have a closed-form solution
= The dataset is arriving sequentially (e.g. in real time from a sensor)

2
TUDelft

27/55

Stochastic Gradient Descent

Instead of solving directly for wyr,, we can use Gradient Descent:
= Pick a (random) subset B of the dataset with N observations

2
TUDelft
28/55

Stochastic Gradient Descent

Instead of solving directly for wyr,, we can use Gradient Descent:
= Pick a (random) subset B of the dataset with N observations
= Update w with gradients coming from B and with a fixed learning rate »:

Np
wlth — w(™ _ nVEg with VEp=— Z (tn — w(T)Tq.’)(xn)) ¢(xn)T

n=1

2
TUDelft
28/55

Stochastic Gradient Descent

Instead of solving directly for wyr,, we can use Gradient Descent:
= Pick a (random) subset B of the dataset with N observations
= Update w with gradients coming from B and with a fixed learning rate »:

Np
wlth — w(™ _ nVEg with VEp=— Z (tn — w(T)Tq.’)(xn)) (j)(xn)T

n=1

= Every time the complete dataset has been seen, we say an epoch has passed

2
TUDelft

28/55

Stochastic Gradient Descent

Instead of solving directly for wyr,, we can use Gradient Descent:
= Pick a (random) subset B of the dataset with N observations
= Update w with gradients coming from B and with a fixed learning rate »:

Np
wlth — w(™ _ nVEg with VEp=— Z (tn — w(T)Tq.’)(xn)) (j)(xn)T

n=1
= Every time the complete dataset has been seen, we say an epoch has passed

Variations:
= Ni = 1: Online stochastic gradient descent
= | < N < N: Minibatch SGD (most popular)
= Nz = N: Full batch gradient descent

2
TUDelft

28/55

Stochastic Gradient Descent

An example:
= Same example as before, with N = 100 and M = 6 polynomial basis functions
= We fix the learning rate = 0.001 and minibatch size Nz = 10

2 [
[L ® 4
[X 60 [
L XXX X x Xx — [
1+ x - = 50]
Xy % X><>é [ﬂg E
Xx X - r
T 9 . X £ 40p B
= [5 r
B N
i £ 30| .
5 [
b b = [
5 [
[— y(=) (0 epochs) 20]
 —— Ground truth % E
7‘ . B 1 I O T S T I
-2 2 1 5 70 2 w0 w s
X [-] Epoch [-]

2
TUDelft

100

29/55

Stochastic Gradient Descent

An example:

2
TUDelft

Same example as before, with N = 100 and M = 6 polynomial basis functions
We fix the learning rate n = 0.001 and minibatch size Nz = 10

60 []
r b = 50f]
Q [
S
§ 40 1
L N g i
2 30l N
5 r
- Nl | LE b
| — y(z) (Lepoch) x 1 20 | .
[—— Ground truth % 1 E
L | L | i 1) S S
0 2 4 6 0 20 40 60 80
x [-] Epoch [-]

100

29/55

Stochastic Gradient Descent

An example:

2
TUDelft

Same example as before, with N = 100 and M = 6 polynomial basis functions
We fix the learning rate n = 0.001 and minibatch size Nz = 10

60 |- B
r b = 50f]
a [
S
§ 40 1
L] E i
2 30| N
5 r
L >] LE H
[— y(=) (5 epochs) x X 1 20 |]
[— Ground truth % 1 E
L | L | i 1) S S
0 2 4 6 0 20 40 60 80
x [-] Epoch [-]

100

29/55

Stochastic Gradient Descent

An example:
Same example as before, with N = 100 and M = 6 polynomial basis functions
= We fix the learning rate = 0.001 and minibatch size Nz = 10

2
TUDelft

[— y(x) (10 epochs)

Ground truth

0

2

Error function (Ep) [-]

60f
50f
4of
3of

20 |

10t

40
Epoch [-]

60

80

100

29/55

Stochastic Gradient Descent

An example:
= Same example as before, with N = 100 and M = 6 polynomial basis functions
= We fix the learning rate = 0.001 and minibatch size Nz = 10

2
L 60 |- b
1f B : 50 g B
[3 d0¢
S
- § 40 3]
= O] 5 |
i S 30f .
[= .
1 L X B LE [
| — y(=) (50 epochs) x % 1 20 - B
r —— Ground truth % b E
7‘ . h 1] T T I S T I T T B B '
-2 2 1 5 70 2 w0 w s
X [-] Epoch [-]

2
TUDelft

100

29/55

Stochastic Gradient Descent

An example:
Same example as before, with N = 100 and M = 6 polynomial basis functions
= We fix the learning rate = 0.001 and minibatch size Nz = 10

2
TUDelft

X
r —— y(z) (100 epochs)

Ground truth

0

2

Error function (Ep) [-]

60f
50f
4of
3of

20 |

10t

20

40
Epoch [-]

60

80

100

29/55

Stochastic Gradient Descent

Using SGD progress to spot signs of overfitting:
= Tracking the error on a validation dataset after every epoch
= This motivates the early stopping strategy popular in the deep learning community

27 08 ——
L [m —e— Training error |
I - [° —— Validation error |
1 [« g »] E 0.6 B N
1 = [
X X] \E r
= or] & 04]]
-] 5 f
B 5 L
—1F i LS 02l N
r— y(z) (0 epochs) o 1 i
b — Groundtruth L |
7‘ B 0 T I T T T T SN T S SO M
2 2 1 5 0 50 100 150 200 250 300
x [-] Epoch [-]

2
TUDelft
30/55

Stochastic Gradient Descent

Using SGD progress to spot signs of overfitting:
= Tracking the error on a validation dataset after every epoch
= This motivates the early stopping strategy popular in the deep learning community

2 08l T
L i —— Training error
L - i —— Validation error |
10 N = 061 1
. y E 06
= L
— It
= of x] & 04f]
-0 5 |
[= L
. ~ |-
-1+ . § 02 :
| — y(2) (5 epochs) . i
I —— Ground truth L |
7‘ 0 T T T T AT N NS N B BB
-2 2 1 5 0 50 100 150 200 250 300
x [-] Epoch [-]

2
TUDelft
30/55

Stochastic Gradient Descent

Using SGD progress to spot signs of overfitting:
= Tracking the error on a validation dataset after every epoch
= This motivates the early stopping strategy popular in the deep learning community

9 - 08l T
L i —— Training error
L - i —— Validation error |
1F N = 061 N
X x g 0.6 .
< L
_ It
T o) x] & 04f]
= = i
= L
= L
-1+ . § 02 :
[— y() (20 epochs) « [
I —— Ground truth L]
7‘ 0\\\\\\\\\\\\\\\\\\\\\\\\\
-2 2 1 5 0 50 100 150 200 250 300
x [-] Epoch [-]

2
TUDelft
30/55

Stochastic Gradient Descent

Using SGD progress to spot signs of overfitting:

= Tracking the error on a validation dataset after every epoch
= This motivates the early stopping strategy popular in the deep learning community

2
TUDelft

t —— y(z) (40 epochs)
[—— Ground truth

0 2

Ep/N or Eya1/Nya [-]

0.8

0.6

0.4

—— Training error

—— Validation error |

ol

50

T T T T
100 150 200 250
Epoch [-]

300

30/55

Stochastic Gradient Descent

Using SGD progress to spot signs of overfitting:

= Tracking the error on a validation dataset after every epoch
= This motivates the early stopping strategy popular in the deep learning community

2
TUDelft

{ — y(=) (100 epochs)

[—— Ground truth

0 2 4

Ep/N or Eya1/Nya [-]

0.8

0.6

0.4

—— Training error

—— Validation error |

ol

50

T T T S
100 150 200 250
Epoch [-]

300

30/55

Stochastic Gradient Descent

Using SGD progress to spot signs of overfitting:
= Tracking the error on a validation dataset after every epoch
= This motivates the early stopping strategy popular in the deep learning community

27‘ - - - . P L L B B
L i [—— Training error
L - i —— Validation error |
1 8 5 0.6] .
I
— T |
=~ 0 - R 04 e
-0 5 |
| = [
. ~ |-
-1+ . § 02 :
[— y(=) (200 epochs [
[—— Ground truth L |
ol | | | } ol v 1 L A
0 2 4 6 0 50 100 150 200 250 300
x [-] Epoch [-]

2
TUDelft
30/55

Stochastic Gradient Descent

Using SGD progress to spot signs of overfitting:

= Tracking the error on a validation dataset after every epoch

= This motivates the early stopping strategy popular in the deep learning community

2
TUDelft

F —— y(z) (300 epochs

[—— Ground truth

0 2

Ep/N or Eya1/Nya [-]

0.8

0.6

0.4

T
—— Training error

— Validation error |

ol

50 100 150
Epoch [-]

30/55

Adaptive basis functions

Up until now, the basis functions have been fixed a priori:
= Polynomials: number of terms M, polynomial degrees of each term
= Gaussians: bandwidth s, basis function centers p;

y = $1(Xw1 + g2(X)w2 + -+ + du (X)wm

9
. :

&
®
g

2
TUDelft

31/55

Adaptive basis functions

For now, only half of the model is trainable:
= |nput to hidden encoding (¢1 - - - ¢ar) fixed, hidden to output decoding (w) trained
= What if we could also train the first half?

latent (hidden) layer

input layer output layer

V\
\/

2
TUDelft

32/55

Artificial Neural Networks

Replacing basis functions by several layers of nonlinear transformations:
= Neural Network: layers of neurons linked by weighted synaptic connections
= Computing gradients becomes more complex, but all layers now have trainable weights

w® w® wl) (D)

@0 0O
/o0 @®

AN

@

NC A

“

2
TUDelft

33/55

Neural Networks — Activation functions

For a given neuron, forward propagation happens in two steps:
= A linear combination of values from the previous layer:

Zw(”z‘ RO z

—— Sigmoid
— Tah]

= A nonlinear transformation with an activation function: .

zi; = h(ay) al

Choosing the activation function:
= Application dependent
= Can be seen as a hyperparameter ol

—— reLU
—— Softplus |

L L L L L
-6 -4 =2 0 2 4 6

2
TUDelft
34/55

Neural Networks — Example

Same example as before, but now with a neural network:

= Full batch Adam SGD (variable learning rate)
= Two hidden layers, 10 neurons each, ReLU activation

2 ——— —
. X -
L X x y]
L X]
1 - -
T of]
-1 L s d x]
I —— y(z) (0 epochs) ;; KIK 1
L o]
[— Ground truth % * 1
72 7\ | L L L | L L L | ! ! ! I Il 1

0 2 4 6

2
TUDelft

Ep/N or Eva/Nyal [-]

1.5

—e— Training error

—— Validation error

no

35/55

Neural Networks — Example

Same example as before, but now with a neural network:
= Full batch Adam SGD (variable learning rate)
= Two hidden layers, 10 neurons each, ReLU activation

no

t[-]
[e=l
L L L R B

—— y(z) (1000 epochs) >§<;)<< ~

Ground truth

2
TUDelft

Ep/N or Eva/Nyal [-]

1.5

—— Training error

—— Validation error

no

35/55

Neural Networks — Example

Same example as before, but now with a neural network:
= Full batch Adam SGD (variable learning rate)
= Two hidden layers, 10 neurons each, ReLU activation

no

t[-]
[e=l
L L L R B

—— y(z) (5000 epochs)

Ground truth

2
TUDelft

Ep/N or Egai/Nya [-]

1.5

—— Training error

—— Validation error

no

35/55

Neural Networks — Example

Same example as before, but now with a neural network:
= Full batch Adam SGD (variable learning rate)
= Two hidden layers, 10 neurons each, ReLU activation

2 —— —— T T T T]
L X % 8 »] [—— Training error |
["] - 15 [—— Validation error
1r] P]
[7 =z L i
I | E 1
= ol B S 1
o0] 5 |]
I] = osl]
—1F . D]
I —— y(z) (10000 epochs) SKSK 1 = []
[O x| [E 1
[— Ground truth 1 []
_9 Loy 1 3 T R
0 2 4 6 0 0.5 1 1.5 2
x [-] Epoch [-] 104

2
TUDelft
35/55

Neural Networks — Example

Same example as before, but now with a neural network:
= Full batch Adam SGD (variable learning rate)
= Two hidden layers, 10 neurons each, ReLU activation

2 —— —— T T T T]
L X % 8 »] [—— Training error |
[¥] - r —— Validation error |
1 L] - 1.5 -
L 1 g L i
i] <]
3 5 |
= ol i g 1r i
o0] 5 |]
i 1 z [1
10] § 05 y
[— y(x) (15000 epochs) X] | k - i
XX x L |
[— Ground truth 1 [—e]
9 Loy 1 3 T R
o 2 4 6 0 0.5 1 15 2
x [-] Epoch [-] 104

2
TUDelft
35/55

Neural Networks — Example

Same example as before, but now with a neural network:
= Full batch Adam SGD (variable learning rate)
= Two hidden layers, 10 neurons each, ReLU activation

2 —— —— T T T T]
L 8] [—— Training error |
|] - r —— Validation error
1F] < 15 §
L |] I]
i | g |
El 5 |
T] 5|]
i 1 z [1
10] § 05 y
[— y() (20000 epochs) % X] [k .|
XX x L

[— Ground truth 1 [9

9 Loy 1 3 T R
o 2 4 6 0 0.5 1 15 2

x [-] Epoch [-] 104

2
TUDelft
35/55

Break

Let us take a 20-minute break

For later:
= Read the content in the book pages
= Play with a bunch of other interactive plots
= Look at Bayesian linear regression and try the exercises

Up next:
= The curse of dimensionality
= Breaking the curse — Bayesian ML and inductive biases
= Gaussian Processes for regression

2
TUDelft

36/55

The Curse of Dimensionality

When building ML models, we rely on covering our feature space well enough. However...

= We need exponentially more samples to keep up as we go to higher dimensions

5 samples

interpolation L extrapolation

T
0 0.5
P 50% sampled
TUDelft

extrapolation extrapolation

(- 25 samples

0.5

extrapolation

X X X X
X X X X
X X X X

— e X X X X

25% sampled

— (’ 125 samples
0
=7 0.5
|
I
0.5 1

12.5% sampled

37/55

The Curse of Dimensionality

When building ML models, we rely on covering our feature space well enough. However...
= We need exponentially more samples to keep up as we go to higher dimensions

This is a huge issue for all sorts of tasks:
= From surrogate modeling to image processing

120
100
S S0f

G 60|

Stress [MPa]

40

0 0.12

20

0 0.02 0.04 006 0.08 0.1 012
Strain [-]

2
TUDelft
37/55

The Curse of Dimensionality

When building ML models, we rely on covering our feature space well enough. However...
= We need exponentially more samples to keep up as we go to higher dimensions

This is a huge issue for all sorts of tasks:

= From surrogate modeling to image processing

,,,,,

,,,,,

2
TUDelft
37/55

The Curse of Dimensionality

When building ML models, we rely on covering our feature space well enough. However...
= We need exponentially more samples to keep up as we go to higher dimensions

This is a huge issue for all sorts of tasks:
= From surrogate modeling to image processing

dog/cat

2
TUDelft
37/55

Breaking the curse

Bad news: fully breaking the curse is impossible. But with some extra tricks it can be alleviated:

= Introduce bias through prior beliefs = Bayesian ML (up next)

= Assume Euclidean or non-Euclidean spatial bias = Convolutional NNs, Graph NNs

= Explain patterns in lower dimensions with dimensionality reduction = PCA, Autoencoders
Assume the data is explained by latent time dependencies = 1D CNNs, Recurrent NNs
Introduce bias coming from physics knowledge = PINNs, hybrid models

S — E [ta|z4]
70% conf. interval
-1 t X Observations (D)

=== Exact function

Fupeitt z[-]

38/55

Breaking the curse

Bad news: fully breaking the curse is impossible. But with some extra tricks it can be alleviated:
= Introduce bias through prior beliefs = Bayesian ML (up next)
= Assume Euclidean or non-Euclidean spatial bias = Convolutional NNs, Graph NNs
= Explain patterns in lower dimensions with dimensionality reduction = PCA, Autoencoders

Assume the data is explained by latent time dependencies = 1D CNNs, Recurrent NNs

Introduce bias coming from physics knowledge = PINNs, hybrid models

Input image

it* element

7[5 |
ls[7]| !

[BEE

Finite Element Mesh Graph Representation

Fupett [Alzubaidi et al (2022), Rock Mech Rock Eng 55:3719-3734] [Vlassis and Sun (2022), arXiv:2208.00246v1] 3855

Breaking the curse

Bad news: fully breaking the curse is impossible. But with some extra tricks it can be alleviated:

= Introduce bias through prior beliefs = Bayesian ML (up next)
= Assume Euclidean or non-Euclidean spatial bias = Convolutional NNs, Graph NNs

= Explain patterns in lower dimensions with dimensionality reduction = PCA, Autoencoders
Assume the data is explained by latent time dependencies = 1D CNNs, Recurrent NNs

= Introduce bias coming from physics knowledge = PINNSs, hybrid models

Characteristics of

Latent Space

%ﬁ high Cyy
4 ol
—> 0&7]
Conceptual low Cyy
Space
Rl
o of
Distance Metric Diverse Candidates Aperiodic Design
J—— +
| ##0 0 PN
g :I»:x [-ocnm > s im0
Interpolation e Ej E E E
Metamaterial Family Functionally Graded Design
5
TUDelft [Wang et al (2020), CMAME 372:113377]

[Rocha et al (2019), CMAME 345:644-670]

38/55

Breaking the curse

Bad news: fully breaking the curse is impossible. But with some extra tricks it can be alleviated:
= Introduce bias through prior beliefs = Bayesian ML (up next)
= Assume Euclidean or non-Euclidean spatial bias = Convolutional NNs, Graph NNs
= Explain patterns in lower dimensions with dimensionality reduction = PCA, Autoencoders
= Assume the data is explained by latent time dependencies = 1D CNNs, Recurrent NNs
= Introduce bias coming from physics knowledge = PINNs, hybrid models

‘,Q | Pu [4+ .
Classical RNN Gated Recurrent Unit (GRU) Long Short Term Memory (LSTM)

[Maia et al (2022), CMAME 407:115934]

2
TUDelft
38/55

Breaking the curse

Bad news: fully breaking the curse is impossible. But with some extra tricks it can be alleviated:

= Introduce bias through prior beliefs = Bayesian ML (up next)

= Assume Euclidean or non-Euclidean spatial bias = Convolutional NNs, Graph NNs

= Explain patterns in lower dimensions with dimensionality reduction = PCA, Autoencoders
= Assume the data is explained by latent time dependencies = 1D CNNs, Recurrent NNs

= Introduce bias coming from physics knowledge = PINNSs, hybrid models

oijj+ fi =0

@ 0ij = Nij€rk + 2Uij
eij = 5 (Wi +uji)

L= |O'1]7] + fz‘&l

Collocation
loss

®
®

000000
X1t
000000

2
TUDelft [Haghighat et al

2020), arXiv:2003.02751v2]

38/55

Breaking the curse

Bad news: fully breaking the curse is impossible. But with some extra tricks it can be alleviated:

= Introduce bias through prior beliefs = Bayesian ML (up next)

= Assume Euclidean or non-Euclidean spatial bias = Convolutional NNs, Graph NNs

= Explain patterns in lower dimensions with dimensionality reduction = PCA, Autoencoders

= Assume the data is explained by latent time dependencies = 1D CNNs, Recurrent NNs

= Introduce bias coming from physics knowledge = PINNSs, hybrid models

®
®

00000

2
TUDelft

[Haghighat et al

X1t

000000

()

2020), arXiv:2003.02751v2]

<]

oijj+ fi =0

0ij = Nij€rk + 2Uij

eij = 5 (Wi +uji)

L =loij; + filat+|u—u"|r,

Collocation

loss

Dirichlet
loss

38/55

Breaking the curse

Bad news: fully breaking the curse is impossible. But with some extra tricks it can be alleviated:

= Introduce bias through prior beliefs = Bayesian ML (up next)

= Assume Euclidean or non-Euclidean spatial bias = Convolutional NNs, Graph NNs

= Explain patterns in lower dimensions with dimensionality reduction = PCA, Autoencoders

= Assume the data is explained by latent time dependencies = 1D CNNs, Recurrent NNs

= Introduce bias coming from physics knowledge = PINNSs, hybrid models

®
®

00000

2
TUDelft

[Haghighat et al

X1t

000000

()

2020), arXiv:2003.02751v2]

oijj+ fi =0

0ij = Nij€rk + 2Uij

eij = 5 (Wi +uji)

L =|oij;+ filat|lu —u’|r, +loi — oijlr,

Collocation

loss

Dirichlet Neumann
loss loss

38/55

Interlude — Probabilistic Graphs

Graphs with more than one variable imply a joint probability distribution:

ole)

p(a,b) = p(a)p(b)

= Two independent variables:

2
TUDelft
39/55

Interlude — Probabilistic Graphs

Graphs with more than one variable imply a joint probability distribution:

ole)

p(a,b) = p(a)p(b)

= Two independent variables:

= We can use arrows to indicate dependency, causality or correlation through the Product Rule:

2
TUDelft

39/55

Interlude — Bayes’ Theorem
Consider a model with two variables x and y. We can use the Product Rule of probability to write:
p(z,y) = p(y|z)p(z)

p(z,y) = p(xly)p(y)

2
TUDelft
40/ 55

2
TUDelft

Interlude — Bayes’ Theorem

Consider a model with two variables x and y. We can use the Product Rule of probability to write:

p(z,y) = p(y|z)p(z)
p(z,y) = p(z|y)p(y)
Substituting one expression into the other we get the very important result:

p(zly)p(y)

(ylz) =
=)

40/ 55

Interlude — Bayes’ Theorem

Consider a model with two variables x and y. We can use the Product Rule of probability to write:
p(z,y) = p(ylz)p(x)
p(z,y) = plzly)p(y)

Substituting one expression into the other we get the very important result:

p(yl) = p(z|y)p(y)
p(z)
We can use Bayes’ Theorem to model and update beliefs and uncertainties:
= The prior p(y) expresses what we know about y before observing =
= The likelihood p(x|y) models how much y can explain =
= The posterior p(y|z) expresses how the knowledge about y changed after observing

2
TUDelft
40/ 55

Interlude — Bayes’ Theorem

Consider a model with two variables x and y. We can use the Product Rule of probability to write:
p(z,y) = p(ylz)p(x)
p(z,y) = plzly)p(y)

Substituting one expression into the other we get the very important result:

o(yle) = 2EWPW)
p(z)
We can use Bayes’ Theorem to model and update beliefs and uncertainties:
= The prior p(y) expresses what we know about y before observing =
= The likelihood p(x|y) models how much y can explain =
= The posterior p(y|z) expresses how the knowledge about y changed after observing

Bayes' Theorem states our willingness to change what we know about y after observing z:

. posterior o likelihood X prior
TUDelft
40/55

Bayes’ Theorem — Example

Let us consider a simple probabilistic model for predicting student performance:
study pass

p(study, pass) = p(study)p(pass|study)

2
TUDelft
41/ 55

Bayes’ Theorem — Example

Let us consider a simple probabilistic model for predicting student performance:

study pass
O—>O prior
p(study, pass) = p(study)p(pass|study)
Let us set some reasonable expectations:
p(S=1)=0.6 p(S=0)=7
p(P=1S=1)=09 p(P=1/S=0)=03
p(P=0|S=1)=7 p(P=0|S=0)=7

2
TUDelft

41/ 55

2
TUDelft

Bayes’ Theorem — Example

Let us consider a simple probabilistic model for predicting student performance:
study pass

p(study, pass) = p(study)p(pass|study)

Let us set some reasonable expectations:
p(S=1)=0.6 p(S=0)=7
p(P=1S=1)=09 p(P=1]S=0)=03
p(P=0|S=1)=7 p(P=0|S=0)=7

Now suppose we observe someone passed. How certain should we be that they studied?
study passed

O—»O observation

41/ 55

Bayes' Theorem — Example

Keeping our prior assumptions ignores important evidence. We use Bayes’ Theorem instead:

studied? passed

O«—O posterior

ps=1p=1)="F _1‘5—1)1)(D)

2
TUDelft
42/ 55

Bayes’ Theorem — Example

Keeping our prior assumptions ignores important evidence. We use Bayes’ Theorem instead:

studied? passed

O<—O posterior

p(P=1]S=1)p(S =1)
p(P=1)

Get together with someone and use the values below (10 minutes):

S =1lP=1)=
p(P =1,5) =p(S)p(P = 1|5)

= Use the Sum Rule to compute the marginal p(P = 1) from the joint P(P =1, S)
= Use the values of p(P = 1|S = 1) and p(S = 1) from below
= Put it all together above and compute the posterior p(S = 1|P = 1)

p(P=1S=1)=09 p(P=1/S=0)=03
p(P=0/S=1)=0.1 p(P=0/S=0)=0.7

2
TUDelft
42/ 55

2
TUDelft

Bayes’ Theorem — Example

Keeping our prior assumptions ignores important evidence. We use Bayes’ Theorem instead:

studied? passed

O<—O posterior

p(P =15 =1)p(S =1)
p(P=1)
Get together with someone and use the values below (10 minutes):
= Use the Sum Rule to compute the marginal p(P = 1) from the joint P(P =1, S)
= Use the values of p(P = 1|S = 1) and p(S = 1) from below
= Put it all together above and compute the posterior p(S = 1|P = 1)

p(S=1P=1)=

How much did our knowledge shift? How does this compare to the prior? Does it make sense?

0.9-0.6
—1P=1)= —0.81
(S =1)= 0006103 04 088

42/ 55

Bayesian linear regression

Finally, let us use Bayes’ Theorem properly and end up with a distribution for w:

p(t|w)p(w)

o) with p(w) =N (w[0,a 'I) and p(t|w) = N (t|@w, 3 'T)

p(wlt) =

2
TUDelft
43 /55

Bayesian linear regression

Finally, let us use Bayes’ Theorem properly and end up with a distribution for w:

p(t|w)p(w)

p(t)

The result takes the simple form:

p(wlt) =

p(wlt) =N (wjm,S) with m=p3S®"tand S™' =al+ & ®

2 2
® Observations
— Ground truth
BayesI ~— Predictive mean
1 /\ 1 95% conf. interval
= 0 < 0
-1 -1
® Observations
— Ground truth
—— MLE fit
-2 -2
0 2 4 6 0 2 4 6
X X

2
TUDelft

with p(w) =N (w[0,a 'I) and p(t|w) = N (t|@w, 3 'T)

43 /55

Sampling models from the posterior

Since w is probabilistic, we have a bag of models at our disposal:

= Take a sample w from N (w|0, ')
= Compute y(x, w) for our whole range of x

—-=- Ground truth 1.5

=== Ground truth
= Predictive mean
95% conf. interval

15 7
—— y(x) samples
1.0 < 1.0
0.5 ,é‘ «,\4\\ 0.5
§\“ l/ A%
~ 0.0 %{«é\é}' 0.0 ¢
-0.5 ".-‘ -0.5
~1.0 N ~1.0
-1.5 -1.5
0 2 4 6
X

z
TUDelft

44 /55

Sampling models from the posterior

Since w is probabilistic, we have a bag of models at our disposal:
= Take a sample w from N (w|0, ')
= Compute y(x, w) for our whole range of x

After conditioning we can do the same for the posterior, and that can evolve as more samples are added:

1.5 —--- Ground truth 1.5 —==- Ground truth
@ Observations —— Predictive mean
—— y(x) samples

10 1.0 ST
0.5 0.5 >

~ 0.0 00 7
-0.5 —05
~1.0 -1.0
-1.5 -15

0 2 4 6 0 2 4 6
X X

z
TUDelft

44 /55

Sampling models from the posterior

Since w is probabilistic, we have a bag of models at our disposal:
= Take a sample w from N (w|0, ')
= Compute y(x, w) for our whole range of x

After conditioning we can do the same for the posterior, and that can evolve as more samples are added:

1.5 —-=-- Ground truth 1.5 —==- Ground truth
@ Observations —— Predictive mean
1.0 —— y(x) samples i @ Observations
' PSRN 95% conf. interval
/’ \‘
0.5 y ‘
4 \.
/ R
= 00 \ :
\, /
\, /
N /
-0.5 . /
\, %
\, /
N -
-1.0 Mo
-1.5 -1.5
0 2 4 6 0 2 4 6

z
TUDelft

44 /55

Sampling models from the posterior

Since w is probabilistic, we have a bag of models at our disposal:
= Take a sample w from N (w|0, ')
= Compute y(x, w) for our whole range of x

After conditioning we can do the same for the posterior, and that can evolve as more samples are added:

1.5 === Ground truth 1.5 === Ground truth
@ Observations —— Predictive mean
10 ST O
0.5
+ 0.0
-0.5
-1.0 e
-1.5 -1.5
0 2 4 6 0 2 4 6
X X

z
TUDelft

44 /55

Sampling models from the posterior

Since w is probabilistic, we have a bag of models at our disposal:
= Take a sample w from N (w|0, ')
= Compute y(x, w) for our whole range of x

After conditioning we can do the same for the posterior, and that can evolve as more samples are added:

1.5 === Ground truth 1.5 === Ground truth
@ Observations —— Predictive mean
10 =il o ST g e
0.5
+ 0.0
-0.5
-1.0
-1.5
0 2 4 6 0 2 4 6
X X

z
TUDelft

44 /55

Sampling models from the posterior

Since w is probabilistic, we have a bag of models at our disposal:
= Take a sample w from N (w|0, ')
= Compute y(x, w) for our whole range of x

After conditioning we can do the same for the posterior, and that can evolve as more samples are added:

1.5 -=- Ground truth 1.5 -=- Ground truth
@ Observations ~— Predictive mean
1.0 — ywampes} ST
0.5 0.5
~ 0.0 0.0
-0.5 -0.5
-1.0 -1.0
-1.5 -1.5
0 2 a4 6 0 2 4 6

z
TUDelft X X
44 /55

From weights to functions

Now we gather all values of y for a single realization of w into a vector:

y=®w with ®,, = ¢r(xn)

2
TUDelft
45/ 55

From weights to functions

Now we gather all values of y for a single realization of w into a vector:
y=®w with P, = dr(x)
Because @ is a linear deterministic operator, y is also Gaussian:
py) =N (YI07071<I><I>T)

= Note that w is now gone. This is now officially a non-parametric model!
= Instead of sampling from p(w), we can now sample models from p(y)

2
TUDelft
45/ 55

2
TUDelft

From weights to functions

Now we gather all values of y for a single realization of w into a vector:
y=®w with P, = dr(x)
Because @ is a linear deterministic operator, y is also Gaussian:
ply) =N (YI07071<I>‘1’T)
= Note that w is now gone. This is now officially a non-parametric model!

= Instead of sampling from p(w), we can now sample models from p(y)

We can write the above in a more compact way:
= Define a kernel that relates two values of x and returns a scalar:

’ 1 ’
h(x,x') = —(x)" p(x')
= Express p(y) in terms of the kernel:

p(y) =N (y|0,K) with K;; = k(x;,x;)

45/ 55

From weights to functions

As always, we can represent this model with a graph
= Starting with just a few variables

p(y1,12) =N (y12| |:m(x1):| |:k(x1,x1)

m(xz2)

2
TUDelft

’ k’,(XQ,Xl) A‘(Xg,Xg)

]) =N (y12]| mi2,Ki2)

46 / 55

From weights to functions

As always, we can represent this model with a graph
= Starting with just a few variables

Y1 Y2 Y3

X1 X2 X3

m(xs)

m Ko
p(y12,u3) =N [yi23 | [N] 7
k(

o(x3,%1) k(xs,%x2) Fk(x3,x3)

2
TUDelft

=N (y123 | mi2s, Ki23)

46 / 55

From weights to functions

As always, we can represent this model with a graph
= Starting with just a few variables

Y1 Y2 Y3 Ya
' N
"\
X1 X2 X3 X4
mjo3 K23 _
p(y123,v1) =N | y1234 | {’”(X”] , = N (y1234 | mi234, K1234)

k(x4,x1) k(x4,%x2) k(xa,x3) Fk(xa,%4)

2
TUDelft
46 / 55

From weights to functions

As always, we can represent this model with a graph
= Starting with just a few variables
= We can generalize this for any number of nodes. Assuming zero mean:

p(y) =N (y/0,K)

2
TUDelft

46 / 55

From weights to functions

As always, we can represent this model with a graph
= Starting with just a few variables
= We can generalize this for any number of nodes. Assuming zero mean
= Finally, we can use a more compact version:

' .-Oyl—Oy-2- " --d-]: v Gaussian field
[1]

® ® ®
X X5 Xy Inputs

2
TUDelft

46 / 55

Gaussian Processes

Because we can include any number of variables in the joint, we can fully switch to a function view:
= A process is a probability density over functions
= Sampling a function means sampling an arbitrary number of points from it

2
TUDelft
47/ 55

Gaussian Processes

Because we can include any number of variables in the joint, we can fully switch to a function view:
= A process is a probability density over functions
= Sampling a function means sampling an arbitrary number of points from it

A Gaussian Process (GP) is a process dictated by joint Gaussian densities:
= Any number of points from a GP is jointly Gaussian

2
TUDelft
47/ 55

Gaussian Processes

Because we can include any number of variables in the joint, we can fully switch to a function view:

= A process is a probability density over functions
= Sampling a function means sampling an arbitrary number of points from it

A Gaussian Process (GP) is a process dictated by joint Gaussian densities:
= Any number of points from a GP is jointly Gaussian

A GP is fully described by a mean function and a covariance kernel:
y(x) ~GP (m(x)7 k(x, x/))

= The kernel dictates the correlation between function values
= Edge case: k(x,x’) = 0}6(x — x') = K = o}I (white noise random walk)

2
TUDelft

47/ 55

Kernel engineering — squared exponential

A very popular kernel in many applications, powerful and flexible:

[lx — x|
k(x,x) = o7 exp (—T

= Hyperparameters: process variance o7, length scale /
= Equivalent to an RBF kernel with infinite (!) basis functions

process variance af, =1,length scale ¢ =1
Covariance matrix Samples from process

50
> 100

150

0 50 100 150 -1.0 -0.5 0.0 0.5 1.0
{UD X X
elft

48 /55

Kernel engineering — squared exponential

A very popular kernel in many applications, powerful and flexible:

[lx — x|
k(x,x) = o7 exp (—T

= Hyperparameters: process variance o7, length scale /
= Equivalent to an RBF kernel with infinite (!) basis functions

process variance afc =1, length scale £ = 0.5

0 Covariance matrix Samples from process

2
50 1

o .

< 100 >
-1
150 -2
-3
0 50 100 150 -1.0 -0.5 0.0 0.5 1.0

2
fupeitt X X
48/55

Kernel engineering — squared exponential
A very popular kernel in many applications, powerful and flexible:
[
k(x,x) = o7 exp (_T

= Hyperparameters: process variance o7, length scale ¢
= Equivalent to an RBF kernel with infinite (!) basis functions

process variance a% =1, length scale ¢ = 0.1
Covariance matrix Samples from process

< 100

150

2
TUDelft

48 /55

Kernel engineering — Matérn

A kernel for when differentiability is an issue:

)= romts (e 1) 1 (V- 1)

= Hyperparameters: process variance o7, length scale ¢, differentiability parameter »

v — oo (infinitely differentiable)

0 Covariance matrix) Samples from process
50 !
0
< 100 >
-1
150
2 \—_/
0 50 100 150 -1.0 -0.5 0.0 0.5 1.0

2
TUDelft X X

49 /55

Kernel engineering — Matérn

A kernel for when differentiability is an issue:

k0 x) = e (Y20 1) Ko (Y201

= Hyperparameters: process variance o7, length scale ¢, differentiability parameter »

v = 1.5 (once differentiable)

0 Covariance matrix Samples from process
2 \
50 1
) 0 =
x 100 >
-1
150
-2
0 50 100 150 -1.0 -0.5 0.0 0.5 1.0

2
TUDelft X X

49 /55

Kernel engineering — Matérn

A kernel for when differentiability is an issue:

k) = s (Y20 1) Ko (Y201

= Hyperparameters: process variance o7, length scale ¢, differentiability parameter »

v = 0.5 (not differentiable)

0 Covariance matrix Samples from process
3
2
50
1
< 100 > 9
-1
150
-2
0 50 100 150 -1.0 -0.5 0.0 0.5 1.0
X X

2
TUDelft

49 /55

Gaussian processes for regression

For regression, we need to observe some targets and predict for new inputs
= Assume targets are Gaussian-distributed around y(x):

p(tly) = N (tly(x), ")

2
TUDelft
50/ 55

Gaussian processes for regression

For regression, we need to observe some targets and predict for new inputs
= Assume targets are Gaussian-distributed around y(x):

p(tly) = N (tly(x), ")

= The targets are conditionally independent on y(x) (i.i.d. assumption):
t

751 2 in f
O

2
TUDelft

50/ 55

Gaussian processes for regression

For regression, we need to observe some targets and predict for new inputs
= Assume targets are Gaussian-distributed around y(x):

p(tly) = N (tly(x),877)

= The targets are conditionally independent on y(x) (i.i.d. assumption):
e @ O

! Y2 YN Y

I

X1 X2 XN X

= From the standard expressions for the Gaussian, we have a marginal over the targets:

p(t) = / p(tly)p(y) dy = N (8]0, K (X, X) + 5T

2
TUDelft

50/ 55

GPs for regression — joint distribution

How to make new predictions? We need a joint between t and ¢

KX, X)+81

p(t"):N<t”|0’[K (%,X) k(%,%) + B!

2
TUDelft
51/55

GPs for regression — joint distribution

How to make new predictions? We need a joint between t and #:

KX, X)+81
K (x,X) k(%,%)+ 87"

p(t, 1) =N <t,i 0, [

Note the meaning and sizes of these submatrices:
= K(X,X)+ 7'I: Correlation between training inputs, with added observation noise (N x N)
= : Correlation between training targets and the new target (V x 1)
= K (%,X): Correlation between the new target and training targets (1 x N)
= (%, %): Variance of the new target, with added observation noise (1 x 1)

2
TUDelft

51/55

2
TUDelft

GPs for regression — joint distribution

How to make new predictions? We need a joint between t and ¢:

KX, X)+81
K (%,X) k(%,%)+ 87!

p(t, 1) =N <t,i 0, [

Note the meaning and sizes of these submatrices:
= K(X,X)+ 7'I: Correlation between training inputs, with added observation noise (N x N)
= : Correlation between training targets and the new target (V x 1)
= K (%,X): Correlation between the new target and training targets (1 x N)
= (%, %): Variance of the new target, with added observation noise (1 x 1)

Note that we are predicting a single new value at x
= What would be the sizes of these matrices if we were predicting at 1000 new locations?

51/55

GPs for regression — predictive posterior

We have a joint but this is all still our a prior distribution:
= We still have a whole density p(t) for the training targets

2
TUDelft
52/55

GPs for regression — predictive posterior

We have a joint but this is all still our a prior distribution:
= We still have a whole density p(t) for the training targets

Since we know t, we should update our prior using Bayes’ Theorem:

p(t[E)p(E)

p(t)

p(ilt) =

2
TUDelft

52/55

GPs for regression — predictive posterior

We have a joint but this is all still our a prior distribution:
= We still have a whole density p(t) for the training targets

Since we know t, we should update our prior using Bayes’ Theorem:

p(t[E)p(E)

pil) = P2

But given that we already have a joint Gaussian, we can just use our old conditioning expressions:

p(Elt) = N (Eln, 67)
=K (%, X) [K(X,X)+ 871 "t

1

62 =1 (%,%) — K (%, X) [K (X, X) 4+ 87'1] +87"

2
TUDelft

52/55

GPs for regression — example

Let us go back to our running sine-wave example. We observe N = 5 data points with a SE GP:

Prior Posterior
1.0 1.0 -m=s
05 0.5
0.0
> 00 -
-0.5
-05 === Ground truth
=== Ground truth -1.0 95% conf. interval
95% conf. interval s N — Mean
-1.0 e \Mean — ® Observations
y(x) samples -15 y(x) samples
0 1 2 3 4 5 6 0 1 2 3 4 5 6
X X

2
TUDelft
53/55

GPs for regression — example

Let us go back to our running sine-wave example. We observe N = 5 data points with a SE GP:

Prior Posterior
1.0 1.0
05 0.5
0.0
> 00 -
-0.5
-0.5 \ 2 -=- Ground truth
=== Ground truth & 95% conf. interval
9:;/:] cnn;u interval \ L // R Meanwn o
-1.0 — Mean == ~— ® Observations
Y(x) samples -15 Y(x) samples
0 1 2 3 4 5 6 0 1 2 3 4 5 6
X X

= We have a prior and a posterior process, we can sample from both

2
TUDelft

53/55

GPs for regression — example

Let us go back to our running sine-wave example. We observe N = 5 data points with a SE GP:

Prior Posterior
- /
1.0 1.0 /
0.5 05
0.0
> 00 -
-05 /)
-0.5 X , -=- Ground truth
\/ === Ground truth /' | -1.0 95% conf. interval
95% conf. interval e . == Mean
-1.0 = Mean ~=-"F ® Observations
Y(x) samples -15 Y(x) samples
0 1 2 3 4 5 6 0 1 2 3 4 5 6
X X

= We have a prior and a posterior process, we can sample from both
= All posterior samples pass close to the observations (this closeness is proportional to 3)

2
TUDelft
53/55

GPs for regression — example

Let us go back to our running sine-wave example. We observe N = 5 data points with a SE GP:

Prior Posterior
- /
1.0 1.0 /
0.5 05
0.0
> 00 -
-05 /
-0.5 3 , -=- Ground truth
=== Ground truth /' -1.0 95% conf. interval
95% conf. interval e . == Mean
-1.0 = Mean ~=-"F ® Observations
Y(x) samples -15 Y(x) samples
0 1 2 3 4 5 6 0 1 2 3 4 5 6
X X

= We have a prior and a posterior process, we can sample from both
= All posterior samples pass close to the observations (this closeness is proportional to 3)
= Away from data the samples spread out and the variance increases

2
TUDelft
53/55

GPs for regression — example

Let us go back to our running sine-wave example. We observe N = 5 data points with a SE GP:

Prior Posterior
- /
10 1.0 s /
e N
0.5 - - /
0.5
0.0
> 00
-05 /
-05 . === Ground truth
=== Ground truth -1.0 95% conf. interval
95% conf. interval B N — Mean
-1.0 = Mean ~=-"F ® Observations
¥(x) samples -15 Y(x) samples

We have a prior and a posterior process, we can sample from both

All posterior samples pass close to the observations (this closeness is proportional to 3)

Away from data the samples spread out and the variance increases

The model avoids overfitting even for this very small dataset

2
TUDelft
53/55

Learning and model selection

Hyperparameters can be learned without a validation set!
= We look at the marginal likelihood, which is quite easy in this case:

p(t) = N (t]0, K(X,X) + 57'1)

2
TUDelft
54 /55

Learning and model selection

Hyperparameters can be learned without a validation set!

= We look at the marginal likelihood, which is quite easy in this case:

p(t) = N (t]0, K(X,X) + 57'1)

We take the log of this PDF and get to an expression we can maximize:

1 _
Inp(t) = — InfK + B — %tT (K+87'T) "t — gln (2)

= This is called empirical Bayes or Type-2 MLE

20

2
TUDelft

Prior

o Gowawn _
95% conf. interval 1.0
— vean
00 sampes

Posterior

54 /55

Learning and model selection

Hyperparameters can be learned without a validation set!

= We look at the marginal likelihood, which is quite easy in this case:

p(t) = N (t]0, K(X,X) + 57'1)

We take the log of this PDF and get to an expression we can maximize:

1 _
Inp(t) = — InfK + B — %tT (K+87'T) "t — gln (2)

= This is called empirical Bayes or Type-2 MLE

Prior

==~ Ground truth

-10

z
TUDelft X

-1.0

Posterior

54 /55

Learning and model selection

Hyperparameters can be learned without a validation set!

= We look at the marginal likelihood, which is quite easy in this case:

p(t) = N (t]0, K(X,X) + 57'1)

We take the log of this PDF and get to an expression we can maximize:

1
Inp(t) = —3 In|K + 87 '1| — 1tT

= This is called empirical Bayes or Type-2 MLE

Prior

=== Ground truth
4 Qs%mm interval

y(>=ampl

. xﬁ%g DAY

0

-4

z
TUDelft X

14\ —1 N
(K-i—ﬂ I) t— Eln(QTr)

Posterior

~=- Ground truth
5% cont. interval

54 /55

Learning and model selection

Hyperparameters can be learned without a validation set!
= We look at the marginal likelihood, which is quite easy in this case:

p(t) = N (t]0, K(X,X) + 57'1)

We take the log of this PDF and get to an expression we can maximize:
1 a—1 1 7 —11\—1 N
lnp(t):filn\KJr“d I‘_it (K+87'1) t—Eln(QTr)

= This is called empirical Bayes or Type-2 MLE

Prior Posterior

z
TUDelft X

54 /55

Learning and model selection

Hyperparameters can be learned without a validation set!
= We look at the marginal likelihood, which is quite easy in this case:

p(t) = N (t]0, K(X,X) + 57'1)

We take the log of this PDF and get to an expression we can maximize:
1 a—1 1 7 —11\—1 N
lnp(t):filn\KJr“d I‘_it (K+87'1) t—Eln(QTr)

= This is called empirical Bayes or Type-2 MLE

Prior Posterior

== Ground truth

95% conf. interval
1.0 == Mean

yix) samples

z
TUDelft X X

54 /55

End of this part

Key takeaways:
= ML inherits much of its foundation from statistics
= Bias/variance tradeoff is an everyday struggle
= Bayesian ML can lead to very robust models
= Nevertheless, high-dimensional feature spaces
require clever solutions

Up next:
= Introducing physics-based bias to ML models
= Structural bias through operator architectures
= Regression with ML across the scales

We hope you enjoyed this part!

2
TUDelft

))/

statistics

i

Machine Learning

~J

Artificial intelligence,

55/55

