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Nik|hef

About symmetries

Y9,

Symmetries and invariances are important notions in physics
@ They describe how a system remains unaltered under a given transformation

We will focus on dynamical symmetries of motion and not on static symmetries e.g.
as in crystals
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Nik|hef Odd/even functions

—

Symmeetric About the y-axis Symmetric About the Origin
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Nik|hef Lagrangian formalism

In classical dynamics, the motion of a system is described in terms of forces using
the second law of Newton

F=ma=mx
The same equation of motion can be obtained from the Lagrangian
@ T the part that describes the kinetic energy of a system
@ V: the part that describes the potential
L=T-V

The Lagrangian is a function of generalised coordinates (g, éi)

The equation of motion of a system is given by the Euler-Lagrange equation

d(dg) 0<
=0

dt \ aq, - 9g,

*
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Nik[hef Parenthesis: Dirac’s bra-ket notation INE:

A state can be represented by a wave function p or by a column of complex
numbers denoted by the ket  |y)

To every ket we associate a bra-vector (\yl

@ This is represented by the conjugate transpose of the relevant matrix
11 transpose transforms the column to a row

21  each entry becomes the complex conjugate of the initial entry

The operation that transforms a bra to a ket and vice-versa is called the Hermitian
conjugation  |y) = (y|

An operator for which P=P" is called self-adjoint or Hermitian

Observables are always quantities that are represented by Hermitian operators.

@ Their expectation value is real

{(a|P|a)={a|P'|a)={a|Pla)"
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Nik|hef

When is an observable conserved?

Y9,

Observables are always quantities that are represented by Hermitian operators.

F=F'

The expectation value is (Fy={(y|F|y)

(F)"=(y|F'|y)

An observable constant of motion F is Hermitian and commutes with the Hamiltonian
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Nik|hef

How can conserved quantities be found?

Y9,

We can write down the Hamiltonian of a system and test the commutation criterium
[H,F]=0, for all possible observables

@ Not really practical or feasible

The Hamiltonian of a system does not need to be fully known

@ we need to establish the invariance of H under a transformation

I this leads to a conserved quantity

Introducing a transformation operator U that transforms a wave function y into a '’
@ the normalisation relation of the wave function does not change between g and y’

@ this leads to the fact that the transformation operator must be unitary
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Nik|hef When is an operator called a symmetry operator?

Consider a transformation U that takes a state yp and transforms it into a @’
@ The wave functions are normalised:

@ The transformation needs to be unitary  (y |y’ = (y|y)=1

We call U a symmetry operator if the new state g’ obeys the same Schrodinger
equation as the initial wave function y

A symmetry operator is unitary and commutes with the Hamiltonian

|H,U|=0
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Nik|hef

Symmetries and conservation laws

Y9,

A system is normally described by its Lagrangian
@ The Lagrangian can be found from first principles or

@ can be deduced through the conservation laws of
the system

Noether’s theorem connects symmetries with
conservation laws

@ “Every symmetry in nature yields a conservation law
and inversely every conservation law reveals an
underlying symmetry

@ Momentum conservation: invariance under a
translation in space

@ Angular momentum conservation: invariance under
rotation in space

Emmy Noether (1882 - 1935)

Panos.Christakoglou@nikhef.nl



Nik|hef

Categories of symmetries

Y9,

Symmetries can be categorised as local or global
@ Global symmetries hold at all points of space-time (e.g. translation)

@ Local symmetries are only valid in certain regions of space-time (i.e. local domains -
important for this topic)

Symmetries can also be characterised as continuous or discrete:
@ Continuous symmetries are viewed as “motions” (e.g. rotations)

@ Discrete symmetries describe non-continuous symmetries in a system (e.g. parity &
charge conjugation)
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Nik|(hef Continuous transformations

They are unitary by definition but not necessarily Hermitian
They rely on one or more continuous parameters so that lw )=U(a) |y)
@ rotation by an angle a

These transformations can be written as a succession of infinitesimal deviations
from the identity

U(a)= lim (l+ EF) =e"r

n—»oo n

F is called the generator of U
The generator of a unitary operator is Hermitian

The generator of a symmetry operator commutes with the Hamiltonian

@ If Uis a symmetry operator that commutes with H, then its generator is a Hermitian
operator that also commutes with H
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Nik|hef Identifying the generators of a transformation

Let us consider a group of transformations defined by xX;=f; (XpsX,say,...,a,)
@ x; are the coordinates on which the transformation acts
@ ai are the elements (i.e. real numbers) of the transformation
By convention the identity element is a=0 such that
x;=f;(x;0)

A transformation in the neighbour of the identity reads

dx,-zz o da,

- da,

The generators of the transformation are found by considering a change in a
function f(x) and are given by
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Nik|hef

Invariance under spatial translations

A system described by a quantum state yp and is moving, thus changing its spatial
coordinates

For infinitesimally small translations of (g1, €2, €3) we can write

(x7) (x,) (e,
X =X+e=>| x, |=| x, [+] €,

The generators of the transformation are the elements of momentum

~ 1 ~
Xi=—-—P;
h

Invariance under spatial translation leads to conservation of momentum
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Nik|[hef Invariance under spatial rotations

A system described by a quantum state @ and is rotating in 3D

For infinitesimally small rotations of dR(¢)~(€1, €2, €3) we can write
R=I+0R

This operator is unitary RR'=I=>(1+6R)(1+86R")=I=>8R=-6R"

@ ORis represented by an antisymmetric matrix of the form

0 €3 —&
e, -g; 0

The generators of the transformation are the elements of angular momentum

~

X=x X (1) V~L

Invariance under spatial rotations leads to conservation of angular momentum
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Nik|hef Introduction to groups

A group G is a collection of elements or operators a1, ay,...,an

@ The have defined laws describing how one can combine any of the two elements with an
operator e.g. “x” fulfilling the following conditions

@ Closure: For each two elements of G, their product is also an element of G

a; Xa;=a,
3 L] ] L] . . J [ .
@ Associativity: Combining two elements Is associative

a. Xxa;)Xa,=a;Xa;Xa
_ i j k i j k
@ Identity element: Every group has an identity element e such that for all elements of the
group

a; Xe=eXa;=a,
@ Inverse element: For all elements in G there is a unique element such that
-1_ -1 _
a;X(a;)"=(a;)"Xa;=e

When a group consists of elements that any of two commute, then the group is
called Abelian, otherwise non-Abelian

When a group contains finite number of elements n, then it is called finite group of
order n
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Nik|hef Charge conservation

All particles have electric charge in multiples of the charge of the quarks g = Nx(1/3)
In any interaction of this form charge is conserved

a+b—c+d+e 4at49,=9.%494%9.
Every conservation law is connected to a symmetry principle

Assume that g is the wave function of a state with charge q, then it obeys the
Schrodinger equation
o) _

ih

H|y)

If Q is the charge operator then <Q> is conserved
@ the operator commutes with the Hamiltonian of the system [H,Q] = 0
@ The eigenfunction g can be an eigenfunction of Q as well
0 lw)=q|w)

Let’s identify the observable which is conserved as the electric charge if we apply a
global gauge transformation of the form

') =e"?|y)

*
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Nik|hef

Discrete symmetries

Charge conjugation (C):

Q—-0
@ Converts a particle to its anti-particle (i.e. sign-flip)
Clx*) = [ x7) #F+| =)
C| =% =+1| =% n’— 2y C|n% =+1| =°%
Parity (P): . N
@ Converts right-handed systems to left-handed ones ( y J_)( 'y)
Z -Z

@ Vectors change sign but axial vectors remain unchanged

— — — e . S —
X —>-x,p—>-p, L=xXp—>L

Time reversal T

| | Symmetries are part of the building blocks
@ Reverses the direction of motion of particles of particle physics. However their validity

rests on experimental verification!!!

Panos.Christakoglou@nikhef.nl |7



Nik|hef Baryon number conservation

The much hypothesised decay of protons has been studied by measuring possible
decays in a large quantity of water which contains many protons and with large
counters shielded from cosmic rays by being positioned underground

@ The reaction p — e*m? has not been detected

@ Alower limit was set to the decay of proton to 1.6x1033 years

The fact that such decay does not seem to take place, led to the introduction of a
new quantum number for baryons and antibaryons: the baryon number (BN)

Each baryon is assigned a +1 BN
Each antibaryon is assigned a -1 BN
The conservation of BN is not connected to an exact symmetry
@ More of an empirical conservation law than a fundamental one

There are theories beyond the Standard Model where such a BN violation is allowed

P +1 P -1
n +1 n -1
A +1 A -1
=, =0 | +1 |[=°E | -1
Q- +1 Q* -1
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Nik|[hef Lepton number conservation

—

Evidence for lepton number conservation comes Neutrino
mainly from neutrino reactions
vV ,+p — e'+n n — pte+ v,

Reaction such as the ones below have not been
observed, indicating that lepton number violation
IS not natural

vV 4n > pte” v,+p — n+e’

Neutrinos and antineutrinos have different _ ,
characteristics Anti-neutrino

@ helicity shows if the spin of a particle points in the
direction of or opposite to the momentum

Figure 7.2: Neutrino and antineutrino
are always polarized if we neglect their

. very small masses. The neutrino has its
% Expe_rlments on 3-decay haV_e ShO\{Vh tha_t spin always opposite to its momentum;
neutrinos are left-handed while antineutrinos are the antineutrino has parallel spin and

right-nanded momentum.
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Nik|hef Lepton number conservation (cont.)

The following decays of muons are allowed and are quite common
@ They involve two types of neutrinos, one for the electron and the other for the muon
p*—)e‘“+v¢.+7p p‘—)e'+7¢,+vp
On the other hand, this decay channel has not been observed
@ The branching ratio is less than 1.2x10-"
pE—e*+y

This indicates that there should be another conservation law, the one of lepton
flavour (e,y,T)

Particle| Le | Ly | Lt | Antiparticle |Le | Lu| Lt
e |+1|0]o0 et “1{ofo0
v, |[+1]0]|0 v, |-1]0]o0
o [o]+1]0 pt 0[-1]0
v, |o|+1lo| v, [0]-1]0
v |00 |+ T 0]0|-1
Ve lolof+1| wv. |o|o0]-1
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Nik|hef

—

Strangeness conservation

n\\

Observation of decay of particles with a characteristic V-shape decay topology

@ These decays were rather slow, with a lifetime of 10-19s, typical lifetime of a weak decay

Gell-Mann and Nishijima introduced a new quantum numbers, called strangeness

Strangeness is conserved in the strong and electromagnetic interactions, but it is
violated in the weak interactions

ALICE Performance, pp \s= 13 TeV
20.08.2015

-

P, integrated

-

main vertex;

neutral decaying particle;

distance of closest approach;

closest approach of reconstructed
V0 to main vertex;

decay length;

1.12 1.13
M, (GeV/c?
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Nik|hef Hypercharge

n\\

Y9,

—

We can define hypercharge as the sum of the baryon number and strangeness (and
all additional quantum numbers for heavier quark states)

Hypercharge
Y=S+C+B+T+BN

Table 7.1: BARYON NUMBER A. STRANGENESS S.
HYPERCHARGE Y. AND AVERAGE VALUE OF THE
CHARGE NUMBER N, = q/e.

Particle A : " (Ng)
Photon
Pion
Kaon

Nucleon
[LLambda
Sigma

= = oN- N-= o o

Cascade

|
—

Omega
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Nik|hef

—

Quantum numbers of quarks

N

Y9,

Table 7.2: QUANTUM NUMBER ASSIGNMENTS
FOR THE SIX (QUARKS.

Quantum Number
Quark £ , C B T Ygen
/. 0 1/3

—2/3
—2/3

For quarks we can introduce the generalised hypercharge, defined as

Y, en=A+S+C+B+T=2(g/e)
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Nik|hef

Isospin

Neutron and proton are quite similar apart from their charge
Heisenberg proposed that they are regarded as the two states of the same particle
@ the nucleon

Similar to the notation related to spin we can write p and n with a two component
column matrix

By direct analogy to spin we introduce isospin with coordinates in the isospin space:
D Il 3

Strong interactions are invariant under rotations in isospin space
@ Isospin is conserved

Group theory wording:

@ Strong interactions are invariant under an internal symmetry of SU(2)

*
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