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Neuromorphic computing

Neuromorphic computing is an approach to computing that is inspired by the structure and function of the human brain.

A neuromorphic computer/chip is any device that uses physical artificial neurons to do computations.

https://en.wikipedia.org/wiki/Neuromorphic_engineering, https://www.informationweek.com/software-services/what-you-need-to-know-about-neuromorphic-computing

https://en.wikipedia.org/wiki/Neuromorphic_engineering
https://www.informationweek.com/software-services/what-you-need-to-know-about-neuromorphic-computing


How many of you are familiar 

with neural networks?



Simple model of an artificial neuron

https://medium.com/@cprasenjit32/perceptron-a-simple-yet-mighty-machine-learning-algorithm-9ff6b7d86a71



What is a neural network?

https://www.tibco.com/reference-center/what-is-a-neural-network
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Why is it called a 'neural network'?

https://www.tibco.com/reference-center/what-is-a-neural-network
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What is a neural network?

Why is it called a 'neural network'?

McCulloch-Pitts neuron [1, 2] (1943)

Warren Sturgis McCulloch

(Neurophysiologist)
Walter Pitts

(Logician)



How do biological neurons work?

https://commons.wikimedia.org/wiki/File:Coincidence_detection_in_dendrites_of_pyramidal_neurons.gif

'Input current' travels down the dendrites (top),

get integrated (summed!) in the cell body

which generates an 'output current' (bottom)

which is chemically transmitted to the dendrites of 
other neurons.

https://commons.wikimedia.org/wiki/File:Coincidence_detection_in_dendrites_of_pyramidal_neurons.gif


Simplified picture

Real neuron

Artificial neuron

https://vajiramandravi.com/quest-upsc-notes/artificial-neural-network/



What is a neural network?

McCulloch-Pitts neuron [1, 2]

1940s: How do biological neurons compute basic 
logic functions? (e.g. logic gates)

Note: Ref. [3] gives a nice brief history on the ideas which lead to the 
McCulloch-Pitts neuron.



What is a neural network?

1950s: How are neurons organized to perform 
sensory perception?



What is a neural network?

1950s: How are neurons organized to perform 
sensory perception?

The first "neural network": Perceptron (1958). [4]

https://www.reddit.com/r/interestingasfuck/comments/e8a8oy/frank_rosenblatt_with_a_mark_i_perceptron/

Frank Rosenblatt (Psychologist)

with a Mark I Perceptron computer in 1960



What is a neural network?

1950s: How are neurons organized to perform 
sensory perception?

The first "neural network": Perceptron (1958). [4]

https://www.reddit.com/r/interestingasfuck/comments/e8a8oy/frank_rosenblatt_with_a_mark_i_perceptron/

Frank Rosenblatt (Psychologist)

with a Mark I Perceptron computer in 1960

Power-efficient



Neuromorphic computing

Why neuromorphic computing?

Neuromorphic computing is an approach to computing that is inspired by the structure and function of the human brain.

A neuromorphic computer/chip is any device that uses physical artificial neurons to do computations.



Neuromorphic computing

Why neuromorphic computing?

‘Biological inspiration’ for artificial neural networks (ANNs) is not a new idea.

Emulation (as opposed to simulation) of neural networks in hardware is not a new idea.

Question: What can we gain from increasing biological realism in existing neural networks?



Power-efficiency at scale

Modern, deep neural networks*

are trained using GPUs.

* It is estimated that ChatGPT was trained on 
10,000-20,000 GPUs and that it will require
30,000 GPUs to keep running stably in the future.

* It is estimated that ChatGPT has 10-20 billion 
parameters.

https://www.anandtech.com/show/4008/nvidias-geforce-gtx-580/17



Power-efficiency at scale

Modern, deep neural networks*

are trained using GPUs.

* It is estimated that ChatGPT was trained on 
10,000-20,000 GPUs and that it will require
30,000 GPUs to keep running stably in the future.

* It is estimated that ChatGPT has 10-20 billion 
parameters.

Single model with 20 billion parameters:

200 Watts x 30,000 GPUs = 6M Watts



Power-efficiency at scale

https://hai.stanford.edu/ai-index/2024-ai-index-report

Training a single large language model can 
generate greater CO2 emissions than the 
total lifetime emissions of 8 cars (in 2020)!
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Training a single model can consume 
more than 1000 MWh of power!



Power-efficiency at scale

https://hai.stanford.edu/ai-index/2024-ai-index-report

Training a single model can consume 
more than 1000 MWh of power! … with energy costs reaching 200M USD!



Power-efficiency at scale

Your brain runs on:



Power-efficiency at scale

Your brain runs on:

High estimate ~3000 kcal a day
   ≈145 Watts

* Human brain has ~600 trillion synapses 
(≈parameters).



Power-efficiency at scale

Your brain runs on:

High estimate ~3000 kcal a day
   ≈145 Watts

* Human brain has ~600 trillion synapses 
(≈parameters).

Oversimplification

There are also multiple other advantages…



Human vs. computer computation

- Fast real-time decision making, e.g. sports, e-sports

- Adaptive, e.g. context-aware and employs selective attention

- Energy efficient: Close to 100 billion neurons in the brain

- Robust, for example to changes in illumination or obstructions in object tracking



Human vs. computer computation

Brains are energy efficient: Why?

1. High temporal resolution (more computation with less neurons)

2. Sparse encoding



Human vs. computer computation

Questions?

Brains are energy efficient: Why?

1. High temporal resolution (more computation with less neurons)

2. Sparse encoding



How do biological neurons communicate?
Analogy to artificial neural networks

Real neuron

Artificial neuron

Current



How do biological neurons communicate?
How does the electrical activity propagate?

?

Current



How do biological neurons work?

time

electrode

https://tinmard.github.io/spike-sorting-animation.html

Quick electrical pulses trigger chemical signals for the next neuron → Spikes

https://tinmard.github.io/spike-sorting-animation.html


How do biological neurons work?

Quick electrical pulses trigger chemical signals for the next neuron → Spikes

https://tinmard.github.io/spike-sorting-animation.html

time

electrode

From CS perspective:
Sparse binary 
encoding

https://tinmard.github.io/spike-sorting-animation.html


Biologically realistic spiking neuron models

Biologically realistic neuron models have 
a new dimension: Time!

Spiking neural networks (SNNs):

The input x  (t  ) to each neuron is summed 
(integrated) over time.

https://www.mdpi.com/2076-3425/12/7/863

scalar

function of 
time

(t)

(t)

https://www.mdpi.com/2076-3425/12/7/863



How to model spiking neurons?

ANN: Perceptron, threshold activation function:



How to model spiking neurons?

ANN: Perceptron, threshold activation function:



How to model spiking neurons?

Spiking neural network (SNN): The 'input current' ε(t) is integrated over time.

spike



How to model spiking neurons?
Equivalence to perceptron: Computation at least as complex as a perceptron.



Non-leaky integrate-and-fire (IF) neuron
The temporal profile of the input current ε(t) can be chosen differently, for different computations.



Questions?



Computation with spiking neurons

Coincidence detection



Computation with spiking neurons

Coincidence detection

x, y ∈ {0, 1}n Example: n = 2 input = 

x1
x2
y1
y2

= 

0
1
1
1

output? 



Coincidence detection

Computation with spiking neurons



Coincidence detection

Can be trivially computed with a single spiking neuron! Requires at least n/log(n+1) hidden 
units for a perceptron (proof in [7]).

Computation with spiking neurons



Coincidence detection

Can be trivially computed with a single spiking neuron! Requires at least n/log(n+1) hidden 
units for a perceptron (proof in [7]).

Brains are energy efficient: 

1. High temporal resolution (more computation with less neurons)

Computation with spiking neurons



Encoding strategies
We considered single neurons with Boolean output (‘spike’=1 or ‘no spike’=0).

How should we encode information about 'features' in a large network with many spikes?

https://analyticsindiamag.com/a-tutorial-on-spiking-neural-networks-for-beginners/

Elephant?

https://www.nationalgeographic.com/anim
als/mammals/facts/african-elephant

https://analyticsindiamag.com/a-tutorial-on-spiking-neural-networks-for-beginners/
https://www.nationalgeographic.com/animals/mammals/facts/african-elephant
https://www.nationalgeographic.com/animals/mammals/facts/african-elephant


Firing rates

Classical view of the brain:

- Each neuron is selective for one specific 
feature in the input.

- Higher firing rate (spikes per unit time) for 
'selected' feature.

Adapted from Hubel & Wiesel, 1959



Firing rates

Classical view of the brain:

- Each neuron is selective for one specific 
feature in the input.

- Higher firing rate (spikes per unit time) for 
'selected' feature.

- Link to modern ANNs: The scalar output of 
an artificial neuron is interpreted as the firing 
rate.

Adapted from Hubel & Wiesel, 1959



Firing rates

Classical view of the brain:

- Each neuron is selective for one specific 
feature in the input.

- Higher firing rate (spikes per unit time) for 
'selected' feature.

- Link to modern ANNs: The scalar output of 
an artificial neuron is interpreted as the firing 
rate.

Adapted from Hubel & Wiesel, 1959

But rate coding is inefficient and slow…
(i.e. each neuron needs to fire many spikes to get good precision)

both in vivo and in silico.



Different encoding strategies with spiking neurons [8]

7 
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Different encoding strategies with spiking neurons

7 
ne

ur
on

s

7 time bins

n 6
(in the general 
case a 
number 
between 0-7)



Different encoding strategies with spiking neurons

7 
ne

ur
on

s

7 time bins

n Total spike 
count can 
encode 3 bits.



Different encoding strategies with spiking neurons

7 
ne

ur
on

s

7 time bins

Individual rates 
can encode 7 
bits.



Different encoding strategies with spiking neurons

7 
ne

ur
on

s

7 time bins

Latency can 
encode ~3*7 or 
~19 bits.



Different encoding strategies with spiking neurons

7 
ne

ur
on

s

7 time bins

Rank order can 
encode ~12 bits.



Different encoding strategies with spiking neurons



Different encoding strategies with spiking neurons

Using latency or spatio-temporal codes
our encoding is faster and more spike-efficient (sparser)!



Different encoding strategies with spiking neurons

Using latency or spatio-temporal codes
our encoding is faster and more spike-efficient (sparser)!

Questions?



Neuromorphic computing

What is the advantage for applications?

- Less spikes = less energy consumption in specialized neuromorphic hardware

(e.g. Intel Loihi [12])

Brains are energy efficient: 

2. Sparse encoding



Multiply-accumulate (MAC) operations:

Normal neuron: Multiplies input with 
weights, then adds.

Spiking neuron: Consider binary input (e.g. input currents are piecewise 
constant and assume values {0,1}). There is no multiplication, only addition.



Assume one multiplier and one adder circuit uses M and A energy respectively with A﹤M

(e.g., for a 45nm CMOS process, standard energy usage is A = 0.9 pJ and M = 3.7 pJ).

Normal neuron: nin x nout multiplications,
(nin– 1) x nout additions

Spiking neuron: 0 multiplications, (nactive– 1) x nout 
additions, with nactive ≤ nin

Energy consumption:
Enormal = M nin nout + A (nin– 1) nout = 17.5 pJ

Energy consumption:
Espiking = A (nactive– 1) nout = 2.7 pJ

Multiply-accumulate (MAC) operations:



Assume one multiplier and one adder circuit uses M and A energy respectively with A﹤M

(e.g., for a 45nm CMOS process, standard energy usage is A = 0.9 pJ and M = 3.7 pJ).

Normal neuron: nin x nout multiplications,
(nin– 1) x nout additions

Spiking neuron: 0 multiplications, (nactive– 1) x nout 
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Enormal = M nin nout + A (nin– 1) nout = 17.5 pJ

Energy consumption:
Espiking = A (nactive– 1) nout = 2.7 pJ

Multiply-accumulate (MAC) operations:

SNN challenge: how to 
compute with the least 
amount of spikes!



Often, we observe a 
sparsity (energy)-
task accuracy trade-off

(Left: results for image 
classification)

SNN challenge: how to 
compute with the least 
amount of spikes!

https://arxiv.org/pdf/2409.08290



In practice, energy 
consumption computations 
are complex. 

Need to take into account
- memory access,
- addressing,
- auxiliary operations,

in addition to MACs.

Estimated energy consumption for 3 different datasets (CIFAR10, GSC, NCARS; image, sound 
and video classification respectively). FNN’s are conventional feed-forward neural networks.

In this example: SNNs are 6 to 8 times more energy efficient than FNNs.

https://arxiv.org/pdf/2210.13107

Computing energy consumption



In practice, energy 
consumption computations 
are complex. 

Need to take into account
- memory access,
- addressing,
- auxiliary operations,

in addition to MACs.

Estimated energy consumption for 3 different datasets (CIFAR10, GSC, NCARS; image, sound 
and video classification respectively). FNN’s are conventional feed-forward neural networks.

In this example: SNNs are 6 to 8 times more energy efficient than FNNs.

Computing energy consumption

Questions?



Reading materials
Main reading:

- Section 1 and Section 3.1 of "Computing with spiking neuron networks." by Paugam-Moisy H, Bohte SM, in Handbook of natural computing (2012). 
https://homepages.cwi.nl/~sbohte/publication/paugam_moisy_bohte_SNNChapter.pdf

- Maass W. Networks of spiking neurons: the third generation of neural network models. Neural networks. 1997. 10(9):1659-71. https://igi-web.tugraz.at/people/maass/psfiles/85a.pdf

- Neuromorphic computing:
- Based on biology: Zenke F, Bohté SM, Clopath C, Comşa IM, Göltz J, Maass W, Masquelier T, Naud R, Neftci EO, Petrovici MA, Scherr F. Visualizing a joint future of 

neuroscience and neuromorphic engineering. Neuron. 2021. 109(4):571-5. https://www.sciencedirect.com/science/article/pii/S089662732100009X
- How to train modern spiking networks: Neftci EO, Mostafa H, Zenke F. Surrogate gradient learning in spiking neural networks: Bringing the power of gradient-based 

optimization to spiking neural networks. IEEE Signal Processing Magazine. 2019. 36(6):51-63. https://ieeexplore.ieee.org/abstract/document/8891809
- Rate-based SNNs: Roy K, Jaiswal A, Panda P. Towards spike-based machine intelligence with neuromorphic computing. Nature. 2019. 575(7784):607-17. 

https://www.nature.com/articles/s41586-019-1677-2

Extra reading:

- Converging history of deep networks and biological systems: Sejnowski TJ. The unreasonable effectiveness of deep learning in artificial intelligence. Proceedings of the National 
Academy of Sciences. 2020. 117(48):30033-8. https://www.pnas.org/doi/full/10.1073/pnas.1907373117

- Also an important part of neuromorphic systems and vision → Event Cameras: Gallego G, Delbrück T, Orchard G, Bartolozzi C, Taba B, Censi A, Leutenegger S, Davison AJ, Conradt J, 
Daniilidis K, Scaramuzza D. Event-based vision: A survey. IEEE transactions on pattern analysis and machine intelligence. 2020. 44(1):154-80. 
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9138762

Basics of 'conventional' neural networks:

- Sections 4.1 to 4.4 from the book "Pattern Recognition" by Theodoridis and Koutroumbas.
- Subsection 4.1.7 from the book "Pattern Recognition and Machine Learning" by Bishop.

https://homepages.cwi.nl/~sbohte/publication/paugam_moisy_bohte_SNNChapter.pdf
https://igi-web.tugraz.at/people/maass/psfiles/85a.pdf
https://www.sciencedirect.com/science/article/pii/S089662732100009X
https://ieeexplore.ieee.org/abstract/document/8891809
https://www.nature.com/articles/s41586-019-1677-2
https://www.pnas.org/doi/full/10.1073/pnas.1907373117
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9138762
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