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Chapter 1

Introduction to gauge theories

In this chapter we will lay the mathematical foundations that will be used to develop the theories the Standard Model
is based on, the ones that describe the electromagnetic, the strong and the weak interactions. These foundations rely
in introducing the gauge theories that describe all interactions between elementary particles. We will start with a brief
reminder of an essential topic, making the transition from classical to the quantum-mechanical representation thought
the Schrodinger equation. We will then introduce the Klein-Gordon equation that describes spin-0 real and complex
scalar fields. We then move to the Dirac equation that describes a system formed by spin- 1

2 spinor fields. Finally, we will
introduce the Proca equation that describes spin-1 vector fields.

1.1 Schrodinger equation

In quantum-mechanics free particles are described as waves that can be decomposed into a Fourier integral of plane waves
according to

Ψ(x, t)≈ ei(kx−ωt) = cos(kx−ωt)+ isin(kx−ωt),

where k = p/h̄ the wave vector connected with the wavelength λ via λ = h/p. The angular frequency gives the energy of
the wave according to E = h̄ω . The particle in quantum mechanics is not localised and the probability to find a particle
described by the wave function Ψ(x, t) in a volume V is given by

P(x, t)dV = |Ψ(x, t)|2dV

The normalisation condition gives rise to

P =
∫

P(x, t)dV =
∫

all−space
|Ψ(x, t)|2dV = 1

All physical quantities and time-dependent variables are described by operators according to

ÂΨ = αΨ ,

where Â is the operator, α the eigenvalue that corresponds to the operator and Ψ is the eigenfunction. For Â to correspond
to a physical observable the eigenvalues of the operator must be real. This means that the operator needs to be Hermitian.
Table 1.1 gives some indicative examples for some of the basic “variables“ in their classical representation with their
quantum-mechanical counterparts.

In quantum mechanics we thus have in one dimension:

1



2 1 Introduction to gauge theories

Classical representation QM representation
Scalar function f (x) f (x)

Momentum p −ih̄∇

Energy E ih̄ ∂

∂ t
Angular momentum (z-coordinate) Lz −ih̄ ∂

∂φ

Table 1.1: Association of some of basic “variables“ in their classical representation with their quantum-mechanical counterparts.

P̂xΨ(x, t) =−ih̄
∂

∂x
(Nei(kx−ωt)) = h̄kNei(kx−ωt) = pxΨ(x, t)

ÊΨ(x, t) = ih̄
∂

∂ t
(Nei(kx−ωt)) = h̄ωNei(kx−ωt) = EΨ(x, t)

In classical mechanics the totla energy of a non-relativistic particle is the sum of the kinetic (T ) and the potential (U)
energy, given by

E = H = T +U =
p2

2m
+U

If one writes down the quantum-mechanical counterparts of the previous equation then we end up with

ih̄
∂

∂ t
Ψ(x, t) =− h̄2

2m
∂ 2

∂x2Ψ(x, t)+ÛΨ(x, t)

The previous equation describes a particle moving in one dimension, along the x-axis. The generalisation in three dimen-
sions gives rise to the time-dependent Schrodinger equation:

ih̄
∂

∂ t
Ψ(x, t) =− h̄2

2m
∇

2
Ψ(x, t)+ÛΨ(x, t) (1.1.1)

The physical interpretation of the wave function is that the product Ψ ∗Ψ calculated over a volume element d3x gives the
probability of finding a particle in the volume element. This gives rise to the probability density expressed by

ρ(x, t) =Ψ
∗(x, t)Ψ(x, t) (1.1.2)

Assuming that a particle does not decay or interact, the total probability is constant. This can be reflected by a continuity
equation, defining the probability curent density j(x, t), so that the flux of probability across an element surface dS is
j(x, t)dS.

Taking the time derivative of the probability density over the entire volume reflects the amount of probability current
density lines exiting the element surface dS (hence the minus sign below):

∂

∂ t

∫
V

ρdV =−
∫

S
jdS =−

∫
V

∇jdV

The last part of the previous equation is given by the divergence theorem according to which

∫
V
(∇F)dV =

∫
S

FdS

This is schematically given in fig. 1.1

Since the previous relation holds for an arbitrary volume, the continuity equation is written as



1.1 Schrodinger equation 3

V

dS

j(x,t)

Fig. 1.1: The probability current density lines exiting from a surface dS of a volume V .

∇j+
∂ρ

∂ t
= 0 (1.1.3)

The expression for the probability current can be extracted from the free particle time-dependent Schrodinger equation
for Ψ and Ψ ∗:

ih̄
∂Ψ

∂ t
=− h̄2

2m
∇

2
Ψ

−ih̄
∂Ψ ∗

∂ t
=− h̄2

2m
∇

2
Ψ
∗

Multiplying the first equation with Ψ ∗ and the second with Ψ gives

ih̄Ψ
∗ ∂Ψ

∂ t
=− h̄2

2m
Ψ
∗
∇

2
Ψ

−ih̄Ψ
∂Ψ ∗

∂ t
=− h̄2

2m
Ψ∇

2
Ψ
∗

Subtracting the two equations gives:

ih̄
(

Ψ
∗ ∂Ψ

∂ t
+Ψ

∂Ψ ∗

∂ t

)
=− h̄2

2m

(
Ψ
∗
∇

2
Ψ −Ψ∇

2
Ψ
∗
)
⇒

− h̄2

2m

(
Ψ
∗
∇

2
Ψ −Ψ∇

2
Ψ
∗
)
= ih̄

∂

∂ t
(Ψ ∗Ψ) = ih̄

∂ρ

∂ t

From the previous, the probability current density is given by
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j =
h̄

2im

(
Ψ
∗
∇Ψ −Ψ∇Ψ

∗
)

(1.1.4)

1.1.1 Variable constant of motion

The time-dependent evolution of a quantum mechanical state is given by

ih̄
∂

∂ t
Ψ(x, t) = ĤΨ(x, t)⇒ ĤΨ(x, t) = EΨ(x, t)

The time dependent eigenstate of Ĥ is then given by Ψ(x, t) =Ψ(x)e−iEt/h̄.

In general the expectation value of the operator Â is given by

〈Â〉= 〈Ψ |Â|Ψ〉=
∫

Ψ
†ÂΨd3x,

where Ψ † = (Ψ ∗)T the complex transpose conjugate.

The time-dependence of the expectation value of the operator Â, assuming that it is time independent and thus ∂A/∂ t = 0,
is given by

d〈Â〉
dt

=
∫ [

∂Ψ †

∂ t
ÂΨ +Ψ

†Â
∂Ψ

∂ t

]
d3x

If in the equation above we replace the time derivatives of Ψ and Ψ † using their Schrodinger equations:

ih̄
∂Ψ

∂ t
= ĤΨ

and

−ih̄
∂Ψ †

∂ t
= (ĤΨ)†

we then get

d〈Â〉
dt

=
∫ [ i

h̄
(ĤΨ)†(ÂΨ)+Ψ

†Â
(−i

h̄
ĤΨ

)]
d3x =

i
h̄

∫ [
Ψ

†ĤÂΨ −Ψ
†ÂĤΨ

]
d3x =

i
h̄

∫ [
Ψ

†(ĤÂ− ÂĤ)Ψ
]
d3x⇒

d〈Â〉
dt

=
i
h̄
〈[Ĥ, Â]〉

That means that if [Ĥ, Â] then the observable represented by the operator Â is a constant of motion.
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1.1.2 Uncertainty principle

The operators that describe the x-spacial coordinate and the x-coordinate of the momentum of a particle are represented
by operators that obey:

X̂Ψ = xΨ

and

p̂xΨ =−ih̄
∂

∂x
Ψ

The commutator [x̂, p̂x] when acting on an eigenfunction gives

[x̂, p̂x]Ψ = x̂ p̂xΨ − p̂xx̂Ψ = x(−ih̄)
∂Ψ

∂x
+ ih̄

∂

∂x
|(xΨ) =

−ih̄x
∂Ψ

∂x
+ ih̄x

∂Ψ

∂x
+ ih̄Ψ = ih̄Ψ ⇒

[x̂, p̂x] = ih̄

The general uncertainty principle between two quantities A and B reads

(∆A)(∆B)≥ 1
2
|〈i[Â, B̂]〉|,

where (∆A)2 = 〈Â2〉−〈Â〉2

That brings the uncertainty principle for the position and momentum:

∆x∆ px ≥
h̄
2

1.2 Klein-Gordon equation

The requirement of a relativistic formulation of a quantum mechanical system is that the equations that this system obey
should be Lorentz invariant. The Schrodinger equation, however, of Eq. 1.1.1 is of first order in time and second order in
space. It certainly does not lead to any Lorentz invariance! This non-invariance is a consequence of how it was constructed:
we used the non-relativistic relationship of energy and momentum i.e. E = p2/2m and we replaced the variables with the
quantum mechanical operators.

The first attempt to construct a relativistic theory of quantum mechanics came with the usage of the so-called Klein-
Gordon equation. As a starting point we have the relativistic relation between energy and momentum (note the transition
to natural units!!!):

E2 = p2 +m2→ Ê2
Ψ = p̂2

Ψ +m2
Ψ ,

where p̂ =−i∇ and Ê = i ∂

∂ t . If we replace the form of the relevant operators in the equation above, we get

∂ 2

∂ t2Ψ(r, t)+∇
2
Ψ(r, t)−m2

Ψ(r, t)⇒ ∂µ ∂
µ
Ψ(r, t) = 0⇒
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(∂µ ∂
µ +m2)Ψ(r, t) = 0 (1.2.1)

In the previous equation we used the notation

∂µ ∂
µ =

∂ 2

∂ t2 −∇
2 =

∂ 2

∂ t2 −
∂ 2

∂x2 −
∂ 2

∂y2 −
∂ 2

∂ z2

Equation 1.2.1 can be written in a more elegant way by introducing the D’Alembertian operator defined as

�≡ ∂µ ∂
µ =

∂ 2

∂ t2 −∇
2

so that the Klein-Gordon equation can take its final form:

(�+m2)Ψ(r, t) = 0 (1.2.2)

The corresponding Lagrangian density can be written as

LK-G =
1
2
(∂µ Φ)(∂ µ

Φ)− 1
2

m2
Φ

2 (1.2.3)

Equation 1.2.3 describes a system consisting of a spin-0 scalar field. Applying the Euler-Lagrange equation of Eq. ??, we
can get back Eq. 1.2.2.

The Klein-Gordon equation has plane wave solutions of the form

Ψ(r, t) = Nei(pr−Et),

with energies

E =±
√

p2 +m2

In classical mechanics the solutions with negative energy are dismissed as unphysical but in quantum mechanics all
solutions are accepted. These negative energies do not create a real problem at this stage but this changes once we calculate
the probability density and current starting from:

∂ 2Ψ

∂ t2 = ∇
2
Ψ −m2

Ψ

and

∂ 2Ψ ∗

∂ t2 = ∇
2
Ψ
∗−m2

Ψ

Multiplying the first equation with Ψ ∗ and the second equation with Ψ one gets

Ψ
∗ ∂ 2Ψ

∂ t2 =Ψ
∗
∇

2
Ψ −Ψ

∗m2
Ψ

Ψ
∂ 2Ψ ∗

∂ t2 =Ψ∇
2
Ψ
∗−Ψm2

Ψ

Subtracting the second from the first equation above one gets:
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Ψ
∗ ∂ 2Ψ

∂ t2 −Ψ
∂ 2Ψ ∗

∂ t2 =Ψ
∗
∇

2
Ψ −Ψ∇

2
Ψ
∗−m2

Ψ
∗
Ψ +Ψm2

Ψ ⇒

∂

∂ t

(
Ψ
∗ ∂Ψ

∂ t
−Ψ

∂Ψ ∗

∂ t

)
= ∇

(
Ψ
∗
∇Ψ −Ψ∇Ψ

∗
)
⇒

ρ = i
(

Ψ
∗ ∂Ψ

∂ t
−Ψ

∂Ψ ∗

∂ t

)

j =−i
(

Ψ
∗
∇Ψ −Ψ∇Ψ

∗
)

In the equation above, we include the factor “i“ to make sure the probability density is real.

For a plane-wave solution we get:

ρ = 2|N|2E

j = 2|N|2p

If one wants to compactly add the above scalar and vector into one object, then we can introduce the 4–vector jµ defined
as

jµ = 2|N|2 pµ

This clearly illustrates the next problem we are facing: the probability is proportional to the energy of a particle; however,
the energy can take negative values as we have seen. This leads to the possibility of a negative probability density!

1.3 Dirac equation

The extension of the Klein-Gordon equation from Dirac solved the problem of the negative values of the probability
density and also provided a natural description of probably the most important category of particles: the one containing
spin-1/2 fermions.

Dirac looked for a first order equation in both space and time. What he tried was an equation of the form

ÊΨ = (α p̂+βm)Ψ ⇒ i
∂

∂ t
Ψ = (−iαx

∂

∂x
− iαy

∂

∂y
− iαz

∂

∂ z
+βm)Ψ ,

where α and β are unknown for the time being mathematical entities. The solutions must satisfy the energy-momentum
relation at its relativistic form and thus satisfy the Klein-Gordon equation. To do so, let us start by squaring the previous
equation:

− ∂ 2

∂ t2Ψ = (iαx
∂

∂x
+ iαy

∂

∂y
+ iαz

∂

∂ z
−βm)(iαx

∂

∂x
+ iαy

∂

∂y
+ iαz

∂

∂ z
−βm)⇒

∂ 2Ψ

∂ t2 = α
2
x

∂ 2Ψ

∂x2 +α
2
y

∂ 2Ψ

∂y2 +α
2
z

∂ 2Ψ

∂ z2 −β
2m2

Ψ

(αxαy +αyαx)
∂ 2Ψ

∂x∂y
+(αyαz +αzαy)

∂ 2Ψ

∂y∂ z
+(αzαx +αxαz)

∂ 2Ψ

∂ z∂x
+
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i(αxβ +βαx)m
∂Ψ

∂x
+ i(αyβ +βαy)m

∂Ψ

∂y
+ i(αzβ +βαz)m

∂Ψ

∂ z

To reduce to the Klein-Gordon equation, α and β must satisfy:

• α2
x = α2

y = α2
z = β 2 = I

• α jβ +βα j = 0

• α jαk +αkα j = 0, for each j 6= k.

Let us now try to find the form of the unknown quantities αi and β .

The variables αi and β can not be real numbers. They are matrices!!!

In addition, from the fact that α jβ = −βα j, that β 2 = I and that the trace1 of the multiplication of three matrices (let’s
say A, B and C) is Tr(ABC) = Tr(BCA) (i.e. cyclic identity), it can be seen that αi and β are matrices with zero trace.

It can also be shown the the eigenvalues of αi and β are ±1:

αiX = λX ⇒ α
2
i X = λαiX ⇒ X = λ

2X ⇒ λ =±1,

since α2
i = I.

Furthermore, the sum of the eigenvalues of a matrix is equal to its trace. The only way that the trace can be 0 is if αi and
β have even dimensions.

Moreover, due to the fact that the Dirac Hamiltonian operator Ĥ = α p̂+βm is Hermitian, it follows that the matrices αi
and β should also be Hermitian: α†

x = αx, α†
y = αy, α†

z = αz and β † = β .

Since there are only three mutually anticommuting 2×2 matrices with zero trace, the Pauli matrices, αi and β should be
at least 4× 4. The Dirac Hamiltonian is thus a 4× 4 matrix of operators that acts on a 4–component wavefunction, the
Dirac spinor:

Ψ =


Ψ1
Ψ2
Ψ3
Ψ4


The size of the spinor is driven by the existence of the β–term i.e. by the fact that particles have mass! Otherwise the
world would be described just by the Pauli matrices.

Let us now define the form of the α and β matrices:

β =

(
I 0
0 −I

)
and

αi =

(
0 σi
σi 0

)
,

where I =
(

1 0
0 1

)
, σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
and σz =

(
1 0
0 −1

)
.

Note that this is one of the many representations that these matrices can take. The physical predictions obtained using it
do not depend on this choice of representation.

1 For a n×n matrix A, the trace of the matrix is tr(A) = ∑
n
i=1 αii, where αii are the diagonal elements of A
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1.3.1 Probability density and current

To derive the probability density and current, since the wavefunctions are 4–component spinors, we use the transpose
conjugate instead of just the complex one i.e. Ψ ∗→Ψ † = (Ψ∗)T . The Dirac equations for Ψ and for Ψ † are:

i
∂

∂ t
Ψ = (−iαx

∂

∂x
− iαy

∂

∂y
− iαz

∂

∂ z
+βm)Ψ

and

−i
∂

∂ t
Ψ

† = i
∂Ψ †

∂x
α

†
x + i

∂Ψ †

∂y
α

†
y + i

∂Ψ †

∂ z
α

†
z +mΨ

†
β

†

Multiplying the first with Ψ † from the left and the second with Ψ from the right and then subtracting the two gives:

Ψ
†
(
− iαx

∂Ψ

∂x
− iαy

∂Ψ

∂y
− iαz

∂Ψ

∂ z
+βmΨ

)
−
(

i
∂Ψ †

∂x
α

†
x + i

∂Ψ †

∂y
α

†
y + i

∂Ψ †

∂ z
α

†
z +mΨ

†
β

†
)

Ψ = iΨ † ∂

∂ t
Ψ + i

∂

∂ t
Ψ

†
Ψ

αi = α
†
i . The previous equation can be simplified if we write:

Ψ
†
αx

∂Ψ

∂x
+

∂Ψ †

∂x
αxΨ =

∂

∂x
(Ψ †

αxΨ)

and

Ψ
† ∂Ψ

∂ t
+

∂Ψ †

∂ t
Ψ =

∂

∂ t
(Ψ †

Ψ)

This gives:

∇(Ψ †
αΨ)+

∂

∂ t
(Ψ †

Ψ) = 0

where Ψ † =
(
Ψ ∗1 Ψ ∗2 Ψ ∗3 Ψ ∗4

)
.

That means that the probability density and current are now given by:

ρ =Ψ
†
Ψ

and

j =Ψ
†
αΨ

The problem with the probability density turning negative is now solved:

ρ =Ψ
†
Ψ = |Ψ1|2 + |Ψ2|2 + |Ψ3|2 + |Ψ4|2 > 0
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1.3.2 Covariant form of the Dirac equation

Let us first introduce a new set of matrices that will be used quite extensively from now on: they will be referred to as the
γ-matrices. The are given by


γ0 ≡ β

γ1 ≡ βαx
γ2 ≡ βαy
γ3 ≡ βαz

 (1.3.1)

It is also useful to define now also the adjoint spinor Ψ :

Ψ ≡Ψ
†
γ

0 (1.3.2)

The Dirac equation can now be written as follows:

i
∂

∂ t
Ψ = (−iαx

∂

∂x
− iαy

∂

∂y
− iαz

∂

∂ z
+βm)Ψ ⇒

iβ
∂Ψ

∂ t
+ iβαx

∂Ψ

∂x
+ iβαy

∂Ψ

∂y
+ iβαz

∂Ψ

∂ z
−β

2mΨ = 0⇒

iγ0 ∂Ψ

∂ t
+ iγ1 ∂Ψ

∂x
+ iγ2 ∂Ψ

∂y
+ iγ3 ∂Ψ

∂ z
−mΨ = 0⇒

If we now introduce the notation:

γµ =
(
γ0 γ1 γ2 γ3

)
and

∂µ =
(
∂0 ∂1 ∂2 ∂3

)
=
(

∂

∂ t
∂

∂x
∂

∂y
∂

∂ z

)

∂
µ =


∂0
−∂1
−∂2
−∂3

=


∂

∂ t
− ∂

∂x
− ∂

∂y
− ∂

∂ z


the previous equation takes its covariant form:

(iγµ ∂
µ −m)Ψ = 0 (1.3.3)

1.3.3 Solutions of the Dirac equation

In this section we will see what the solutions of the Dirac equation represent. This is quite important to understand (not
the way we reach the solution but what they physically mean)! Let us start from the free particle plane-wave solutions of
the form
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Ψ(x, t) = u(E,p)ei(px−Et)

where u(E,p) is a 4–component Dirac spinor.

Since the spacial and time coordinates dependence of Ψ is contained in the exponent we can write:

∂0Ψ =−iEΨ

∂1Ψ = ipxΨ

∂2Ψ = ipyΨ

∂3Ψ = ipzΨ

so that the Dirac equation gives:

(iγµ ∂
µ −m)Ψ = 0⇒ (γ0E− γ

1 px− γ
1 py− γ

1 pz−m)u(E,p)ei(px−Et) = 0⇒

(γµ pµ −m)u = 0

1.3.3.1 Solutions for particles at rest

For a particle at rest p = 0 and the free particle wavefunction can be written as

Ψ(x, t) = u(E,0)e−iEt

(γµ pµ −m)u = 0⇒ Eγ
0u = mu⇒ E

(
I 0
0 I

)
φ1
φ2
φ3
φ4

= m


φ1
φ2
φ3
φ4


This leads to four orthogonal solution of the form:

u1(E,0) = N


1
0
0
0



u2(E,0) = N


0
1
0
0


which correspond to solutions with positive energy E =+m and
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u3(E,0) = N


0
0
1
0



u4(E,0) = N


0
0
0
1


which correspond to solutions with negative energy E =−m.

Let us make some remarks at this stage:

• The parameter N is the normalisation of Ψ

• The solution u1 and u2 represent two particles (note the positive energy) with spin-up and spin-down, respectively,
states.

• The solution u3 and u4 represent two antiparticles (note the negative energy) with spin-up and spin-down, respectively,
states.

• The time-dependent solutions of the Dirac equation for a particle at rest are given by

Ψ1 = N


1
0
0
0

e−imt

Ψ2 = N


0
1
0
0

e−imt

Ψ3 = N


0
0
1
0

eimt

Ψ4 = N


0
0
0
1

eimt

1.3.3.2 General solutions

The general solutions of the Dirac equation can be derived from the solutions for the case of a particle at rest, using the
transformation properties of the Dirac spinors or using the following:

(γµ pµ −m)u = 0⇒ (Eγ
0− pxγ

1− pyγ
2− pzγ

3−m)u = 0⇒

[(I 0
0 −I

)
E−

(
0 σp
−σp 0

)
−m

(
I 0
0 I

)]
u = 0

where
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σp = σx px +σy py +σz pz =

(
pz px− ipy

px + ipy −pz

)
We can now rewrite the spinor u as a two–component vector u = (uA,uB) such that the previous equation can be written

(
(E−m)I −σp

σp −(E +m)I

)(
uA
uB

)
= 0

The previous equation has the following solutions:

uA =
σp

E−m
uB

and

uB =
σp

E +m
uA

Two solution to the free Dirac equation can be found by taking the simplest orthogonal choices for uA:

uA =

(
1
0

)
and

uA =

(
0
1

)

uB =
σp

E +m
uA =

1
E +m

(
pz px− ipy

px + ipy −pz

)
uA

The first two solutions of the free particle Dirac equation can thus be written as:

u1(E,p) = N1


1
0
pz

E+m
px+ipy
E+m


and

u2(E,p) = N2


0
1

px−ipy
E+m
− pz

E+m


Note that the choice for the representation of uA was arbitrary: any choice would be equally fine!

The other two solutions can be found by writing

uB =

(
1
0

)
and
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uB =

(
0
1

)
which leads to

u3(E,p) = N3


pz

E−m
px+ipy
E−m

1
0


and

u4(E,p) = N4


px−ipy
E−m
− pz

E−m
0
1


In terms of physical energy, the solutions of the Dirac equation are Ψi = uiei(px−Et) and they represent again two particles
with spin-up (i.e. u1) and spin-down (i.e. u3) and two antparticles with spin-up (i.e. u3) and spin-down (i.e. u4).

1.3.4 Dirac Lagrangian density

Finally, the Lagrangian density that describes systems consisting of spin-1/2 fields is:

LDIRAC = iΨγµ ∂
µ
Ψ −mΨΨ (1.3.4)

from where with the usage of the Euler-Lagrange equations we get back the equation of motion of the system that obeys:

(iγµ ∂
µ −m)Ψ = 0

and

(iγµ ∂
µ +m)Ψ = 0

1.4 Proca equation

The Lagrangian density for a massless spin-1 field is given by

L =−1
4

Fµν Fµν ,

where Fµν = ∂µ Aν − ∂ν Aµ the field strength tensor. The corresponding Lagrangian density for a massive spin-1 boson
with mass MM is given by

LPROCA =−1
4

Fµν Fµν +
1
2

M2Aµ Aµ (1.4.1)

The equation of motion of the massive field can be extracted by the Euler-Lagrange equations:
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∂µ

(
∂L

∂ (∂µ Φ)

)
− ∂L

∂Φ
= 0⇒

(�+m2)Aµ −∂
µ(∂ν Aν) = 0

In case of a massless field of spin-1 (e.g. a photon), the previous equation takes the following form

�Aµ −∂
µ(∂ν Aν) = 0

1.5 Yang-Mills theory

In 1954, Young and Mills extended the idea of applying local gauge invariance, a notion we first encountered in Chapter ??,
to higher order groups than the U(1). Local gauge invariance was first applied in SU(2) and then in SU(3) and derived
the theory of the weak and the strong interactions. In the Standard Model all fundamental interactions are derived in this
same way. We will talk about these in the following chapters.

Let us briefly review the first steps of the Young–Mills theory that will be used extensively in the chapters where we are
going to encounter the strong and the weak interactions. Let us suppose that we have to spin-1/2 fields, Ψ1 and Ψ2. The
Lagrangian density in the absence of any external field and thus interactions is given by:

L = [iΨ 1γµ ∂
µ
Ψ1−mΨ 1Ψ1]+ [iΨ 2γµ ∂

µ
Ψ2−mΨ 2Ψ2]

It is clear that the previous is just a sum of two Dirac Lagrangian densities. So far nothing special. But we can rewrite the
previous equation in a more compact way, by introducing a two-component vector

Ψ ≡
(

Ψ1
Ψ2

)
Note that both Ψ1 and Ψ2 are four component Dirac spinors! Things get a bit more complicated but we can get away from
this complication by introducing an additional index so that one index corresponds to the particle (i.e. corresponds to
either Ψ1 or Ψ2), while the second index refers to the component of each of the Dirac spinors. The adjoint spinor is then

Ψ ≡
(
Ψ1 Ψ2

)
The Lagrangian density of our system takes now the following form

L = iΨγµ ∂
µ
Ψ −MΨΨ

where

M =

(
m1 0
0 m2

)
is the so-called “mass“ matrix. If the two masses are identical then the Lagrangian density takes a rather familiar form
given by

LYoung−Mills = iΨγµ ∂
µ
Ψ −MΨΨ (1.5.1)
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Although this looks like Eq. 1.3.4, one has to point out that the main difference is that Ψ is now a two–component vector
of Dirac spinors. The Lagrangian density of Eq. 1.5.1 takes a more general global invariance than a simple U(1), since
now the transformation Ψ →Ψ

′
=UΨ involves a 2×2 matrix (i.e. U).


