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Neuromorphic computing

Neuromorphic computing is an approach to computing that is inspired by the structure and function of the human brain.

A neuromorphic computer/chip is any device that uses physical artificial neurons to do computations.



https://en.wikipedia.org/wiki/Neuromorphic_engineering
https://www.informationweek.com/software-services/what-you-need-to-know-about-neuromorphic-computing




Simple model of an artificial neuron
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What is a neural network?
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https://www.tibco.com/reference-center/what-is-a-neural-network



https://www.tibco.com/reference-center/what-is-a-neural-network

What is a neural network?

Why is it called a 'neural network'?

McCulloch-Pitts neuron [1, 2] (1943)

Warren Sturgis McCulloch

Walter Pitts

hysiologi
(Neurophysiologist) (Logician)

I. Introduction

Theoretical neurophysiology rests on certain cardinal assump-
tions. The nervous system is a net of neurons, each having a soma
and an axon. Their adjunctions, or synapses, are always between the
axon of one neuron and the soma of another. At any instant a neuron
has some threshold, which excitation must exceed to initiate an im-
pulse.



How do biological neurons work?
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https://commons.wikimedia.org/wiki/File:Coincidence_detection_in_dendrites_of_pyramidal_neurons.gif

Simplified picture
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130 LOGICAL CALCULUS FOR NERVOUS ACTIVITY

What is a neural network? s . 3
e
¢ <}—ﬁ_
I

McCulloch-Pitts neuron [1, 2]

B
f
1940s: How do biological neurons compute basic
logic functions? (e.g. logic gates) X =
9
h ;4} |

Note: Ref. [3] gives a nice brief history on the ideas which lead to the
McCulloch-Pitts neuron.

FiGure 1



What is a neural network?

1950s: How are neurons organized to perform
sensory perception?
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Wh at IS a neu ral n etWO rk? Frank Rosenblatt (Psychologist)

with a Mark I Perceptron computer in 1960

1950s: How are neurons organized to perform
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sensory perception?
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Neuromorphic computing

Why neuromorphic computing?

Neuromorphic computing is an approach to computing that is inspired by the structure and function of the human brain.

A neuromorphic computer/chip is any device that uses physical artificial neurons to do computations.



Neuromorphic computing

Why neuromorphic computing?
‘Biological inspiration’ for artificial neural networks (ANNSs) is not a new idea.
Emulation (as opposed to simulation) of neural networks in hardware is not a new idea.

Question: What can we gain from increasing biological realism in existing neural networks?



Power-efficiency at scale

Modern, deep neural networks*

are trained using GPUs.

* It is estimated that ChatGPT was trained on
10,000-20,000 GPUs and that it will require
30,000 GPUs to keep running stably in the future.

* |t is estimated that ChatGPT has 10-20 billion
parameters.
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Load Power Consumption - Furmark & X

Power-efficiency at scale

AMD Radeon HD 6850 274

AMD Radeon HD 4870 300
AMD Radeon HD 6870 306
AMD Radeon HD 5850 307

Modern, deep neural networks*

are trained using GPUs.

Single model with 20 billion parameters:

* It is estimated that ChatGPT was trained on
10,000-20,000 GPUs and that it will require
30,000 GPUs to keep running stably in the future.

200 Watts x 30,000 GPUs =

* It is estimated that ChatGPT has 10-20 billion S
AMD Radeon HD 5870 CF
parameters. NVIDIA GeForce GTX 470 SLI 740
NVIDIA GeForce GTX 580 SLI 777
NVIDIA GeForce GTX 480 SLI 851
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Power-efficiency at scale

CO2 equivalent emissions (tonnes) by select machine learning models and real-life examples, 2020-23
Source: Al Index, 2024; Luccioni et al., 2022; Strubell et al., 2019 | Chart: 2024 Al Index report
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https://hai.stanford.edu/ai-index/2024-ai-index-report



Power-efficiency at scale

Environmental impact of select models
Source: Al Index, 2024; Luccioni et al., 2022 | Table: 2024 Al Index

Model and number of Year | power
parameters consumption
(MWh)
Gopher (280B) 2021 1,066
BLOOM (176B) 2022 433
GPT-3 (175B) 2020 1,287
OPT (175B) 2022 324
Llama 2 (70B) 2023 400
Llama 2 (34B) 2023 350
Llama 2 (13B) 2023 400
Llama 2 (7B) 2023 400
Granite (13B) 2023 153
Starcoder (15.5B) 2023 89.67
Luminous Base (13B) 2023 33
Luminous Extended (30B) 2023 93

Training a single model can consume
more than 1000 MWh of power!

https://hai.stanford.edu/ai-index/2024-ai-index-report



Power-efficiency at scale

Environmental impact of select models
Source: Al Index, 2024; Luccioni et al., 2022 | Table: 2024 Al Index

Model and number of Year | power
parameters consumption
(MWh)
Gopher (280B) 2021 1,066
BLOOM (176B) 2022 433
GPT-3 (175B) 2020 1,287
OPT (175B) 2022 324
Llama 2 (70B) 2023 400
Llama 2 (34B) 2023 350
Llama 2 (13B) 2023 400
Llama 2 (7B) 2023 400
Granite (13B) 2023 153
Starcoder (15.5B) 2023 89.67
Luminous Base (13B) 2023 33
Luminous Extended (30B) 2023 93

Training a single model can consume
more than 1000 MWh of power!

https://hai.stanford.edu/ai-index/2024-ai-index-report

Estimated training cost of select Al models, 2016-23
Source: Epoch, 2023 | Chart: 2024 Al Index report
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... with energy costs reaching 200M USD!



Power-efficiency at scale

Your brain runs on:




Power-efficiency at scale

Your brain runs on:

High estimate ~3000 kcal a day
=145 Watts

* Human brain has ~600 trillion synapses
(=parameters).




Power-efficiency at scale

Your brain runs on:

High estimate ~300 Oversimplification
=145 W

There are also multiple other advantages...

* Human brain has ~600 tr
(=parameters).



Human vs. computer computation

- Fast real-time decision making, e.g. sports, e-sports
- Adaptive, e.g. context-aware and employs selective attention
- Energy efficient: Close to 100 billion neurons in the brain

- Robust, for example to changes in illumination or obstructions in object tracking




Human vs. computer computation

Brains are energy efficient: Why?

1. High (more computation with less neurons)

2. encoding




Human vs. computer computation

Brains are energy efficient: Why?

1. High (more computation with less neurons)

2. encoding
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How do biological neurons communicate?

Analogy to artificial neural networks

Real neuron
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How do biological neurons communicate?

How does the electrical activity propagate?
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How do biological neurons work?
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https://tinmard.github.io/spike-sorting-animation.html

How do biological neurons work?
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https://tinmard.github.io/spike-sorting-animation.html

Biologically realistic spiking neuron models

Biologically realistic neuron models have
a new dimension: Time!

Spiking neural networks (SNNs):

The input x () to each neuron is summed
(integrated) over time.
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Synapse
o 'y g Dendrite
Z /ﬁ‘\\\
2,
Ty % \\\ Output axon
@ \ to post-neuron
Z( FQ_wim)
/  scalar
o //
TN " @é — —
Axon from pre-neuron SNN
S Synapse
10101100 Dendrite R
2, 00101100
2,
$1(t) . % \\ Output axon
'O\ | to post-neuron
] function of
§ time
(0 i

TN




How to model spiking neurons?

ANN: Perceptron, threshold activation function:




How to model spiking neurons?

ANN: Perceptron, threshold activation function:




How to model spiking neurons?

Spiking neural network (SNN): The 'input current' g(t) is integrated over time.




How to model spiking neurons?

Equivalence to perceptron: Computation at least as complex as a perceptron.
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Non-leaky integrate-and-fire (IF) neuron

The temporal profile of the input current g(t) can be chosen differently, for different computations.

A
\ 4 1 A |
vV I
1 1
£ L 1 1
u.v(t S) | eu,v(t's) |
1 1
. > ! I
t 1 | | | > 1
) 1 1 |
° I s S+Auv 4 :
1
1 1
i | e o e e e e o e e e e e e e e e e e e = = = ]
\ "4

v

1
I
: ' N"”
0| t ,
’ W B J 1 ] >
? l s stAuw t



Questions?



Computation with spiking neurons

Coincidence detection

we consider the concrete
boolean function CD,: {0, 1}*" — {0,1}, which is
defined by

1, ifx,-:y,-:l
CD, (Kysvics X Wi Vo )= for somei € {1,...,n}

0, otherwise.

This function appears to be relevant in a biological con-
text, since it formalizes some form of pattern-matching,
respectively, coincidence-detection.



Computation with spiking neurons

Coincidence detection

CD (£ys0u X5 Miansan Yy ) =

X,y € {0, I}"

1, ifx,-:y,—:l
for somei € {1,...,n}

0, otherwise.

Example:n=2 ——

input =

x1
X2

y1

_ A a O

output?



Computation with spiking neurons

Coincidence detection

——
<>
A
|
I
I
Xr !
I
“—F
I A- I
2v

(o)
.
(1) 4ent).]

neurons i

-

|
|
|
A3y

4]

I

]

I

I

1

|

I

I

I

I

> :
Agy time



Computation with spiking neurons

Coincidence detection

1, ifxizyi=l
CBilss X HipveiVa )= for some i € {1,...,n)}

0, otherwise.

Can be trivially computed with a single spiking neuron! Requires at least n/log(n+1) hidden
units for a perceptron (proof in [7]).



Computation with spiking neurons

Coincidence detection

1, ifx,-:y,-:l
CD (Kysoc5: X0 Minvssi Vg )= for somei € {1,...,n}

0, otherwise.

Can be trivially computed with a single spiking neuron! Requires at least n/log(n+1) hidden
units for a perceptron (proof in [7]).

Brains are energy efficient:

1. High (more computation with less neurons)



Encoding strategies

We considered single neurons with Boolean output (‘spike’=1 or ‘no spike’=0).

How should we encode information about 'features’ in a large network with many spikes?

—— > Elephant?



https://analyticsindiamag.com/a-tutorial-on-spiking-neural-networks-for-beginners/
https://www.nationalgeographic.com/animals/mammals/facts/african-elephant
https://www.nationalgeographic.com/animals/mammals/facts/african-elephant

Firing rates

Classical view of the brain: [) Stimulus
STIMULUS RESPONSE TUNING CURVE
- Each neuron is selective for one specific .

feature in the input.
1

Cell's response

- Higher firing rate (spikes per unit time) for

'selected’ feature. I i = [

| l Orientation of bar

FIGURE 4.8 Response of a single cortical cell to bars presented at various orientations.

Adapted from Hubel & Wiesel, 1959



from brain
Recording electrode ——w.|
[] [ Visual area
Firing rates e
Classical view of the brain: [) Stimulus
STIMULUS RESPONSE TUNING CURVE
- Each neuron is selective for one specific .

feature in the input.

11
- Higher firing rate (spikes per unit time) for Tl |

'selected' feature.
e

Cell's response

| | l Orientation of bar
[

- Link to modern ANNs: The scalar output of
an artificial neuron is interpreted as the firing
rate.

FIGURE 4.8 Response of a single cortical cell to bars presented at various orientations.

Adapted from Hubel & Wiesel, 1959



Blectrical signal

from brain
Recording electrode ——.|
. Visual area
Firing rates o
Classical view of the brain: [) Xmulus {A
TUNING CURVE
- Each neuron is|
feature in the in
- Higher firing r But rate coding is inefficient and slow... %‘,
'selected' feature (i.e. each neuron needs to fire many spikes to get good precision) | 3
both in vivo and in silico.
= N | I =

Orientation of bar

- Link to modern
an artificial neurg
rate.

FIGURE 4.8 Response of a single cortical cell to bars presented at various orientations.

Adapted from Hubel & Wiesel, 1959



Different encoding strategies with spiking neurons [8]
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Different encoding strategies with spiking neurons
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Different encoding strategies with spiking neurons
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Different encoding strategies with spiking neurons
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Different encoding strategies with spiking neurons
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Different encoding strategies with spiking neurons
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Different encoding strategies with spiking neurons
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Fig. 4 Comparing the representational power of spiking neurons, for different coding schemes.
Count code: 6/7 spike per 7ms, i.e. ~ 122 spikes.s~! - Binary code: 1111101 - Timing code:
latency, here with a 1ms precision - Rank ordercode: E>G>A>D>B>C>F.



Different encoding strategies with spiking neurons
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Different encoding strategies with spiking neurons
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Neuromorphic computing

Brains are energy efficient:

2. encoding

What is the advantage for applications?
- Less spikes = less energy consumption in specialized neuromorphic hardware

(e.g. Intel Loihi [12])



Multiply-accumulate (MAC) operations:

time

Normal neuron: Multiplies input with Spiking neuron: Consider binary input (e.g. input currents are piecewise
weights, then adds. constant and assume values {0,1}). There is no multiplication, only addition.



Multiply-accumulate (MAC) operations:

Assume one multiplier and one adder circuit uses M and A energy respectively with A< M

(e.g., for a 45nm CMOS process, standard energy usage is A= 0.9 pJ and M = 3.7 pJ).

Normal neuron: n.xn, . multiplications,
(n. — 1) x n__ additions
in out

Energy consumption:
E =Mn_n_ . +A(n —-1)n , =17.5pJ

normal t

Spiking neuron: 0 multiplications, (n

—1)xnout

active

additions, withn_. <n
active in

Energy consumption:

Spiking=A(n -1)n_=27pd

active out



Multiply-accumulate (MAC) operations:

Assume one multiplier and one adder circuit uses M and A energy respectively with A< M

(e.g., for a 45nm CMOS process, standard energy usage is A= 0.9 pJ and M = 3.7 pJ).

Normal neuron: n.xn, . multiplications,
(n. — 1) x n__ additions
in out

Energy consumption:
E =Mn_n_ . +A(n —-1)n , =17.5pJ

normal t

Spiking neuron: 0 multiplications, (n_.. .— 1) X n_,

active t

additions, withn_ . <n
active in

Energy consumption:
_ SNN challenge: how to

-1 =27
) Moy pJ compute with the least

amount of spikes!

Espiking =A (nactive




37,95.81)
(91.42, 95.54)

Often, we observe a
sparsity (energy)-

Sparsity Rate (%)
(e}
S
w

94.0 task accuracy trade-off
93.5 .
(Left: results for image
93.0 1 . g .
(93.01Ng2.73) classification)
90.5 91.0 91.5 92.0 92.5 93.0

SNN Accuracy

Figure 8: SNN accuracy-sparsity trade-off using VGG16 on

CIFAR-10 dataset;(x,y) indicates the SNN with accuracy of
X% and sparsity rate of y%

SNN challenge: how to

compute with the least
amount of spikes!




Computing energy consumption

Addressing Syn. Ops. Memory (RD/WR) Total

1E+07
. 1E+05
2
5
5 1E+03
[ ]
w

1E+01

FNN SNN FNN SNN FNN SNN
CIFAR10 GSC NCARS

Estimated energy consumption for 3 different datasets (CIFAR10, GSC, NCARS; image, sound
and video classification respectively). FNN’s are conventional feed-forward neural networks.

In this example: SNNs are 6 to 8 times more energy efficient than FNNs.

In practice, energy
consumption computations
are complex.

Need to take into account
- memory access,

- addressing,

- auxiliary operations,

in addition to MACs.



Computing energy consumption

1E+07

1E+05

1E+03

Energy (nJ)

1E+01

Estimated energy consumption for 3 different datasets (CIFAR10, GSC, NCARS; image, sound
and video classification respectively). FNN’s are conventional feed-forward neural networks.

Addressing = Syn. Ops. Memory (RD/WR) 1 Total

Questions?

FNN SNN
CIFAR10

In this example: SNNs are 6 to 8 times more energy efficient than FNNs.

In practice, energy
consumption computations
are complex.

Need to take into account
- memory access,

- addressing,

- auxiliary operations,

in addition to MACs.



Reading materials

Main reading:

- Section 1 and Section 3.1 of "Computing with spiking neuron networks." by Paugam-Moisy H, Bohte SM, in Handbook of natural computing (2012).
https://homepages.cwi.nl/~sbohte/publication/paugam_moisy_bohte SNNChapter.pdf

- Maass W. Networks of spiking neurons: the third generation of neural network models. Neural networks. 1997. 10(9):1659-71. https://igi-web.tugraz.at/people/maass/psfiles/85a.pdf

- Neuromorphic computing:

- Based on biology: Zenke F, Bohté SM, Clopath C, Comsa IM, Géltz J, Maass W, Masquelier T, Naud R, Neftci EO, Petrovici MA, Scherr F. Visualizing a joint future of
neuroscience and neuromorphic engineering. Neuron. 2021. 109(4):571-5. https://www.sciencedirect.com/science/article/pii/S089662732100009X

- How to train modern spiking networks: Neftci EO, Mostafa H, Zenke F. Surrogate gradient learning in spiking neural networks: Bringing the power of gradient-based
optimization to spiking neural networks. IEEE Signal Processing Magazine. 2019. 36(6):51-63. htips://ieeexplore.ieee.org/abstract/document/8891809

- Rate-based SNNs: Roy K, Jaiswal A, Panda P. Towards spike-based machine intelligence with neuromorphic computing. Nature. 2019. 575(7784):607-17.
https://www.nature.com/articles/s41586-019-1677-2

Extra reading:

- Converging history of deep networks and biological systems: Sejnowski TJ. The unreasonable effectiveness of deep learning in artificial intelligence. Proceedings of the National
Academy of Sciences. 2020. 117(48):30033-8. https://www.pnas.orag/doi/full/10.1073/pnas.1907373117

- Also an important part of neuromorphic systems and vision — Event Cameras: Gallego G, Delbriick T, Orchard G, Bartolozzi C, Taba B, Censi A, Leutenegger S, Davison AJ, Conradt J,
Daniilidis K, Scaramuzza D. Event-based vision: A survey. IEEE transactions on pattern analysis and machine intelligence. 2020. 44(1):154-80.
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9138762

Basics of 'conventional’ neural networks:

- Sections 4.1 to 4.4 from the book "Pattern Recognition" by Theodoridis and Koutroumbas.
- Subsection 4.1.7 from the book "Pattern Recognition and Machine Learning" by Bishop.


https://homepages.cwi.nl/~sbohte/publication/paugam_moisy_bohte_SNNChapter.pdf
https://igi-web.tugraz.at/people/maass/psfiles/85a.pdf
https://www.sciencedirect.com/science/article/pii/S089662732100009X
https://ieeexplore.ieee.org/abstract/document/8891809
https://www.nature.com/articles/s41586-019-1677-2
https://www.pnas.org/doi/full/10.1073/pnas.1907373117
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9138762
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