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About symmetries

Symmetries and invariances are important notions in physics 

They describe how a system remains unaltered under a given transformation 

We will focus on dynamical symmetries of motion and not on static symmetries e.g. 
as in crystals
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Odd/even functions
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Lagrangian formalism

In classical dynamics, the motion of a system is described in terms of forces using 
the second law of Newton 

The same equation of motion can be obtained from the Lagrangian 

T: the part that describes the kinetic energy of a system 

V: the part that describes the potential 

The Lagrangian is a function of generalised coordinates  

The equation of motion of a system is given by the Euler-Lagrange equation
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Parenthesis: Dirac’s bra-ket notation

A state can be represented by a wave function ψ or by a column of complex 
numbers denoted by the ket  

To every ket we associate a bra-vector  

This is represented by the conjugate transpose of the relevant matrix 

transpose transforms the column to a row 

each entry becomes the complex conjugate of the initial entry 

The operation that transforms a bra to a ket and vice-versa is called the Hermitian 
conjugation 

An operator for which               is called self-adjoint or Hermitian  

Observables are always quantities that are represented by Hermitian operators. 

Their expectation value is real
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When is an observable conserved?

Observables are always quantities that are represented by Hermitian operators. 

The expectation value is 

An observable constant of motion F is Hermitian and commutes with the Hamiltonian
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How can conserved quantities be found?

We can write down the Hamiltonian of a system and test the commutation criterium 
[H,F]=0, for all possible observables 

Not really practical or feasible 

The Hamiltonian of a system does not need to be fully known 

we need to establish the invariance of H under a transformation 

this leads to a conserved quantity 

Introducing a transformation operator U that transforms a wave function ψ into a ψ’ 

the normalisation relation of the wave function does not change between ψ and ψ’ 

this leads to the fact that the transformation operator must be unitary
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When is an operator called a symmetry operator?

Consider a transformation U that takes a state ψ and transforms it into a ψ’ 

The wave functions are normalised: 

The transformation needs to be unitary 

We call U a symmetry operator if the new state ψ’ obeys the same Schrodinger 
equation as the initial wave function ψ 

A symmetry operator is unitary and commutes with the Hamiltonian
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Symmetries and conservation laws

A system is normally described by its Lagrangian 

The Lagrangian can be found from first principles or 

can be deduced through the conservation laws of 
the system 

Noether’s theorem connects symmetries with 
conservation laws 

“Every symmetry in nature yields a conservation law 
and inversely every conservation law reveals an 
underlying symmetry 

Momentum conservation: invariance under a 
translation in space 

Angular momentum conservation: invariance under 
rotation in space
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Categories of symmetries

Symmetries can be categorised as local or global 

Global symmetries hold at all points of space-time (e.g. translation) 

Local symmetries are only valid in certain regions of space-time (i.e. local domains - 
important for this topic) 

Symmetries can also be characterised as continuous or discrete: 

Continuous symmetries are viewed as “motions” (e.g. rotations) 

Discrete symmetries describe non-continuous symmetries in a system (e.g. parity & 
charge conjugation)
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Continuous transformations

They are unitary by definition but not necessarily Hermitian 

They rely on one or more continuous parameters so that  

rotation by an angle α 

These transformations can be written as a succession of infinitesimal deviations 
from the identity 

F is called the generator of U 

The generator of a unitary operator is Hermitian 

The generator of a symmetry operator commutes with the Hamiltonian 

If U is a symmetry operator that commutes with H, then its generator is a Hermitian 
operator that also commutes with H

11



Panos.Christakoglou@nikhef.nl

Identifying the generators of a transformation

Let us consider a group of transformations defined by  

xi are the coordinates on which the transformation acts 

ai are the elements (i.e. real numbers) of the transformation 

By convention the identity element is a=0 such that  

A transformation in the neighbour of the identity reads 

The generators of the transformation are found by considering a change in a 
function f(x) and are given by
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Invariance under spatial translations

A system described by a quantum state ψ and is moving, thus changing its spatial 
coordinates 

For infinitesimally small translations of (ε1, ε2, ε3) we can write  

The generators of the transformation are the elements of momentum 

Invariance under spatial translation leads to conservation of momentum
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Invariance under spatial rotations

A system described by a quantum state ψ and is rotating in 3D 

For infinitesimally small rotations of δR(ε)~(ε1, ε2, ε3) we can write  

This operator is unitary  

δR is represented by an antisymmetric matrix of the form 

The generators of the transformation are the elements of angular momentum 

Invariance under spatial rotations leads to conservation of angular momentum
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Introduction to groups

A group G is a collection of elements or operators a1, a2,…,an 

The have defined laws describing how one can combine any of the two elements with an 
operator e.g. “x” fulfilling the following conditions 

Closure: For each two elements of G, their product is also an element of G 

Associativity: Combining two elements is associative  

Identity element: Every group has an identity element e such that for all elements of the 
group  

Inverse element: For all elements in G there is a unique element such that  

When a group consists of elements that any of two commute, then the group is 
called Abelian, otherwise non-Abelian 

When a group contains finite number of elements n, then it is called finite group of 
order n
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Charge conservation

All particles have electric charge in multiples of the charge of the quarks q = Nx(1/3) 

In any interaction of this form charge is conserved 

Every conservation law is connected to a symmetry principle 

Assume that ψ is the wave function of a state with charge q, then it obeys the 
Schrodinger equation  

If Q is the charge operator then <Q> is conserved  

the operator commutes with the Hamiltonian of the system [H,Q] = 0 

The eigenfunction ψ can be an eigenfunction of Q as well 

Let’s identify the observable which is conserved as the electric charge if we apply a 
global gauge transformation of the form
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Discrete symmetries

Charge conjugation (C): 

Converts a particle to its anti-particle (i.e. sign-flip) 

Parity (P): 

Converts right-handed systems to left-handed ones 

Vectors change sign but axial vectors remain unchanged 

Time reversal T 

Reverses the direction of motion of particles 
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Symmetries are part of the building blocks 
of particle physics. However their validity 

rests on experimental verification!!!
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Baryon number conservation

The much hypothesised decay of protons has been studied by measuring possible 
decays in a large quantity of water which contains many protons and with large 
counters shielded from cosmic rays by being positioned underground  

The reaction p → e+π0 has not been detected 

A lower limit was set to the decay of proton to 1.6x1033 years 

The fact that such decay does not seem to take place, led to the introduction of a 
new quantum number for baryons and antibaryons: the baryon number (BN) 

Each baryon is assigned a +1 BN 

Each antibaryon is assigned a -1 BN 

The conservation of BN is not connected to an exact symmetry 

More of an empirical conservation law than a fundamental one 

There are theories beyond the Standard Model where such a BN violation is allowed
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p +1 -1
n +1 -1
Λ +1 -1

Ξ-, Ξ0 +1 -1
Ω- +1 -1



Panos.Christakoglou@nikhef.nl

Lepton number conservation

Evidence for lepton number conservation comes 
mainly from neutrino reactions 

Reaction such as the ones below have not been 
observed, indicating that lepton number violation 
is not natural 

Neutrinos and antineutrinos have different 
characteristics 

helicity shows if the spin of a particle points in the 
direction of or opposite to the momentum 

Experiments on β-decay have shown that 
neutrinos are left-handed while antineutrinos are 
right-handed

19



Panos.Christakoglou@nikhef.nl

Lepton number conservation (cont.)

The following decays of muons are allowed and are quite common 

They involve two types of neutrinos, one for the electron and the other for the muon 

On the other hand, this decay channel has not been observed 

The branching ratio is less than 1.2x10-11 

This indicates that there should be another conservation law, the one of lepton 
flavour (e,µ,τ)
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Particle Le Lµ Lτ Antiparticle Le Lµ Lτ

+1 0 0 -1 0 0

+1 0 0 -1 0 0

0 +1 0 0 -1 0

0 +1 0 0 -1 0

0 0 +1 0 0 -1

0 0 +1 0 0 -1
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Strangeness conservation

Observation of decay of particles with a characteristic V-shape decay topology 

These decays were rather slow, with a lifetime of 10-10s, typical lifetime of a weak decay 

Gell-Mann and Nishijima introduced a new quantum numbers, called strangeness 

Strangeness is conserved in the strong and electromagnetic interactions, but it is 
violated in the weak interactions
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Hypercharge

We can define hypercharge as the sum of the baryon number and strangeness (and 
all additional quantum numbers for heavier quark states)
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Hypercharge  
Y = S + C + B + T + BN
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Quantum numbers of quarks

For quarks we can introduce the generalised hypercharge, defined as
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Isospin

Neutron and proton are quite similar apart from their charge 

Heisenberg proposed that they are regarded as the two states of the same particle 

the nucleon 

Similar to the notation related to spin we can write p and n with a two component 
column matrix 

By direct analogy to spin we introduce isospin with coordinates in the isospin space: 

I1, I2, I3 

Strong interactions are invariant under rotations in isospin space 

Isospin is conserved 

Group theory wording:  

Strong interactions are invariant under an internal symmetry of SU(2)
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