
andrea jemmett

U B E R F U Z Z

Vrije Universiteit Amsterdam

Master Thesis

Uberfuzz: A Cooperative Fuzzing Framework

Author: Andrea Jemmett (2573223)

1st supervisor: prof.dr.ir. H.J. Bos
2nd reader: dr. C. Giuffrida

A thesis submitted in fulfillment of the requirements for
the Master of Science in Artificial Intelligence

August 30, 2019

Andrea Jemmett: Uberfuzz, A Cooperative Fuzzing Framework, © Au-
gust 2019

To my parents, who have been always supportive of my choices. To

my grandparents, who have patiently waited for the completion of

every step I undertook to this moment. To Nensi, who has always

been understanding and has always found a way to give me the

necessary energy to complete this effort.

A B S T R A C T

Fuzzing is a popular technique for testing software for reliability and

security. As different fuzzers are specialized to different kinds of soft-

ware and make different assumptions about it, the practitioner is of-

ten tasked to select the appropriate fuzzer for the Software Under

Test (SUT). Otherwise, if enough resources are available, they choose

a set of fuzzer to run — independently — in parallel or sequentially.

In this thesis we present a Cooperative Fuzzing Framework (CFF) that

allows a set of fuzzers, running in parallel, to communicate and ex-

change information. We describe a distributed implementation of the

framework that uses hardware-generated coverage feedback to con-

trol the flow of information among the fuzzer instances. Moreover,

the system is designed to integrate with a generic fuzzer that imple-

ments an API which is already implemented by most fuzzers.

We evaluate the CFF using four popular fuzzers on four UNIX utili-

ties. The results show promising improvements both in terms of code

coverage and unique crashes found.

vii

A C K N O W L E D G M E N T S

I would like to thank my supervisor, Herbert Bos, for giving me the

opportunity to develop my Master project in the Systems and Net-

work Security Group.

Moreover, I would like to thank all members of the VUsec, in partic-

ular Cristiano Giuffrida and Kaveh Razavi, for their help, discussions

and stimulating knowledge provided.

ix

C O N T E N T S

1 introduction 1

1.1 Quality Assurance and Control 2

1.2 Developing High-Quality Software 3

1.2.1 Defensive Programming 4

1.2.2 Code Reviews . 5

1.2.3 Advancements in Programming Languages . . 6

1.2.4 Formal Methods 7

1.3 Software Testing . 8

1.3.1 Testing Techniques 9

1.3.2 Fuzz Testing . 14

1.4 Thesis Outline . 17

2 background and related work 19

2.1 Black-Box Mutational Fuzzing 19

2.2 Coverage-Based Gray-Box Fuzzing 21

2.2.1 American Fuzzy Lop 22

2.2.2 Honggfuzz . 26

2.2.3 VUzzer . 26

2.3 Symbolic-Assisted Fuzzing 29

2.4 Hybrid Techniques . 32

2.5 Cooperative Fuzzing . 34

3 cooperative fuzzing framework 37

3.1 System Design . 37

3.1.1 Common Fuzzer Interface 37

3.1.2 Central Decisional Unit 39

3.1.3 Cooperative Fuzzing Strategies 41

3.2 System Implementation 43

3.2.1 Communication Channels 43

3.2.2 Driver Implementation 45

3.2.3 Master Implementation 47

4 evaluation 49

4.1 Single Fuzzer Evaluation 51

xi

xii contents

4.2 Cooperative Fuzzing Evaluation 54

4.3 Crash Analysis . 57

4.3.1 Known Vulnerabilities 59

4.4 Overhead Evaluation . 61

5 discussion 65

6 future work 69

7 conclusion 71

a bayesian estimation of cooperative strategies 73

bibliography 83

L I S T O F F I G U R E S

Figure 1.1 Waterfall model of software development life-

cycle . 3

Figure 3.1 Cooperative Fuzzing Framework communica-

tion model . 40

Figure 3.2 Communication channels between fuzzer, driver

and master. 44

Figure 4.1 Mean coverage over time for single fuzzers. . . 52

Figure 4.2 Single fuzzers: distribution of difference of means

for djpeg. 53

Figure 4.3 Single fuzzers: distribution of difference of means

for objdump. 53

Figure 4.4 Single fuzzers: distribution of difference of means

for tiff2pdf. 54

Figure 4.5 Distribution of difference of means for union

of fuzzers against the best single fuzzer. 55

Figure 4.6 Mean coverage over time for two cooperative

strategies and union of fuzzers. 57

Figure 4.7 Unique crashes over time for listswf. 59

Figure 4.8 Density of unique crashes over time for listswf,

divided in intersection of hashes and not in the

intersection. 60

Figure 4.9 Bugs with assigned CVE identifier found in listswf. 63

Figure A.1 Bayesian estimation for single winner strategy

vs. union of fuzzers for djpeg. 73

Figure A.2 Bayesian estimation for single winner strategy

vs. multiple winners strategy for djpeg. 74

Figure A.3 Bayesian estimation for single winner strategy

vs. union of fuzzers for objdump. 75

Figure A.4 Bayesian estimation for multiple winners strat-

egy vs. union of fuzzers for objdump. 76

xiii

Figure A.5 Bayesian estimation for single winner strategy

vs. multiple winners strategy for objdump. . . . 77

Figure A.6 Bayesian estimation for multiple winners strat-

egy vs. union of fuzzers for tiff2pdf. 78

Figure A.7 Bayesian estimation for multiple winners strat-

egy vs. single winner strategy for tiff2pdf. . . 79

Figure A.8 Bayesian estimation for multiple winners strat-

egy vs. union of fuzzers for listswf. 80

Figure A.9 Bayesian estimation for multiple winners strat-

egy vs. single winner strategy for listswf. . . 81

L I S T O F TA B L E S

Table 3.1 Cooperative Fuzzing Framework interface with

fuzzers . 39

Table 4.1 Number of basic blocks and functions for the

chosen targets. 51

Table 4.2 Mean coverage with 95% confidence intervals

for single fuzzers. Highlighted is the best for

the given program. 51

Table 4.3 Mean coverage with 95% confidence intervals

for best single fuzzer and union of coverage

traces. 54

Table 4.4 Mean coverage with 95% confidence intervals

for winning strategies that select single or mul-

tiple winners and without cooperation. 56

Table 4.5 Distinct unique crashes and amount discov-

ered by one and not discovered by another. . . 58

xiv

L I S T O F A L G O R I T H M S

Algorithm 1 Black-box mutational fuzzing 19

Algorithm 2 Coverage-based Gray-box Fuzzing 21

Algorithm 3 General scheme for an Evolutionary Algorithm 27

Algorithm 4 Symbolic-Assisted Fuzzing 29

Algorithm 5 Generic strategy for the Cooperative Fuzzing

Framework . 41

L I S T I N G S

Listing 1.1 Defensive programming: unsafe example . . . 4

Listing 1.2 Defensive programming: safe example 4

Listing 2.1 AFL’s instrumentation 23

Listing 4.1 Unchecked memory allocation in util/read.c:222

causing CVE-2017-7582. 60

xv

A C R O N Y M S

API Application Programming Interface

ASLR Address Space Layout Randomization

BFF Basic Fuzzing Framework

BTS Branch Trace Store

CFF Cooperative Fuzzing Framework

CFG Control Flow Graph

CGF Coverage-based Gray-box Fuzzer

CLR Common Language Runtime

CVE Common Vulnerabilities and Exposures

DTA Dynamic Taint Analysis

EA Evolutionary Algorithm

FCS Fuzz Configuration Scheduling

FFI Foreign Function Interface

HDI Highest Density Interval

JVM Java Virtual Machine

MAB Multi-Armed Bandit

OS Operating System

PT Processor Trace

SDL Security Development Lifecycle

SUT Software Under Test

XP Extreme Programming

xvi

1
I N T R O D U C T I O N

Software products are becoming essential in our daily lives, from

managing the most simple household appliances to sensitive appli-

cations such as military, medical and transportation. Producing high-

quality software becomes more and more of a necessity and software

developers need to aim at it. Crosby [40] defines quality as confor-

mance to requirements. Requirements have to be clearly stated to avoid

misunderstandings and the development process is constantly moni-

tored to check conformance of the product to those requirements. As

an example, one requirement for a web server may be that it must

be able to serve at least a thousand concurrent requests within a set

amount of time. If the web server fails to do so, the product does not

meet its requirements and should be rejected because of poor quality.

Notice that requirements may belong to different quality parameters

such as functionality, usability, reliability, performance, security and

so on.

Fuzzing is a popular technique capable of testing software for se-

curity and reliability; fuzzers are used extensively by major compa-

nies such as Google [1, 37, 44, 86] and Microsoft [13, 18, 64]. As

most fuzzing engines are highly specialized to a particular kind of

software (e. g. network protocols, operating systems, compilers), the

practitioner is often responsible to decide which fuzzer to use for the

SUT; alternatively, if enough resources are available, they run different

fuzzers sequentially or in parallel.

We propose a framework for interfacing with and coordinating dif-

ferent kinds of fuzzers, running in parallel, with the aim to harness

the unique features of each one by means of cooperation. We also de-

scribe a possible implementation of such framework which we then

evaluate on four UNIX utilities. The results show promising gains

1

2 introduction

in code coverage and number of unique crashes found, compared to

traditional fuzzing setups.

The remainder of this chapter provides an introduction to software

quality control and testing. Chapter 2 presents a detailed view of

some testing techniques closely related to our work, with an emphasis

on the fuzzers used by our system. Chapter 3 presents our framework

and proposed implementation; Chapter 4 contains its evaluation.

1.1 quality assurance and control

Quality assurance aims at improving the quality of the product by

establishing practices within the organization and training the team;

it comprises procedures and activities assuring that the requirements

will be fulfilled. Quality control on the other end, refers to activi-

ties that enable verification of a product, gathering of statistics and

metrics, discovery of defects and ensures that those are fixed before

release or passing the intermediate product to the following stage in

the development process.

A failure manifests itself whenever the system does not behave ac-

cordingly to its specification and is caused by a fault which in turn

is caused by an error made by the software engineer. When a failure

causes the system to abort its execution unexpectedly, it is called a

crash. A fault (also known as a bug) is a specific condition in the

system that causes it to behave in unexpected ways. A failure can

be caused by a programming error (an error in the source code), a

design flow or even by an external component such as a library, the

Operating System (OS) or even the compiler.

Quality assurance prescribes that the whole software development

lifecycle is checked for quality as well as the intermediate and final

products. Figure 1.1 presents a simplified representation of the clas-

sical waterfall model for software development lifecycle. Each stage

produces an intermediate artifact that serves as input for the next

stage. Quality control provides tools and methodologies to check the

quality of artifacts and in case a defect is found, the artifact is rejected

(development does not transition to the following phase). In other

1.2 developing high-quality software 3

Figure 1.1: Waterfall model of software development lifecycle

words, quality control allows a software engineer to gauge quality of

a product at each development stage, preventing the propagation of

errors from one stage to the next.

In an effort to minimize the amount of security bugs in their ap-

plications, Microsoft engineers have devised a methodology called

Security Development Lifecycle (SDL) [78]. SDL presents a develop-

ment model similar to the waterfall model, where a series of phases is

applied in succession with intermediate artifacts and quality checks,

but enriches it with established security practices and methods. For

each stage of development, SDL provides clear principles, tools and

practices to assess quality from a security perspective, allowing for

a progressive discovery of problems, throughout the entire develop-

ment lifecycle.

1.2 developing high-quality software

There is a good number of tools and practices at disposal of the soft-

ware engineer that enable production of high-quality software. Some

are suited suited for assessing the quality of artifacts from a static or

dynamic perspective; other try to prevent entirely certain classes of

errors.

The best way to obtain a quality product is to put it there in the

first place. Careful craftsmanship following a set of good practices re-

sults in products with less errors. Writing clean code that is readable

4 introduction

char* capitalize(char* input)
{

char* str = (char*) malloc(100 * sizeof(char));
strcpy(str, input);
str[0] = toupper(str[0]);
return str;

}

Listing 1.1: Defensive programming: unsafe example

char* safe_capitalize(char* input)
{

if (input == NULL)
return NULL;

char* str = (char*) malloc(100 * sizeof(char));
if (str == NULL)

return NULL;
strncpy(str, input, sizeof(str));
str[sizeof(str) - 1] = 0;
str[0] = toupper(str[0]);
return str;

}

Listing 1.2: Defensive programming: safe example

and refactored, results in code that is more maintainable and easier to

inspect and review [47, 83]. Training the development team and fol-

lowing a set of good practices (for example secure coding) becomes

crucial, as also highlighted by the first step in SDL.

1.2.1 Defensive Programming

Well trained programmers know the importance of defensive pro-

gramming, a set of practices including input validation and secure

coding. Input validation ensures that data that is processed by the

system, coming from an external source, is checked for correctness

and security. An high-quality program should never expect data to

be valid, even when it comes from a trusted source as reliable soft-

ware should be resilient to the unexpected. Input validation becomes

even more important for applications processing data from untrusted

sources such as the Internet [95].

1.2 developing high-quality software 5

Listing 1.1 and Listing 1.2 present two versions of a function to

capitalize strings. The former can behave unexpectedly in a number

of situations: the input string can be a null-pointer causing the pro-

gram to crash inside the strcpy function; the malloc function may

be unable to allocate memory, returning a null-pointer resulting in a

similar crash inside strcpy; the input string can be longer than the

allocated buffer, causing the program to crash again inside strcpy;

ultimately, the resulting string may not be null-terminated, possibly

causing a memory leak in other parts of the program. There are four

possible failures waiting to happen in only four lines of code. Defen-

sive programming practices aim at preventing those kind of errors, as

shown in Listing 1.2.

1.2.2 Code Reviews

As software developers can fail to follow defensive programming

practices (for example due to high pressure to finish a software mod-

ule), some errors might still slip into the code. Code review can help

find errors in the source code early on. In the typical scenario, one or

more developers, not including the author, visually inspect the source

code (of a module, function or entire program) with the explicit pur-

pose of finding programming errors or ways to improve (the quality

of) the code. Code review assumes a central role in companies such

as Microsoft [8], Facebook [45] and Google [68] and is often facili-

tated by Web-based collaboration tools. Code reviews are taken to the

extreme—as in Extreme Programming (XP) [14]—by a practice called

pair programming. In this practice, two developers produce source

code in close collaboration: the “driver” has control of the keyboard

and writes code, while the other (also called “observer” or “naviga-

tor”) watches over the driver’s work as it is typed, trying to spot

errors, proposing alternatives and considering strategic implications

on future work. The two roles are switched periodically to maintain

equally shared ownership of the product.

6 introduction

1.2.3 Advancements in Programming Languages

Most performance critical software applications are developed in lan-

guages like C [69] or C++ [102] as their constructs allow develop-

ers to heavily optimize their code for specific platforms. These lan-

guages, while providing an higher level of abstraction over machine

code or assembly languages, maintain a set of low-level features (such

as direct memory access and pointer arithmetics) that can be eas-

ily misused, ultimately inducing programming errors. Careless use

of pointer arithmetic is the major cause of a class of bugs (known

as memory corruption bugs) such as buffer overflows, null-pointer

dereferences, use-after-frees and double frees.

Programming languages like Java [55] and C# [58], instead, pro-

vide automatic memory management: allocation on the heap is hid-

den by object creation and deallocation is done periodically by the

garbage collector. Moreover, programs written in such languages, are

not compiled directly to machine code, instead are compiled to an in-

termediate artifact which in turn is interpreted by a virtual machine;

Java runs on the Java Virtual Machine (JVM) while C# runs on the

Common Language Runtime (CLR). This improves security and reli-

ability, as programs run in a controlled environment, but may dras-

tically degrade performance; besides virtual machines are generally

written in highly optimizable languages such as C or C++ and can

still be susceptible to memory corruption bugs.

Recent advancements in programming languages try to guaran-

tee memory safety while still producing high-performance binaries.

Rust [84] uses the concept of ownership of data to enable the compiler

to make memory safety guarantees without the need of a garbage

collector. A type system can be useful to rule out a series of program-

ming errors as there is a guarantee that inappropriate arguments will

not be applied to an operation [35]. This check can be done statically

by the compiler, in a process called typechecking, or dynamically at

run-time. Typeful programming [34] is a style of programming where

types are pervasive; it is central to the design of languages such as

Haskell [65] (e. g. the concepts of kinds and type constructors). De-

1.2 developing high-quality software 7

pendent types [6] augment the expressiveness of a type system by

allowing the definition of types with logical predicates over values.

As an example, a function’s return type may depend on the value

of the argument, not just its type (as with polymorphism and generic

programming). In other words, a function accepting a positive integer

may return a list with precisely that number of elements: this speci-

fication can be encoded with a dependent type and checked by the

typechecker. Early implementations of programming languages with

dependent types are Dependent ML [112, 113] and Cayenne [7]; more

recently Idris [28] and F* [103].

1.2.4 Formal Methods

Formal methods are a set of mathematical techniques that enable ver-

ification of software (and hardware) engineering artifacts. In a strict

sense, they can be used to prove with absolute certainty that an arti-

fact conforms to its specification [57]. For example they can be used

at the design level (e. g. requirement specification, algorithm design),

where properties of a formal specification are proved through model-

checking or theorem-proving techniques. Formal methods can also

be used at the source code level to prove that a program (or function

or module) complies with its specification; more concretely, given a

set of preconditions, program execution is proven to adhere to certain

postconditions. For this to be possible, programming languages have

to allow encoding the precise semantics of a program.

As formal methods require significantly more effort, are not appli-

cable to all programs and do not scale well, they are often used only

for critical applications such as aerospace, financial systems and de-

fence [111]. Recent advancements have allowed for the development

of more complex software, tackling the scaling problem. An example

is an OS kernel formally verified from its specification to its imple-

mentation [71].

8 introduction

1.3 software testing

Section 1.2 presented techniques for developing high-quality software

that fall under the category of verification and validation (V&V). The

IEEE process standard [63] defines verification and validation as the

processes used to establish that the product and any intermediate

artifact conforms to its requirements and fits its intended use. As

Boehm put it [19]: verification answers the question of “Am I building

the product right?”; validation instead answers the question of “Am I

building the right product?”. Verification and validation are built into

the software development lifecycle and help the software engineer

gauging the quality of its product. Given this definition, it is easy

to see how verification and validation is a further categorization of

software quality control.

Software verification can be applied by means of two approaches:

static or dynamic [48]. Static verification inspects the product with-

out executing it; code reviews, compiler warnings, programming lan-

guage style checkers and formal methods are all examples of static

verification. With dynamic verification (commonly referred to as soft-

ware testing) instead, the software is executed and its behaviour is

inspected. Because dynamic verification can be applied with varying

granularity, it can be employed at any moment during the develop-

ment lifecycle and not only at its end, when the product is finished.

Software testing is defined in a concise way in [99], with emphasis

on key aspects:

Software testing consists of the dynamic verification that a

program provides expected behaviours on a finite set of test

cases, suitably selected from the usually infinite execution

domain.

Software testing is an inherently dynamic practice as the SUT needs

to be inspected in an environment that most closely resembles the

production deployment environment (in which users directly interact

with the product). Software testing complements static verification as

it allows to verify the interaction of the SUT with its environment

1.3 software testing 9

(e. g. hardware, networking, OS) [5]. The state of the SUT itself, as well

as that of its environment (where it can affect the SUT’s output), are

considered part of the input. This makes the domain of all possible

inputs spike in size, even for trivial programs; because of this the

number of test cases has to be finite and the software tester should

not aim to test for all possible inputs. Because even a trivial program

can have a virtually infinite input domain, software testing cannot

verify a program completely [67]. Follows that testing can reveal the

presence of bugs, not their absence [31, 43].

As the software tester is required to work with a finite set of test

cases, selecting the subset of inputs from the domain of all possible

inputs to the SUT is a key aspect in software testing. Many testing

techniques differ especially in how test cases are selected [87] and

based on the specific nature of the SUT (e. g. its domain, design or im-

plementation details) different selection techniques may yield greatly

different results in terms of testing effectiveness.

A test case is of any value to the testing process if, for the selected

input to the SUT, there is an associated outcome that the software

tester expects to observe in response. Examples of outcomes are: out-

put values produced by the program, state changes within the pro-

gram or on external entities and a composition of a set of smaller

outcomes [87]. Test oracle is a term frequently used in software test-

ing to refer to an entity capable of telling the expected outcome of

a specific test case [62]. In its most general form a test oracle can be

thought of as a predicate that tells us whether the observed outcome

is acceptable or not [11]. A test case is indeed defined by the input to

the SUT and an associated test oracle.

1.3.1 Testing Techniques

As already stated, software testing techniques differ from each other

the most when compared along the axis of how they perform test case

generation. The major distinction is given by the kind of source of in-

formation the software tester has access to during test design. Testing

approaches are commonly classified into white box or black box: in

10 introduction

the former (also called structural testing) sources revealing the inner

structure of the SUT are used (e. g. source code), with a focus on data

and control flow features; in the latter (also called functional testing)

no internal detail about the SUT is known and only the front-facing

functionalities are tested, as the sole source of information available

is the product specification.

Control and data flow features are used to reason about implemen-

tation details of the SUT. Control flow refers to the way instructions

in a program are executed. The processor passes control from one

instruction to another in different ways, in the most common case

one instruction follows another, but control can be passed also by

means of function calls, interrupts, message passing or conditional

statements. Data flow refers instead to the way values are propagated

within the program and represents declaration and usage of variables

in the source code.

As white and black box testing look at the SUT from the point of

view of the developer and the end user respectively, they complement

each other to achieve a complete testing effort. While white box test-

ing provides tools to uncover errors pertaining control or data flow,

it does not provide a way to expose high-level functional flaws or

gauge quality in regards of usability or another front-facing factor.

The opposite is true for black box testing. The middle ground of both

practices is an approach called intuitively gray box testing.

Gray box testing uses little, partial or inferred information about

the structure of the SUT to enhance or focus black box testing. Knowl-

edge about the algorithms being used, architectures, the operating

environment in which the SUT is going to interact or high-level de-

scriptions of its behaviour, may be taken into consideration when

designing test cases. Moreover, gray box testing approaches interact

with the SUT only via its front-facing functionalities (those exposed

to the end user), similarly to black box testing. Gray box testing is

particularly suited, for example, for Web application testing [42, 88]

as Web applications are made up of an high number of components

and having knowledge of how they interact with each other is vital

to the effectiveness of testing.

1.3 software testing 11

The most basic source of information for test case generation comes

from the software engineer’s expertise, own intuition and experience

with similar applications. This kind of ad hoc testing is useful to pro-

duce highly specialized test cases, where other (more formal) testing

approaches may fail to do so. Ad hoc testing is not structured; ex-

ploratory testing [66, 94] enhances it with a methodological approach:

test-related learning, design, execution and interpretation of test re-

sults are activities that must be run in parallel with each other. Each of

these activities is mutually supportive and it is the software tester’s re-

sponsibility to manage her own resources by choosing a combination

of activities that best optimize the value of her work. In exploratory

testing, the testing process itself, through inspection of the program

behaviour, is used as a source of information to make decisions about

further testing. Exploratory testing is an inherently iterative process.

The SUT’s input and output domains are another fundamental source

of information that a software engineer can draw from to design test

cases. In this context, the term test vector represents the set of values

that form the input of a test case; values are drawn from the input

domain of the considered input variable. Generating test cases from

the input domains consists in computing an expected output for se-

lected input values; this often results in a large number of test cases

as every combination of special values of the input variables needs to

be represented by a test vector. The advantage is that generating the

expected output for a given test vector is generally trivial because the

SUT’s specification can be directly used. In contrast, generating test

cases from the analysis of the output domains can produce less test

cases (as there is no need to consider different combinations of special

values of the output domains) at the cost of an increased difficulty in

generating the test vector capable of producing the desired output.

A solution to reduce the number of test cases when using an ap-

proach based on the analysis of the input domains is to use pairwise

testing [41, 82, 106]. In contrast to exhaustive testing, where all com-

binations of all input variables’ special values have to be represented

by a test vector, pairwise testing considers such combinations only for

pairs of variables. Pairwise testing can be generalized to a t number

12 introduction

of variables, instead of pairs, also referred to as t-wise testing. The re-

sulting set of test cases is a subset of the one produced by exhaustive

testing; nonetheless pairwise testing has been proven effective when

properly applied [9, 74]. As generating the minimum amount of test

cases for pairwise testing is an NP-complete problem [76], a consider-

able number of strategies have been proposed [56] such as orthogonal

arrays and in parameter order.

Another popular approach based on the analysis on the input do-

main is equivalence class partitioning [93]. As the name suggests it

involves partitioning the input domain into subsets (or equivalence

classes) based on a specified criterion and then use each of these sub-

sets as a source for at least one test case. The subsets are defined

such that test inputs drawn from the same equivalence class exercise

a similar behaviour on the SUT. Equivalence class partitioning is of-

ten applied as a black box technique, by using the SUT’s functional

specification to derive the partitioning criterion and operating on its

interface; however it can also be used as a gray box technique to take

into account for control and data flow features.

Boundary-value analysis consists in selecting test values near or on

the boundary of a data domain so that test both from inside and

outside of an equivalence class are considered. The rationale behind

this technique is that boundary conditions are often overlooked or

poorly implemented by designers and developers, so including test

cases that test these boundary conditions is considered good practice.

Random testing constitutes an apt choice to evaluate the reliability of

software systems. Initially applied to the evaluation of hardware sys-

tems [29], random testing consists in independently sampling inputs

from the input domain, executing the SUT on the selected input and

compare the computed result with the expected result (using for ex-

ample a test oracle) [15]. Knowledge about the input domain, the SUT

internals or its functional specification can be exploited to guide the

sampling algorithm (e. g. [38]); because of this, random testing pro-

vides a relatively simple basis for more complex gray box automated

testing techniques, as the next chapter shows.

1.3 software testing 13

Access to the source code, knowledge of the internal structure or

other inferred control-flow information is at the core of code-based

testing techniques. The first step in most techniques entails the con-

struction of a Control Flow Graph (CFG) [2, 3]. Each node in a CFG

represents a basic block which is a sequence of instructions without

jump targets or jumps between them. A jump target would mean the

start of a basic block while a jump signals the end of a basic block.

Directed edges connecting nodes of the graph represent transfer of

control within the program. The aim of code-based testing is produc-

ing a corpus of test cases able to cover as many basic blocks, branches

or execution paths as possible. As even for trivial programs, due to

loops, the number of executable paths can be intractable, the software

tester is often required to select a subset of paths from the CFG to test

for. Common path selection criteria are statement and branch cover-

age which aim at executing all basic blocks or edges of the CFG at

least once.

After the execution paths have been selected, the objective is to find

inputs to the SUT capable of forcing execution of such paths. This is of-

ten done via symbolic substitution, a process in which constraints exer-

cised by the basic blocks along a selected path are expressed uniquely

in terms of the input vector. These constraints are then solved in order

to obtain concrete values for the input vector. The process of collect-

ing path constraints can be automated through symbolic execution of

the program [27, 39, 70]. An interpreter reads and simulates execu-

tion of the program, assuming symbolic values for the inputs instead

of reading concrete ones (e. g. reading from a file, getting arguments

to a unit of code). The interpreter stores the state of the execution and

collects path constraints whenever a branching point is reached in the

code. There, execution is forked and the path constraint at that point

is logically negated so that the forked state can continue exploration

of the other branch. Symbolic execution can be used to find inputs

that exercise a selected path or to explore all paths of a program. In

the second scenario, follows from the description of its abstract me-

chanics, that symbolic execution suffers from a path explosion problem

when tackling large programs or unbounded loops. The latter cause

14 introduction

can be alleviated by putting a bound to unbounded loops, resulting

in an under-approximation of the SUT. In general, the path explosion

problem can be mitigated by merging similar paths [75], optimize the

searching algorithm with heuristics [30, 80] or parallelize execution

of independent paths [100].

Another bottleneck for the effectiveness of symbolic execution tech-

niques is constituted by the constraint solver used. Most of the com-

putational resources are used to resolve constraints. Even a small

improvement in performance of the constrain solver, results in no-

ticeable gains for the symbolic execution process as a whole. More-

over the constraint solver may have technical limitations on its own

(e. g. being able to work only on linear constraints). To alleviate this

and other problems (related to interpretation, such as tracking of ar-

ray indices and pointers or dealing with external code segments and

the environment), concolic execution was proposed. It uses information

from the concrete execution of the SUT to simplify symbolic execution

where necessary. The SUT runs normally with some concrete input

and symbolic execution runs in parallel, providing concrete values

to allow concrete execution to explore different branches. When the

constraint solver finds a path constraint that it cannot solve, concrete

values from the concrete execution state are plugged in the constraint

so that the theorem prover can work with a simplified version. Korel

first proposed the use of concrete execution to aid symbolic execution

to generate test vectors that exercise a particular path [72]. More re-

cently concolic execution was proved effective in exploring large and

complex C programs [51, 97], multithreaded Java applications [96]

and to extend fuzz testing to uncover security vulnerabilities in x86

binaries [49, 52].

1.3.2 Fuzz Testing

Fuzz testing (or fuzzing) is a software testing technique that builds

upon random testing. It was originally conceived for reliability test-

ing, but has recently found application in security testing. The term

fuzzing dates back to 1988 from a course project for an Advanced Op-

1.3 software testing 15

erating Systems class taught at the University of Wisconsin by Barton

Miller [105]. After noticing how a thunderstorm was able to scramble

his input through a remote terminal and crash the program on the

other end, he decided to propose a project to his students to experi-

ment with random testing of UNIX utilities. A group of two students

succeeded at the given task and two years later published their find-

ings [85]. Random testing was already in use since the 1950s, when

programmers would use punched cards from the trash or decks of

random numbers as input to programs [108].

In general, the operation of a fuzzer is similar to random testing: a

fuzzer generates some input (often based on some program-specific

knowledge) and feeds it to the SUT. The program’s execution is then

monitored for unexpected behaviours, specifically crashes or time-

outs. The process is then reiterated until a stopping criteria is met

(e. g. time budget is exhausted, code coverage is reached, defects are

observed). Fuzzers can be categorized along three different proper-

ties:

• if new samples are generated by changing existing samples

(e. g. from a seeding corpus or from previous iterations) or from

scratch;

• if it is aware or not of the input structure and relations among

its parts (e. g. checksums, protocol-specific values);

• how much it is aware and makes used of the inner structure of

the SUT to drive test generation.

Mutation-based fuzzers need a tests corpus in order to seed the

first iteration of fuzzing. From this corpus, selected inputs are sys-

tematically mutated to produce new inputs that are added to a data

store the fuzzer handles. The updated set of inputs is then used in

successive fuzzing iterations. In order to improve fuzzing efficiency,

Rebert et al. propose a number of algorithms that optimize seed selec-

tion for mutation-based fuzzers [92]. Generation-based fuzzers on the

other hand, generate inputs from scratch, often with the aid of some

kind of model of the SUT’s input space (e. g. a grammar to describe

the input model [50]).

16 introduction

A fuzzer’s awareness of the SUT’s input structure can be exploited

to generate, with much higher probability, valid or semi-valid inputs.

This is important as invalid inputs tend to stress only the parsing

components of a program and leave the core business components

unexplored. Having an input model (e. g. a formal grammar, a formal-

ized protocol specification) can be extremely beneficial for fuzzing im-

plementations of complex (stateful) protocols or file formats [10, 90].

Unfortunately an input model is not easily (or at all in case of pro-

prietary file formats or protocols) available. In these cases, if enough

samples from the input space are available, one could try to infer

the underlying input model [12, 54]. Other efforts have been made to

detect and repair checksums in randomly generated inputs [107].

As with any other software testing technique, fuzzers can be clas-

sified as black box [59–61, 110], white box [53, 101] or gray box [21,

22, 114], depending on the amount of knowledge of the internal struc-

ture of the SUT they leverage. While a white box fuzzer may explore

deeper program compartments, the resources necessary for program

analysis may become prohibitive. Black box approaches on the con-

trary, are able to generate new inputs very quickly. When aiming for

efficiency instead of effectiveness (e. g. when trying to find the maxi-

mal number of defects in limited time or to show in minimal time the

correctness of the SUT for a percentage of the input space), has been

proven that there exists a bound on the time that systematic white box

testing can take for each test execution after which black box testing

becomes more efficient [20]. Gray box fuzzers implement lightweight

program analysis through instrumentation of the SUT (e. g. by inject-

ing snippets of monitoring code directly into the source code, com-

piled binary or interpreter), making input generation faster than tra-

ditional white box approaches while obtaining feedback from the con-

crete executions (e. g. through code coverage information).

Because fuzzing for bugs can be seen as a search problem, we want

to investigate fuzzing in the context of the No Free Lunch Theorem

for optimization [109], which states that there is no best search algo-

rithm when the performance is averaged across all possible problems.

In the context of fuzzing, we want to examine if one fuzzer performs

1.4 thesis outline 17

decisively better than the others across a diverse set of practical pro-

grams. To push this further, we devise a system that tries to harness

the power a set of existing fuzzers that run in parallel and evaluate its

effect. We achieve this thanks to a cooperative framework inspired by

cooperative co-evolution in the field of Evolutionary Computing.

1.4 thesis outline

This chapter presented some introductory concepts about software

quality and software testing. In Chapter 2 we present a more detailed

view of different kind of fuzzers (with an emphasis on those used

in the implementation of our system) and related work on coopera-

tive fuzzing. Chapter 3 presents the CFF from its design to its imple-

mentation, with arguments for the different design decisions we take.

Chapter 4 shows results of the evaluation of single fuzzers, run with-

out cooperation, to asses the validity of the No Free Lunch Theorem

on our programs sample; we also evaluate the effectiveness in terms

of coverage and crashes of the implemented system and cooperation.

Chapter 5 includes a discussion on the results of the evaluation before,

in Chapter 6, presenting possible improvements. Chapter 7 concludes

this work.

2
B A C K G R O U N D A N D R E L AT E D W O R K

In this chapter we present the mechanics of different kinds of fuzzers

with an emphasis on specific implementations of Coverage-based Gray-

box Fuzzers (CGFs) — which are later used to evaluate our Coopera-

tive Fuzzing Framework (CFF). Then we move on presenting efforts

of researchers trying to combine different fuzzing engines or testing

techniques with the aim of improving performance or efficiency.

2.1 black-box mutational fuzzing

Black-box mutational fuzzing (or Random Testing) is a simple testing

technique that uses mutation operators on a sample input to produce

a new input; a corpus of valid files (the more the better) is required

to achieve good efficiency by reducing the search space. A simple

algorithmic representation is given in Algorithm 1.

Algorithm 1: Black-box mutational fuzzing
Input : Set of samples S
Output : Set of crashing inputs C

1 C ← ∅
2 while stop condition is not met do
3 t← SelectSeed(S)
4 t′ ← MutateSeed(t)
5 if t′ crashes program then
6 C ← C

⋃{t′}
7 end
8 end

The main algorithm works within a loop that stops at a prede-

termined condition such as the end of a time budget, after the first

crash has been found or after a certain number of inputs have been

tested, to name a few. More rudimentary tools such as zzuf [60] or

Radamsa [59] allow for the tester to apply his or her own stop criteria

19

20 background and related work

for the fuzzing campaign. The SelectSeed function on line 3 of Algo-

rithm 1 selects one input from the seeds corpus using the strategy

of choice (e. g. stochastically, by execution time, crash density). Next,

the MutateSeed function applies a mutation operator (e. g. bit-flips,

insertion or deletion of words) to the selected input to create a new

one which is then fed to the SUT. Different mechanisms can then be

deployed to identify whether the program crashed under the given

input, often program or OS specific; if the SUT exhibits a fault, the

test case is stored with useful information about the occurred fault to

later report about it to the tester.

Tools like zzuf or Radamsa only implement the MutateSeed func-

tion on line 4, leaving the remaining components’ implementation to

the tester. For example zzuf applies random bit-flips to its input us-

ing a set mutation ratio (how much of the input to change) fully con-

figurable by the user within an interval or fixed. Radamsa performs

instead a number of more sophisticated mutation operators such as

insert, repeat, drop and swap on entities like bytes, ASCII and Uni-

code texts or arithmetic manipulations. More complex black-box mu-

tational fuzzers implement all components of Algorithm 1 and are

able to exploit knowledge of the running campaign to achieve better

results. The Basic Fuzzing Framework (BFF) [61] uses crash density

as a metric to decide which pair of seed input and mutation ratio to

use for the next call to MutateSeed (BFF uses indeed zzuf within its

mutation engine). Crash density of a seed is defined as the number

of crashes found by fuzzing that seed, divided by the number of total

test cases generated by the seed. Each execution of a mutated seed

is modeled as a Bernoulli trial where the outcome is whether or not

the SUT exhibited a defect. The Binomial distribution that would re-

sult from successive trials is approximated by a Poisson distribution

as the number of trials is much higher than the number of times a

fault is found. The upper bound of the 95% confidence interval of

that distribution is then used to compute the probability pi of select-

ing the seed file ti. The same process is applied for a single seed file

and a fixed set of mutation ratio ranges so that for each seed file

there is a probability distribution over the set of ranges. Woo et al.

2.2 coverage-based gray-box fuzzing 21

give the name Fuzz Configuration Scheduling (FCS) [110] to describe

the problem of selecting the next seed and mutation ratio pair to

fuzz (what they call a fuzzing configuration) and recognize the Multi-

Armed Bandit (MAB) [17] nature of the problem. The authors take one

step further by modeling black-box mutational fuzzing as a weighted

version of the Coupon Collector’s Problem and use those insights to

inspect the FCS problem along three different axes that allows them

to compose and evaluate a total of 26 MAB algorithms.

2.2 coverage-based gray-box fuzzing

A CGF uses lightweight instrumentation and monitoring of the SUT

to gain coverage information. This information is then exploited to

provide a solution to the FCS problem [21, 22, 77, 117]. The general

approach is described in Algorithm 2.

Algorithm 2: Coverage-based Gray-box Fuzzing
Input : Set of seed inputs S
Output : Set of crashing inputs C

1 C ← ∅
2 Q← S
3 if Q = ∅ then
4 Q← {empty file}
5 end
6 repeat
7 t← SelectNext(Q)

8 p← AssignEnergy(t)
9 for i ∈ [0 . . . p] do
10 t′ ← MutateInput(t)
11 if t′ crashes then
12 C ← C

⋃
{t′}

13 else if IsInteresting(t′) then
14 Q← Q

⋃
{t′}

15 end
16 end
17 until timeout reached or abort signal received

The first difference from black-box mutational fuzzing is that a CGF

does not need a corpus of seed files to work properly (although it

would be more efficient). Zalewski, the author of AFL, was able to

22 background and related work

generate valid JPEG images starting from an empty file [116]. The

functions SelectNext and MutateInput (at lines 7 and 10 respectively)

are analogues of SelectSeed and MutateSeed of Algorithm 1. The

framework of Algorithm 2 incorporates explicitly the mechanics that

smart black-box mutational fuzzers like BFF implement. The function

AssignEnergy at line 8 decides how much effort should be put in

fuzzing the selected test-case (e. g. how many mutated inputs should

be created from it). Another difference from black-box mutational

fuzzers is the IsInteresting function at line 13, responsible to de-

termine whether the mutated input is deemed interesting and worth

fuzzing; this allows for CGFs to build a corpus of test-cases that could

even be reused with other tools or to fuzz another software that ac-

cepts the same file format. For CGFs, interesting, loosely means that

increases code coverage and by keeping a queue of test-cases with

ever-increasing coverage helps fuzzers of this kind reaching deeper

portions of the SUT compared to black-box mutational fuzzers.

2.2.1 American Fuzzy Lop

AFL [114] is one of the most well known CGFs. Its focus is not on

any singular principle or insights but is rather a collection of hacks

that have been tested and proved effective in practice; the govern-

ing principles for its development are speed, reliability and ease of

use [117]. AFL gets its coverage feedback from the SUT by instrument-

ing its compiled binary. This is done by injecting specific locations of

the SUT with a monitoring snippet of code. This code can be injected

by compiling the SUT with the afl-gcc utility or, when the source

code is not available, AFL uses QEMU [16] to dynamically (during

interpretation, at runtime) instrument the binary. AFL-dyninst [4] is

an extension to AFL that injects the instrumentation snippet directly

into the binary. What AFL injects into the SUT is essentially equivalent

to that presented in Listing 2.1.

The instrumentation snippet is injected at every branch within the

instrumented code. The cur_location variable is generated randomly

at compile time and identifies the current basic block (a straight code

2.2 coverage-based gray-box fuzzing 23

cur_location = <COMPILE_TIME_RANDOM>;
shared_mem[cur_location ^ prev_location]++;
prev_location = cur_location >> 1;

Listing 2.1: AFL’s instrumentation

sequence without branches besides at its entry and exit points). The

shared_mem array is a 64KB shared memory region provided by the

fuzzer; each byte of the shared memory can be thought of as a hit

to a transition from one branch to another. The shift operation at the

last line preserves directionality of the tuples (e. g. A ⊕ B would be

indistinguishable from B⊕A) and to keep the identity of loops within

the same basic block (e. g. A⊕ A would be equal to B⊕ B).

With regards to Algorithm 2, AFL implements the SelectNext func-

tion by classifying elements of the queue as favorites. A test-case is

deemed favorite if it exhibits faster speed of execution and small

size for the branch tuples that it covers compared to the other test-

cases in the queue. AFL selects favorite items more often, implement-

ing a strategy that favors, using the MAB terminology, exploitation

against exploration [21]. AFL initially applies a set of deterministic

mutation operators to selected inputs and later uses what it calls an

havoc stage where more complex and stacked mutations are stochasti-

cally applied; the function AssignEnergy determines how many mu-

tations should be applied to the selected test-case during the havoc

stage. AFL’s implementation of AssignEnergy uses a mix of execution

speed, coverage information and age of the selected test-case to de-

termine how many inputs should be generated by mutating it. AFL

implements a good number of mutation operators such as bit-flips,

insertion and deletion of bytes, arithmetic operators, to name a few

[115]. The function IsInteresting as implemented by AFL, returns

true if the input t′ exercises a new basic block transition or if the num-

ber of times a transition is hit goes from one range of values to the

next; AFL employs a “bucketing” scheme where the range of values

required to be in the next bucket roughly doubles (the exact values

are 1, 2, 3, 4− 7, 8− 15, 16− 31, 32− 127 and 128+) [117].

24 background and related work

2.2.1.1 AFLFast

Böhme, Pham, and Roychoudhury model Coverage-based Gray-Box

Fuzzing as the systematic exploration of the state space of a Markov

chain, where the state space is composed by all the possible paths

that the SUT can take [21]. This allows them to conduct a mathemati-

cal analysis of the challenges faced by CGFs such as AFL. By observ-

ing that an high proportion of test-cases generated by AFL exercise a

small number of high frequency paths (i. e. states of the Markov chain

that are visited more often), the authors draw the intuition that steer-

ing fuzzing more toward low frequency paths could lead to an improve-

ment in performance (exploring more paths with the same amount

of fuzz). This intuition is implemented into AFLFast, an extension of

AFL. In reference to Algorithm 2, AFLFast replaces the SelectNext

and the AssignEnergy functions with new implementations.

The authors discuss and evaluate different power schedules, re-

sponsible of assigning energy to a selected test-case ti exercising path

i. Besides two of them (which use a constant schedule), the other

power schedules are functions of two values: s(i), the number of

times ti has already been selected from the queue and f (i), the num-

ber of generated inputs that exercise path i. The former allows for

power schedules that assign more energy the more the test-case is

selected; the latter serves as an approximation of the stationary distri-

bution of the Markov chain and allows for power schedules that as-

sign energy inversely proportional to the density, effectively directing

more fuzzing efforts towards low density regions of the distribution.

AFLFast implements nine power schedules: two constant schedules

(one of which is the same used by AFL) that assign the same amount

of energy every time the test-case is picked from the queue; seven

monotonous schedules that assign an increasing amount of energy

every time the test-case is picked from the queue.

The same two metrics used in the monotonous power schedules are

also used to devise two search strategies: one prioritizes inputs with

small s(i) (i. e. test-cases that have not been selected often), one prior-

itizes inputs with small f (i) (i. e. inputs that exercise a low frequency

2.2 coverage-based gray-box fuzzing 25

path). These strategies are not mutually exclusive and can be used to-

gether: first is searched the input with the smallest s(i), if more than

one is found it proceeds searching for an input with the smallest f (i);

if more than one exists, AFLFast falls back to AFL’s strategy (based

on input size and execution time).

The presented evaluation of AFLFast over common UNIX utilities

shows that the exponential schedule works best, assigning energy

inversely proportional to f (i) and directly proportional to 2s(i). The

comparison of search strategies shows that the combination of both

strategies outperforms significantly both strategies individually and

AFL’s strategy. AFLFast shows promising results when directly com-

pared with AFL. When both AFL and AFLFast are able to discover

(within the given time budget) the same vulnerability, AFLFast does

it much quicker; at the same time it is able to expose vulnerabilities

that AFL could not discover.

2.2.1.2 FairFuzz

Lemieux and Sen devise another extension to AFL that targets rare

branches with the aim to drive the fuzzing process deeper into the

SUT [77]. FairFuzz changes how the SelectNext and MutateInput

functions of Algorithm 2 work. When selecting inputs from the queue,

FairFuzz prioritizes test-cases that exercise a rare branch; successively

new fuzz is produced by applying byte-level mutation operators to

the selected input trying to exercise the same rare branches while still

exploring new parts of the SUT. The intuition behind this is that for

most file formats, there are sequences of bytes acting as headers to

prove the validity of the file format and other bytes that trigger exe-

cution of various parts of the program that processes the file. Among

all the fuzz generated by AFL, only a few will contain the right se-

quence of bytes in the right place; FairFuzz may classify branches

triggered by this header as rare and apply mutation operators that

preserve the header in the generated fuzz. More specifically a branch

is rare if it is hit by a number of inputs (amount of fuzz) smaller

than the rarity cutoff. This threshold is computed after each call to

SelectNext as 2i where 2i−1 < min(Bhit) ≤ 2i and Bhit is the set of hit

26 background and related work

counts for all branches discovered so far. At the core of the mutation

operators instead, the authors describe the concept of branch mask, an

artifact used to determine at which positions in the input bytes can be

overridden, deleted or inserted. The branch mask, computed during

the deterministic stage of mutation, is then used to steer mutation in

the havoc stage so that rare branches are still covered by the mutated

input.

2.2.2 Honggfuzz

Honggfuzz [104] is another general-purpose CGF which simplifies the

semantics of Algorithm 2 but offers state-of-the-art implementation

that grants huge throughput (generates lots of fuzz, especially in

persistent mode). The most peculiar feature of Honggfuzz is allow-

ing the user to gather feedback from the SUT via software or hard-

ware sources; it supports CPU branch and instruction counting by

means of Intel Branch Trace Store (BTS) or Intel Processor Trace (PT)

on supported CPUs. Honggfuzz selects uniformly at random one in-

put to mutate from the queue and assigns constant energy of 1 to

it. The MutateInput function picks uniformly at random one of the

implemented mangling functions and applies it to the selected input.

Honggfuzz considers a new input interesting if the used coverage

metric increases; if using Intel BTS for example, Honggfuzz maintains

a bitmap containing branch coverage information (similar to the one

used by AFL) and any fuzz exercising a previously unseen branch is

considered interesting and added to the queue.

2.2.3 VUzzer

VUzzer [91] is an evolutionary gray-box fuzzer that uses lightweight

static and dynamic analysis to gain knowledge about control- and

data-flow features of the SUT, which is then exploited to deploy an

application-aware mutation strategy. VUzzer follows the same population-

2.2 coverage-based gray-box fuzzing 27

based model of Evolutionary Algorithms (EAs) for which a generic

representation is given in Algorithm 3.

Algorithm 3: General scheme for an Evolutionary Algo-
rithm
1 Population← Initialize

2 E← Evaluate(Population)
3 repeat
4 Parents← SelectParents(Population, E)
5 Offspring← Recombine(Parents)
6 M← Mutate(Offspring)

7 E← Evaluate(M)

8 Population← SelectSurvivors(M, E)
9 until Stop criteria are met

After the population is initialized it is evaluated using a fitness func-

tion. The population then undergoes the iterative evolutionary pro-

cess composed of three phases:

• parent selection: a set of parents is selected from the population

pool using the chosen strategy and the fitness scores (typically

the strategy is probabilistic prioritizing individuals with better

fitness score);

• variation operators: there are two kinds of variation operators

typically used in EAs: recombination operators take two or more

parents and combines them to produce an offspring; mutation

operators instead are unary;

• survivor selection: the offspring is evaluated and selection tech-

niques similar to the ones used in parent selection are applied

to select the best individuals from the offspring to generate the

population pool for the next iteration.

VUzzer uses static and dynamic analysis on the SUT’s binary to

deploy enhanced application aware mutation operators and derive a

fitness function that uses control-flow features of the binary along-

side code coverage. Before starting the main fuzzing loop, VUzzer

uses an intra procedural static analyzer which objective is two-fold

(i) enumerate all immediate values from cmp instructions (ii) for each

28 background and related work

function, compute the CFG and model it as a Markov Chain such

that to each basic block is assigned a weight that is the inverse of

the probability of reaching it. The set of immediate values is what

the application might expect as input at certain offsets and VUzzer

uses these values to mutate the offspring in the main fuzzing loop.

The set of weights is instead used alongside a set of error-handling

basic blocks to compute the fitness score. In contrast to other CGFs like

AFL or Honggfuzz, VUzzer requires a minimal set of valid inputs to

initialize the set of error-handling basic blocks, which is then incre-

mentally developed during fuzzing. After collecting the set of basic

blocks exercised by these initial inputs, VUzzer proceeds at throwing

totally random inputs at the SUT and marks basic blocks that where

not executed by any of the valid inputs as error-handling basic blocks.

This knowledge is then used to penalize individuals that execute such

basic blocks, which is done by properly setting the weight for the cor-

responding basic block. VUzzer uses Intel’s Pin [79] to dynamically

instrument the binary and gather the trace of basic blocks exercised

by the SUT under a certain input.

Dynamic binary instrumentation is not the only dynamic technique

used by VUzzer. Dynamic Taint Analysis (DTA) allows to monitor a

tainted input within the SUT and gather information about code that

operates on it. VUzzer uses DTA to monitor cmp and lea instructions

that are tainted by the input: from the former it extracts the set of off-

sets in the input that taint the operands (with byte-level granularity);

for the latter it tracks the index register and extracts all offsets that

taint those indexes. As DTA is not a lightweight technique, VUzzer

uses it only at initialization on the seeds corpus and on inputs that

exercise previously unseen basic blocks during the main fuzzing loop.

DTA is at the core of VUzzer’s magic byte detection algorithm: at initial-

ization it exploits the available valid inputs to extract bytes within the

input placed at a certain (unique) offset in all valid inputs and later

builds on this knowledge.

Ultimately, the knowledge acquired through static and dynamic

analysis is exploited by recombination and mutation operators. VUzzer

always applies a single-point crossover operator that, given two inputs,

2.3 symbolic-assisted fuzzing 29

breaks them at a randomly picked cut point and then recombines

parts of different parents to produce two children. Mutation opera-

tors follows with a fixed probability, producing a new child from a

single parent. Those operators are application aware, making use of

results from static (e. g. immediate values of cmp instructions) and dy-

namic (e. g. magic bytes, offsets that taint the index operand of lea

instructions) analyses.

2.3 symbolic-assisted fuzzing

Automated test generation has been done since the 1970s with the

aid of symbolic execution. Initial work focused on finding inputs to

exercise a specific execution path within the SUT. More recently, sym-

bolic execution has seen a resurgence in the context of security test-

ing, given that it has been proven effective in exploring all feasible

execution paths within real-word programs.

Algorithm 4: Symbolic-Assisted Fuzzing
Input: Initial seed ts
Output: Set of crashing inputs C

1 C ← ∅
2 Q← {ts}
3 if RunAndCheck(ts) then
4 C ← C

⋃{ts}
5 end
6 while Q is not empty do
7 t← SelectNext(Q)

8 G ← ExpandExecution(t)
9 foreach tG ∈ G do
10 if RunAndCheck(tG) then
11 C ← C

⋃{tG}
12 end
13 Score(tG)

14 Q← Q
⋃{tG}

15 end
16 end

An abstract view of a generic symbolic-assisted fuzzing engine is

given in Algorithm 4. It maintains a set of inputs, initialized with the

initial seed input (line 2), from which new inputs are generated. On

30 background and related work

line 3 the function RunAndCheck runs the SUT with the given input and

returns a true value if the program ended with unexpected results. If

this is the case, the input that caused the failure is added to a set

which is returned at the end of the procedure. Next, a loop operates

until the set of working inputs is empty. First it selects an element

from the set (through SelectNext on line 7) and then generating a set

of inputs from the selected input on line 8. ExpandExecution symbol-

ically executes the SUT with the supplied input and collects the path

constraint. The constraint that identifies the ith branch in the execu-

tion is negated so that when the updated path constraint is solved for

the symbolic variables, the new input is going to exercise the same

path as its parent up to the (i− 1)th branch and take the alternative

branch on the ith one. Later, each generated input is run and checked

for exceptions, before being scored and added to the set of working

inputs (line 10 to 14). Score evaluates the given input and assign a

score that can be used in successive calls to SelectNext.

The specifics of each component of Algorithm 4 is different from

one implementation to another. The most peculiar ones, that differen-

tiate the most symbolic-assisted fuzzers among each other, are

SelectNext (line 7), ExpandExecution (line 8) and Score (line 13).

DART [51] provides a reference implementation for white box fuzzing.

The set of working inputs consists at most of a single element (the

seed input is randomly generated), SelectNext always returns the

only element present and ExpandExecution returns a singleton set

which input is the result of running the constraint solver on a modi-

fied version of the path constraint exercised by its given input; Gode-

froid, Klarlund, and Sen, for exposition purposes, present a depth-

first search on the execution tree of the SUT (i. e. the last constraint

on the path constraint is negated before being fed to the solver), al-

though other search strategies can be used (e. g. breadth-first, ran-

dom or heuristics-based). When the program is symbolically executed

with a generated input, DART checks that there are no divergences

(i. e. the expected path is effectively taken) and if so generates a new

input; otherwise it flips some flags tracking search incompleteness

and restarts the procedure with a new randomly generated input.

2.3 symbolic-assisted fuzzing 31

SAGE [52, 53] expands upon the work on DART in a threefold man-

ner: (i) by leveraging concolic execution on x86 binaries (in contrast

to C source code); (ii) implementing a generational search in order to

optimize the time spent doing symbolic execution; (iii) testing the SUT

in its entirety instead of units of code. The set of working inputs is

initialized with a well-formed, valid input (instead of randomly gen-

erated). SelectNext selects the input with the highest score. SAGE

scores each input with the number of newly discovered basic blocks

(e. g. input i is assigned a score of n if it exercise n previously unex-

ercised basic blocks). ExpandExecution implements the generational

search: for each constraint on the path constraint it generates a new in-

put by negating it; to prevent redundancy in the sub-searches, a bound

parameter for each sub-search is used to limit backtracking above the

branch where the sub-search forked. The rationale behind this search

strategy is to maximize the number of generated inputs from each

symbolic execution (which are expensive for large programs with

large amounts of symbolic variables); the authors report a mean time

to complete a single symbolic execution run for one of the analyzed

SUT of 25 minutes and 30 seconds while testing the same program

takes seconds. Using a generational search strategy, SAGE is able to

spend only 25% of the search time doing symbolic execution. Because

of the nature of this search strategy, it is critical to the effectiveness

of SAGE that the seed input exercises a path as deep as possible so

that the first symbolic execution generates as much new inputs as

possible.

The symbolic execution engine of SAGE is trace-based: the SUT is

executed concretely and a trace of the execution is stored into a file;

later this trace is interpreted symbolically and reasoned about. Other

symbolic-assisted fuzzers (e. g. EXE [33] and KLEE [32]) take a dif-

ferent approach: the SUT is (usually) translated to an intermediate

language and interpreted; at branching statements the state of the

SUT is stored and execution is forked. These approaches are named

respectively offline and online symbolic execution in literature. A dis-

advantage of the former is the redundancy in re-executing instruc-

tions symbolically, while the latter puts a strain on memory because

32 background and related work

of the continuous forking of state. MAYHEM [36] takes instead an

hybrid approach: the system starts with an online exploration phase

in which normal online symbolic execution is performed; then, when-

ever memory utilization reaches a threshold, a checkpoint manager

selects an active execution and stores a checkpoint containing only the

symbolic execution state, freeing memory. When there are no more

active executions, a checkpoint restoration phase selects a checkpoint

and restores it in memory by re-executing the SUT only concretely, as

the symbolic state was stored in the checkpoint. After this, the system

restarts online exploration. This hybrid approach allows MAYHEM to

be resilient to memory requirements while avoiding redundant and

expensive symbolic executions, taking the best of online and offline

symbolic execution.

EXE uses a coverage-based strategy to implement SelectNext: it

selects the input that exercises a path that is blocked (i. e. waiting

to be scheduled for execution) on an instruction that has been ex-

ecuted the fewest number of times; then the selected input and its

children are expanded (i. e. ExpandExecution) in a depth-first man-

ner. KLEE uses two different search strategies in a round robin fash-

ion. Random path selection uses a random walk from the root of a

binary tree representing all visited execution states and stops when

it reaches a leaf (i. e. leaves are active states while internal nodes are

places where execution forked). This strategy favors states high up

in the tree, which have the favorable property of having less con-

straints on their symbolic inputs; moreover it makes it hard for the

search to become stuck on states generated by a tight loop containing

symbolic variables (what the authors call “fork bombing”). Coverage-

optimized search uses heuristics to assign weights to states and uses

them to perform random selection.

2.4 hybrid techniques

Hybrid techniques merge symbolic-assisted fuzzing with black box

mutational fuzzing (i. e. random testing). Hybrid Fuzz Testing [89]

uses an initial round of symbolic execution to find its way to a fixed,

2.4 hybrid techniques 33

configurable, number of “frontier nodes”; for each node a path con-

straint is collected (i. e. a frontier node is the basic block at the end

of one of those paths). Then new inputs are randomly generated that

still respect the path predicates on each frontier node; these inputs

are then executed concretely to check for exceptions. While this ap-

proach can help exploring the execution tree in its breadth early on

(something random testing struggles to achieve), random testing can

get stuck on deeper checks that have not been explored by an initial

symbolic execution run.

The system described in “Hybrid concolic testing” [81] alternates

random testing with symbolic execution. It starts with random testing

and whenever no new coverage is produced in a predefined number

of steps, it switches to symbolic execution from the current program

state. Both random testing and symbolic execution are implemented

in an online manner; random concrete values, as well as symbolic

values, are fed as input to the SUT without re-executing instructions

to build the symbolic state before switching. Hybrid concolic testing

implementation is based on the online concolic executor CUTE [97].

More recently, Stephens et al. presented Driller [101], which com-

poses a CGF with a symbolic executor by using state-of-the-art imple-

mentations and optimizations to expand over the intuition of Majum-

dar and Sen in “Hybrid concolic testing.” Driller uses AFL as CGF

and angr [98] as symbolic executor. As with hybrid concolic testing,

Driller starts off with AFL; whenever AFL communicates that it has

no pending favorites inputs waiting in the queue (i. e. when the prop-

erty pending_favs in AFL statistics file reaches zero), Driller invokes

the symbolic executor. This in turn traces the execution of the unique

inputs found by AFL and tries to explore its neighborhood in the

execution tree before returning newly generated inputs to AFL. To

motivate their approach, the authors define a “compartment” within

a program as a portion of code locked behind strict checks (e. g. an

if statement checking for a magic byte). Fuzzing is powerful at effec-

tively exploring portions of code within a compartment but struggles

to pass those checks that would allow it to explore deeper compart-

ments. Symbolic execution on the other hand complements fuzzing

34 background and related work

as checks that separate compartments are easily solved in a single

symbolic pass but exploring inside a compartment takes as much

resources. Driller uses fuzzing to cost-effectively explore portions of

code within compartments and selective symbolic execution to switch

compartments.

Another key optimization of Driller over hybrid concolic testing is

given by the symbolic exploration phase. Instead of switching back

to fuzzing as soon as symbolic execution finds a new input, Driller

lets symbolic execution run until a configurable number of new basic

blocks has been discovered. The authors observed that in some cases

Driller was able to generate inputs that get only partially through

checks that are code in succession, causing the fuzzer to rapidly get

stuck again on a new check; because symbolic execution is expensive,

this frequent switching caused Driller to perform poorly. The sym-

bolic exploration phase alleviates this by allowing symbolic execution

to work through multi-checks in one go.

2.5 cooperative fuzzing

With the term cooperative fuzzing we refer to a system that runs in par-

allel a number of possibly different fuzzer instances able to share in-

formation with each other in order to achieve a common goal (i. e. in-

crease global code coverage). The intuition behind this is threefold:

(i) due to the non-deterministic nature of fuzzing, results across dif-

ferent runs of the same fuzzer may vary greatly; (ii) different fuzzers

may yield different results for different programs (i. e. there is no

fuzzer that works best for all possible programs); (iii) providing a

mean to share information may enable a single fuzzer to obtain criti-

cal knowledge that otherwise would not have obtained or would have

obtained much later. By parallelizing fuzzers execution and enabling

an overlay of communication features, cooperative fuzzing tries to ex-

ploit non-determinism and implementation differences among fuzzers

with the objective of creating an higher-level fuzzer.

An example in literature of such system is presented in [24, 25].

By making an analogy between foraging behaviours in biology and

2.5 cooperative fuzzing 35

bug hunting in software, the authors propose a system that models

fuzzing as Lévy flights over the input space of the SUT; a Lévy flight

is a widely used mathematical model which, under some hypotheses,

minimizes search times when applied to resources foraging. A Lévy

flight is formally defined as a Markovian process having independent

and stationary increments; intuitively it describes the movement of a

particle that at each step randomly chooses direction and length of

the next step to make. Assuming a bit-string of length N, split into

n segments of length N
n , each fuzzing instance simulates two Lévy

flights: one over the domain of the segment offsets {1, . . . , n} and one

over the domain of segment values {1, . . . , 2
N
n }. For each of these, the

distribution of flight lengths is given by the power law:

pi(l) ∼ |l|−1−αi i = 1, 2

where 0 < αi < 2 is a parameter that controls the diffusivity of the

stochastic process. For lower values of αi the process exhibits bigger

steps in the search space, while for higher values the distribution of

step lengths moves its probability mass toward zero. During fuzzing,

these parameters are self-adapted so that if the fuzzer is exploring an

high-quality region of space, it should make smaller steps in order

to thoroughly explore the current region (i. e. sub-diffusion); on the

other hand, if the fuzzer is exploring a low-quality region, it should

make bigger steps to try to explore different regions in the hope of

finding an higher-quality one (i. e. super-diffusion). The quality met-

ric used is the number of basic block exercised by the given input,

that were not exercised by any previously tested input.

At each iteration, a fuzzer instance generates kgen new inputs by

simulating a step in offset space and one in segment space and re-

placing the segment at the given offset with the given segment value

in a given input. The input that is modified is seeded on the first itera-

tion and the latest generated input successively. These new inputs are

then evaluated against a queue of inputs the fuzzer maintains using

36 background and related work

the basic block metric. Diffusivity parameters are then updated using

the following:

αi =
2

1 + ebi−E(Xgen,Xall)
i = 1, 2

where bi ∈ R+ is a fixed parameter that relates the quality measure to

diffusion behaviours (i. e. at which quality value the search switches

from sub- to super-diffusion or vice versa) and E(Xgen, Xall) is the

newly generated inputs quality, measured against a queue of kmax

older inputs. Then the queue Xall is updated with inputs from Xgen

in a first-in-first-out manner, keeping a total of kmax items.

A swarm of fuzzers so described runs in parallel; after all fuzzers

complete one iteration, a k-means clustering algorithm finds k clus-

ters of fuzzers by using the latest generated input of each. For each

cluster, all fuzzers are relocated to the same position of the fuzzer

with the best quality evaluation in the cluster (i. e. resets the starting

position of Lévy flights with the latest steps of the best neighbour).

Another cooperative fuzzing system by the same author, Böttinger,

is presented in [23, 26]. Once again the system is inspired by biology:

chemotaxis is the movement of organisms of a colony attracted by a

chemical trace; two kinds of fuzzers are deployed in a cluster (i. e. they

run in parallel): explorers (i. e. CGFs) use coverage feedback to pro-

duce a trace which is followed by workers (i. e. black box mutational

fuzzers). The feedback-enabled explorers, having more information at

their disposal, are more easily able to explore new portions of code.

Information of their findings is encoded in a trace which workers are

attracted to, effectively guiding the faster black box fuzzing instances

toward new regions. The intuition behind this approach is reminis-

cent of Driller’s, where fuzzers of different natures are used to cope

with each other’s limitations.

3
C O O P E R AT I V E F U Z Z I N G F R A M E W O R K

In this chapter we describe the design of our Cooperative Fuzzing

Framework (CFF) and details about its implementation. We are going

to show how instances of different fuzzers can communicate with

each other in order to share knowledge and cooperate to improve the

overall fuzzing efficacy (in terms of coverage and number of unique

bugs found).

3.1 system design

The CFF is designed to run fuzzers of different natures in parallel,

harvest knowledge from each instance and intelligently broadcast it

to selected other instances. This framework allows construction of al-

gorithms that orchestrate the information flow among the fuzzing in-

stances. We design two primitives that allow a fuzzer to share knowl-

edge with other fuzzers and devise a distributed architecture that em-

ploys these primitives to manage the information flow among fuzzer

instances in a smart manner. The architecture is modular so that inner

components can be replaced as needed, moreover it can be deployed

across multiple machines.

3.1.1 Common Fuzzer Interface

We require fuzzers to implement two primitives that allow our frame-

work to interface with them. Having a common interface enables the

framework to operate with different fuzzers, as long as they adhere

to the Application Programming Interface (API).

All fuzzers work with test-cases and CGFs keep a queue of test-

cases adding elements to it if they (loosely speaking) increase cov-

erage. Whenever a fuzzer finds a test-case that expresses some in-

37

38 cooperative fuzzing framework

teresting property, stores it into the internal queue. This property is

deemed interesting in a subjective manner, based on how the fuzzer

operates and the knowledge it has already acquired about the SUT. It

follows that we can track the progress of a fuzzer by intercepting and

analysing interesting test-cases; in other words we can extract knowl-

edge from the fuzzer. The first primitive that we require a fuzzer to

expose to the API enables exactly this: we require a fuzzer to store

interesting test-cases to the file system. This choice was made since

most CGFs already fulfill this requirement; this is because the result-

ing corpus can be reused for future fuzzing campaigns against the

same software or another that accepts the same input format without

starting from scratch.

The second primitive we require a fuzzer to implement, allows our

cooperative framework to inject test-cases into it. This mechanic is

inspired by that of pollination, where pollen carrying the genetic ma-

terial of one plant is transferred to another plant to be later fertilized.

The injection primitive in our framework allows one test-case, carry-

ing some knowledge about the fuzzer instance it comes from, to be

merged with the knowledge of the receiving fuzzer instance. As with

the extraction primitive, injection operates through the file system:

the fuzzer needs to periodically check a predetermined folder and

import new test-cases into memory.

Different fuzzers may work at different paces: traditional CGFs tick

after each new test-case is generated; fuzzers that follow the evolu-

tionary approach advance a time-step when a new generation gets

synthesized (e. g. after several test-cases are generated). In between

successive time-steps, a fuzzer is not able to accept and process ex-

ternal test-cases. Thus there is a need for a fuzzer to communicate

through the cooperative framework when it is able to accept new

input (e. g. when the inject primitive can be called on this fuzzer in-

stance). We assume that a fuzzer is always able to accept new test-

cases, otherwise it needs to implement a third interface endpoint:

when the fuzzer can accept new input, it will broadcast this infor-

mation to all other connected fuzzers. This information allows for a

form of congestion control within our cooperative framework and is

3.1 system design 39

entirely delegated to the fuzzer in order to abstract over its implemen-

tation details.

With these two primitives in place (not counting the latest intro-

duced, which is optional), our cooperative framework is capable of

interacting with the running fuzzer instances by directly accessing an

uniform communication layer that uses test-cases as an atomic piece

of information. Table 3.1 summarizes the CFF interface with fuzzer

instances.

Primitive Description Initiated by Required

Extract Extracts interesting
test-cases from
fuzzer

Fuzzer Yes

Inject Injects test-cases
into fuzzer

Framework Yes

Congestion
Control

Signals to the
framework when
the fuzzer is able to
consume injected
test-cases

Fuzzer No

Table 3.1: Cooperative Fuzzing Framework interface with fuzzers

3.1.2 Central Decisional Unit

With a common interface with fuzzers in place, the next component

we need to devise is a decisional unit responsible of controlling the

information flow among fuzzer instances. This component acts as an

intermediary or a filter for the interface between two fuzzers, apply-

ing a pre-determined strategy that decides which test-cases extracted

from a fuzzer should be injected into which fuzzer (if any). As some

fuzzers need some form of congestion control, the decisional unit is

also responsible of deferring the call to the injection primitive. As an

example, when an evolutionary CGF is in the set of fuzzer instances,

one strategy might choose to keep track of the best (according to some

metric) test-case extracted from the other running fuzzers, to inject it

only when the evolutionary fuzzer is able to consume injected test-

cases; another strategy might choose to do the same only for a subset

40 cooperative fuzzing framework

(a) Physical view of the framework communica-
tion model. Running fuzzers communicate only
with the central decisional unit which selectively
broadcasts messages to other fuzzers

(b) Logical view of the framework communication
model. Information can flow across all running
fuzzers

Figure 3.1: Cooperative Fuzzing Framework communication model

of running fuzzers and so on. We note that for strategies such as those

briefly described above, we need the decisional unit to be centralized:

communication does not happen between fuzzer instances directly,

but everything is coordinated by a central decisional unit that mod-

els communication in accordance to an user-defined strategy.

Figure 3.1 gives a graphical representation of the communication

model in the CFF. More specifically, Figure 3.1a depicts the physi-

cal links between components of the framework; Figure 3.1b instead

shows how, on the logical level, each running fuzzer can directly

exchange test-cases with other running fuzzers. In this configura-

tion each running fuzzer communicates directly only with the cen-

tral decisional unit by means of the common interface described in

3.1 system design 41

Section 3.1.1, without having any knowledge about other running

fuzzers.

3.1.3 Cooperative Fuzzing Strategies

With the architectural design in place, we can proceed to describe a

more detailed view on the CFF operation.

Algorithm 5: Generic strategy for the Cooperative Fuzzing
Framework

Input : Set of running fuzzers F. Set of fuzzers that need
congestion control Fc

1 foreach f ∈ Fc do
2 W f ← ∅
3 end
4 while all fuzzers are running do
5 if new test-case t from a fuzzer ft then
6 S← ∅
7 foreach f ∈ F \ { ft} do
8 s← Score(f, t)
9 if f ∈ Fc then
10 W f ←W f ∪ {(t, s)}
11 else
12 S← S ∪ {(f , s)}
13 end
14 end
15 foreach f ∈ Winning(S) do
16 Inject(f, t)
17 end
18 end
19 foreach f ∈ Fc do
20 if f is ready to receive inputs then
21 foreach t ∈ WinningCongestion(W f) do
22 Inject(f, t)
23 end
24 W f ← ∅
25 end
26 end
27 end

Algorithm 5 gives the generic template of a cooperative fuzzing

strategy. There are three user-defined functions that describe which

test-cases should be forwarded to which fuzzer (in other words they

42 cooperative fuzzing framework

define the strategy). When a fuzzer stores a new interesting test-case,

the extract primitive gets executed and the cooperative framework

will pick it up. Then, for each other running fuzzer, the Score function

will assign a numeric value representative of some measurement on

the test-case in relation to the fuzzer’s state. These numeric values

are then used in two winner selection procedures: Winning selects a

set of fuzzers that are not under congestion control into which the

newly extracted test-case is going to be injected; WinningCongestion

instead, for each fuzzer under congestion control which is ready to

receive new inputs, selects a set of test-cases within the window set

W f of inputs collected since the previous round.

The Score function of Algorithm 5 is a core component around

which the design process of a cooperative strategy rotates. When de-

vising a new strategy, one would start by defining a scoring function

as the winner selection procedures will use its values to make the fi-

nal decision. The scoring function is fundamental from another point

of view: it has been designed to be analogous to the fitness function

found in EAs, where in our case fitness represents how much would a

fuzzer benefit from receiving a given test-case.

As for CGFs, the CFF uses code coverage as a basis for the scor-

ing function. A strategy might choose to keep track of all basic blocks

discovered by each running fuzzer (this is possible because interesting

test-cases often execute previously unseen basic blocks); the scoring

function can than return a numeric value representing a specific prop-

erty of the newly extracted test-case in relation to the fuzzer’s current

knowledge (the set of discovered basic blocks). Behind the intuition

that seeding a fuzzer with a test-case that exhibits new basic blocks

might help the fuzzer discovering even more new basic blocks, we

might construct a strategy to broadcast test-cases to those fuzzers for

which there is at least one undiscovered basic block. In this context,

we can set the scoring function to return the number of basic blocks

new to the fuzzer and select as winners fuzzers with a positive score.

The Winning function of Algorithm 5 is responsible for working

out a set of running fuzzers, given the results of the scoring function.

Fuzzers from this set, which can be empty, are to be injected with the

3.2 system implementation 43

test-case. This function resembles the selection stage of EAs: selects

fuzzers (in contrast to selecting individuals of a population) which

are going to receive a new test-case, so that the fuzzer itself can ap-

ply its own mutation algorithms to try to generate new interesting

test-cases. The WinningCongestion function on the other end, instead

of working with a set of scores for different fuzzers over a single

test-case, selects a set of scored test-cases to be injected into a single

fuzzer.

3.2 system implementation

This section describes our implementation of the CFF, which is com-

posed of two executables: a driver and a master. A driver is responsible

to run, monitor and interact with a fuzzer instance (i. e. via the API

defined in Section 3.1.1) while the master implements the central de-

cisional unit as defined in Section 3.1.2; together, drivers and master,

implement the CFF strategy described in Section 3.1.3. The full imple-

mentation, which is available on Github1, consists of a total of 2, 832

lines of Rust, C and Bash source code.

3.2.1 Communication Channels

Driver and master are implemented as two separate executables to

fulfill the requirement of being able to deploy the different compo-

nents across different machines. To support this, drivers communi-

cate with the master using three separate distributed message queues

as depicted in Figure 3.2; these communication channels are imple-

mented over ZeroMQ2, a popular asynchronous messaging library

with binding for a large variety of languages, including Rust and C.

All messages over these channels are serialized as space-separated

values. The interesting channel is a queue shared among all drivers

on which interesting inputs captured by drivers are pushed to be later

1 https://github.com/acidghost/uberfuzz2
2 http://zeromq.org/

https://github.com/acidghost/uberfuzz2
http://zeromq.org/

44 cooperative fuzzing framework

Figure 3.2: Communication channels between fuzzer, driver and master.

pulled by the master. Messages on this channel have the following

fields:

fuzzer_id identifies the fuzzer instance that generated the input;

input_path the path to the input deemed interesting by the fuzzer;

coverage_path path to a binary file containing the coverage in-

formation generated by executing the SUT with the input at

input_path.

The inject channel is, again, shared among all drivers and is set

up so that master publishes messages to which drivers can subscribe.

Messages on this channel represent inputs that specific fuzzers need

to inject into their queue of working inputs. Each message is made

up of the following fields:

fuzzer_ids a list of fuzzer identifiers, separated by ’_’, that need to

receive and inject the input represented by this message;

input_path path to the input to be injected;

coverage_path path to coverage data exercised by the given input.

Finally, the metrics channel uses the request-reply pattern: each

driver binds to a unique port (i. e. the channel is not shared among

drivers) in reply mode and the master connects to it in request mode.

Whenever the master needs a metric evaluation from a specific fuzzer,

it sends a metric request to the appropriate driver and synchronously

waits for a reply. Both request and reply messages are comprised

of a single field: requests contain a coverage_path, as described for

3.2 system implementation 45

other message types; replies contain instead a floating point number,

representing the metric evaluation result.

Communication between a fuzzer and its driver is achieved through

the file system. This is because most fuzzers use the file system to

store their data. More specifically “interesting” inputs, as well as in-

puts to be fuzzed, are written to a folder (which might be the same for

both). Follows that to capture new interesting inputs, a driver needs

to track new files added to the appropriate folder. On the other hand,

to inject new inputs into the fuzzer’s queue, a driver simply needs to

add a file with the input to the right folder. The Linux inotify subsys-

tem is used to avoid doing inefficient long polling to capture fuzzer

events (e. g. when a new interesting input is added). For fuzzers that

need congestion control, we require them to write (i. e. drivers listen

for inotify IN_MODIFY events) to a predetermined file whenever there

is availability to receive new inputs.

3.2.2 Driver Implementation

Drivers are responsible to launch and interact with a fuzzer instance

running on the same machine. The driver program is written in 1, 496

lines of C code; Rust was the initial choice but unfortunately inter-

facing with Intel BTS via Foreign Function Interface (FFI) proved to

be harder than needed: execution traces were empty and debugging

such low-level kernel features is notoriously hard. As the only hard

requirements were performance and a reliable interface to BTS, we

decided to code the driver in C, which is notoriously fast and can di-

rectly interface with BTS via the perf_event_open Linux system call.

The choice of using BTS over the more modern Intel PT is merely due

to the unavailability of a more modern processor to conduct exper-

iments with. Nonetheless, for our purpose, BTS offers the same fea-

tures as PT does.

The driver starts up by initializing communication channels: con-

nects to interesting and inject queues, binds to a port to serve met-

ric replies and sets up inotify watchers. Next it runs the assigned

fuzzer with the given configuration and starts the main loop, which

46 cooperative fuzzing framework

runs until the fuzzer terminates or an external interrupt or kill signal

is received. The main loop first checks if there are new inotify events

and if so, for each new file, it executes the SUT with BTS enabled; this

produces an execution trace in the form of a sequence of branches

which is stored to a file. This new interesting input is then broadcast

over the interesting queue, along with its coverage information.

Next, the driver checks if there is a new request on the metric chan-

nel and, if so, sends a reply. This is done by reading the coverage file

referenced in the request and evaluating it with respect to the accu-

mulated driver knowledge: whenever a new interesting input is pro-

cessed, the driver updates an hash table that maps branches to an hit

counter; this enables the driver to track already discovered branches

and how many times each has been hit, across all intercepted interest-

ing inputs. In the current implementation, the metric is given by the

number of newly discovered branches.

The last step in the driver’s main loop consists in trying to pull one

message from the inject queue. If a message is successfully read and is

addressed to itself (i. e. fuzzer_ids contains the right identifier), the

driver adds the attached coverage information to the internal hash

map and injects the input file into the fuzzer by creating a copy of

the file in the fuzzer’s working directory. Most fuzzers already imple-

ment some kind of file system synchronization to import test cases:

AFL and its extensions have a mechanism, used to synchronize in-

stances running in parallel, that periodically checks a directory for

new files and imports them; VUzzer writes all test cases after each

generation and loads them again at the beginning of the next one.

Honggfuzz, which is also used in the evaluation of CFF in Chapter 4,

does not implement any such mechanism: we use a forked version

of Honggfuzz which implements a basic synchronization component

similar to AFL’s.

As a final remark, the driver has no knowledge of the kind of

fuzzer it is interfacing with, instead it exposes a collection of com-

mand line parameters flexible enough to accommodate a variety of

fuzzers. These parameters are filled in by the master when it exe-

cutes a driver. The name “driver” is inspired by device drivers which

3.2 system implementation 47

abstract away from the OS the details of interfacing with different

hardware; here a driver abstracts away implementation details of in-

terfacing with a generic fuzzer, minus some configuration parameters.

Also, these configuration parameters are not encoded in the master

either but in external configuration files.

3.2.3 Master Implementation

In our implementation of the CFF, the master is the main executable;

responsible of running and interacting with the drivers, consists of

749 lines of Rust source code.

The master starts up by binding to the interesting and inject queues

before starting the drivers, parameterized for the specific fuzzer by a

mixture of command line arguments and configuration files. More-

over, it sets up inotify watchers for fuzzers that need congestion

control. The fact that this direct communication channel between

master and fuzzer exists may hinder the applicability of the current

implementation in a truly distributed environment; nonetheless, the

limitation can be easily circumvented by employing some kind of

middleware or update the CFF implementation by introducing a new

ZeroMQ communication channel between driver and master.

The main loop executes until an external interrupt is received or

one of the driver terminates early. At each iteration of the loop a

new item is pulled from the interesting queue. The pulled input is

then evaluated against all other fuzzers by sending a metric request

to all drivers excepts the one that sent the interesting input and syn-

chronously waiting for a reply. When all evaluations have been col-

lected a competition to win the input starts. Two generic strategies are

currently implemented: one that selects the driver that replied with

the highest or the lowest metric; one selects drivers if their evaluation

is greater or less than a threshold. The winning strategy, along with

threshold and ordering parameters, are configurable through com-

mand line arguments. Once winning drivers are selected, the master

sends a new message on the inject queue with the fuzzer_ids field

set to the winning drivers’ fuzzer_id.

48 cooperative fuzzing framework

To implement the congestion control mechanism, the master keeps

an hash table mapping drivers that need this feature to a list of inter-

esting inputs and their evaluation by the mapped driver. When the

master receives the signal through inotify, it starts a competition to

select an input from the aforementioned list and sends it to the driver

before clearing the list.

4
E VA L U AT I O N

This chapter presents an evaluation of four different fuzzers and our

implementation of the Cooperative Fuzzing Framework (CFF) as de-

scribed in Section 3.2; the implementation uses the same four fuzzers

in order to draw meaningful comparison results. In Section 4.1 we

compare the results, in terms of coverage, of running fuzzers without

cooperation; Section 4.2 presents results of running the same fuzzers

with cooperation. Lastly Section 4.3 presents an evaluation of cooper-

ative fuzzing in terms of crashes found.

choice of fuzzers For the choice of fuzzers we decided to use

AFLFast, FairFuzz, Honggfuzz and VUzzer. The first two provide

two different implementations of the state-of-the-art CGF, AFL; we

argue that two different implementation of the same core algorithm

may yield different results. Honggfuzz is chosen as it provides dif-

ferent means to extract feedback from the SUT, possibly resulting in

a different feedback signal (given the same input) compared to other

methods (e. g. AFL uses QEMU). Lastly, VUzzer provides with an evo-

lutionary fuzzer which uses static and lightweight program analysis;

because of this, CFF uses the congestion control mechanism to interact

with VUzzer. All fuzzers were run with the default parameters and

configuration, with the exception of those required to correctly inter-

face with the SUT. Moreover, as already mentioned in Section 3.2.2,

all these fuzzers (besides Honggfuzz) support a file system based

synchronization mechanism to periodically import new test cases; for

Honggfuzz, we use an extended version that mimics AFL’s synchro-

nization component.

experimental infrastructure Experiments were run on a

64-bit machine with 8 cores (running at 3.4GHz), with 16GB of RAM,

49

50 evaluation

running Ubuntu 16.04. Because of a limitation of VUzzer implemen-

tation, we had to run it inside a virtual machine hosting Ubuntu

14.04. To allow communication with its driver running on the host ma-

chine, we used a shared folder; this allowed us to reuse the inotify

infrastructure as if the fuzzer was running locally. Finally, we dis-

able Address Space Layout Randomization (ASLR) before fuzzing and

when running the crash triaging script; in the latter, we also limit

the available address space to simulate the same environment of the

fuzzer that found the crash.

testing targets We chose a set of programs that are widely

used both in practice and literature:

djpeg uses the popular libjpeg-turbo (version 1.5.1) and has been

used for the evaluation of FairFuzz and VUzzer;

objdump is a component of the suite binutils (version 2.28) which

has also been tested by AFLFast and FairFuzz; we test it with

the command line option -d, which provides a disassembler;

tiff2pdf from the popular libtiff (version 4.0.9), parses a TIFF

image and converts it to a PDF; we use it without command

line arguments;

listswf from the popular libming (version 0.4.8), parses a file in

SWF format; we use it without command line arguments.

Moreover, as VUzzer requires a minimum set of seed inputs to

work properly, we randomly chose the minimum required by VUzzer

from test samples provided with each SUT; these inputs were used to

also seed other fuzzers.

As an additional information, we report on the number of basic

block and functions found by static analysis via Radare1 in Table 4.1.

1 https://rada.re/

https://rada.re/

4.1 single fuzzer evaluation 51

SUT basic blocks functions

djpeg 6187 366
objdump 43211 2220
tiff2pdf 11129 791
listswf 3349 446

Table 4.1: Number of basic blocks and functions for the chosen targets.

4.1 single fuzzer evaluation

In this section we present an evaluation of the chosen fuzzers, with-

out any cooperation. We ran each fuzzer independently for 24 hours

on each of the targets, except for listswf which ran for 6 hours. Ta-

ble 4.2 reports the arithmetic mean and the 95% confidence intervals

for the number of unique basic block transitions as computed by Intel

BTS over five rounds. The coverage values are aggregated over time

intervals of one minute.

SUT AFLFast FairFuzz Honggfuzz VUzzer

djpeg 3739.4± 113.831 4043.2± 103.838 4112.8± 39.5483 2801± 53.5514
objdump 4762.6± 23.3693 5067± 62.6832 4132.4± 104.8 3162.2± 138.462
tiff2pdf 8971.2± 152.865 8813.8± 146.756 5260.2± 148.591 3616± 34.6427
listswf 6831.6± 2615.24 8586.8± 87.7467 6345.6± 2358.52 5048.2± 90.3928

Table 4.2: Mean coverage with 95% confidence intervals for single fuzzers.
Highlighted is the best for the given program.

By looking at the table, as well as at Figure 4.1, which presents the

evolution of coverage over time, it is easy to see how no fuzzer is deci-

sively better than the others across all tested programs. This validates,

although for a small sample of programs and fuzzers, our intuition

based on the no free lunch theorem, for which there is no fuzzer that

performs better than all others across all possible test programs.

To derive more robust and meaningful insights over these results,

we employ the Bayesian estimation model proposed in [73]. This

model provides, among others, estimates of the posterior distribu-

tions of the means and their differences of two given sets of observa-

tions. Figure 4.2 shows the distribution of the difference of means of

Honggfuzz against AFLFast and FairFuzz for djpeg. The figure also

52 evaluation

(a) djpeg (b) objdump

(c) tiff2pdf (d) listswf

Figure 4.1: Mean coverage over time for single fuzzers.

shows the 95% Highest Density Interval (HDI), which represents the

interval of values onto which 95% of the probability mass lies. Fig-

ure 4.2a clearly shows that the HDI lies completely above zero, mean-

ing that with high credibility we can say that Honggfuzz performs

better than AFLFast over djpeg. Unfortunately the same conclusion

cannot be made for the comparison of Honggfuzz against FairFuzz.

Figure 4.2b shows that a difference of means of zero lies on the HDI;

moreover an estimated 20.2% of the probability mass lies below zero

(i. e. in favor of FairFuzz).

Figure 4.3 shows the difference of means for objdump. For both the

cases of FairFuzz against AFLFast (Figure 4.3a) and FairFuzz against

Honggfuzz (Figure 4.3b) the results strongly support the claim of

FairFuzz uncovering more basic block transitions for objdump.

Figure 4.4 shows the difference of means for tiff2pdf. Unfortu-

nately, as for djpeg, we are not able to decisively confirm whether

AFLFast is better than FairFuzz (Figure 4.4a). We can be instead more

4.1 single fuzzer evaluation 53

Difference of Means

µ1 − µ2

0 200 400 600

95% HDI
151 592

mean = 370

0.6% < 0 < 99.4%

(a) Honggfuzz vs. AFLFast

Difference of Means

µ1 − µ2

−200 0 200 400

95% HDI
−139 277

mean = 68.1

20.2% < 0 < 79.8%

(b) Honggfuzz vs. FairFuzz

Figure 4.2: Single fuzzers: distribution of difference of means for djpeg.

Difference of Means

µ1 − µ2

0 100 200 300 400 500

95% HDI
182 427

mean = 305

0.2% < 0 < 99.8%

(a) FairFuzz vs. AFLFast

Difference of Means

µ1 − µ2

0 200 400 600 800 1000 1200

95% HDI
706 1170

mean = 934

0% < 0 < 100%

(b) FairFuzz vs. Honggfuzz

Figure 4.3: Single fuzzers: distribution of difference of means for objdump.

certain affirming that AFLFast outperforms Honggfuzz for the given

SUT (Figure 4.4b).

To validate differences among fuzzers even further, we compare, in

Table 4.3, the best single fuzzer with the result of taking the union

of coverage traces across all four fuzzers for each time step. The ta-

ble clearly shows that fuzzers uncover unique basic block transitions

that are not exposed by any other fuzzer (i. e. uncover disjoint sets of

transitions) and this contributes to reaching an higher final coverage

consistently across all examined programs.

To delve deeper into these values, we show the result of Bayesian

estimation in Figure 4.5. The 95% HDI falls above zero (i. e. in favour

of the union of fuzzers) for all considered programs except djpeg, for

which the results are inconclusive.

54 evaluation

Difference of Means

µ1 − µ2

−400 −200 0 200 400 600 800

95% HDI
−224 554

mean = 173

14.5% < 0 < 85.5%

(a) AFLFast vs. FairFuzz

Difference of Means

µ1 − µ2

0 1000 2000 3000 4000

95% HDI
3320 4100

mean = 3710

0% < 0 < 100%

(b) AFLFast vs. Honggfuzz

Figure 4.4: Single fuzzers: distribution of difference of means for tiff2pdf.

SUT best single union

djpeg 4112.8± 39.5476 Honggfuzz 4157.2± 40.0495
objdump 5067± 62.6821 FairFuzz 5404.6± 38.1997
tiff2pdf 8971.2± 152.8626 AFLFast 9695± 129.7239
listswf 8586.8± 87.7451 FairFuzz 8916.6± 83.8365

Table 4.3: Mean coverage with 95% confidence intervals for best single
fuzzer and union of coverage traces.

4.2 cooperative fuzzing evaluation

In this section we present an evaluation of the efficacy of coopera-

tion. For this purpose we compare the results of running the CFF for 6

hours with the union of coverage from the four fuzzers running with-

out cooperation, as we have done in Section 4.1. To make the compar-

ison fair, for the union we take the maximum coverage after 6 hours.

We configured the master to execute two distinct winning strategies:

one selects the single fuzzer with the highest metric reply; the other

selects all fuzzers for which the metric reply is greater than zero. In

case of a draw, the pool of candidate winners is randomly shuffled

and the first one is selected. Recall from Section 3.2.2 that the metric

is given by the number of undiscovered branches exercised by the

given input (the metric is the same for all drivers). In this section we

compare the results of running both strategies.

Table 4.4 presents the final mean coverage with 95% confidence in-

tervals. Looking only at the final mean we can see that one of the

4.2 cooperative fuzzing evaluation 55

Difference of Means

µ1 − µ2

−100 0 100 200

95% HDI
−62.5 151

mean = 43.8

15.9% < 0 < 84.1%

(a) djpeg: Union vs. Honggfuzz

Difference of Means

µ1 − µ2

0 100 200 300 400 500

95% HDI
202 475

mean = 337

0.2% < 0 < 99.8%

(b) objdump: Union vs. FairFuzz

Difference of Means

µ1 − µ2

0 200 400 600 800 1000 1200 1400

95% HDI
347 1090

mean = 718

0.3% < 0 < 99.7%

(c) tiff2pdf: Union vs. AFLFast

Difference of Means

µ1 − µ2

0 200 400 600

95% HDI
102 560

mean = 328

0.9% < 0 < 99.1%

(d) listswf: Union vs. FairFuzz

Figure 4.5: Distribution of difference of means for union of fuzzers against
the best single fuzzer.

two cooperative strategies outperforms the union of fuzzers for all

programs, but none of the two outperforms the other. Moreover for

djpeg and objdump the union of fuzzers seems to perform the worst

while for tiff2pdf and listswf it is the single winner cooperative

strategy to be outperformed. For djpeg we see that the differences

are too small to be sensitive enough as is confirmed by Bayesian es-

timation in Figure A.1 and Figure A.2. By observing the mean cover-

age over time, shown in Figure 4.6a, we see that the union of fuzzers

struggles against both cooperative strategies for the first two hours,

before catching up.

The mean final coverage for cooperative strategies may seem to be

better than the union of fuzzers for objdump (Figure 4.6b) as both

means are higher and their confidence interval do not overlap with

the one for the union. Unfortunately Bayesian estimation does not

support these conclusions with high credibility (i. e. the HDI for the

difference of means includes zero) as shown in Figure A.3 for the

56 evaluation

SUT multi single union

djpeg 4056.4± 76.9499 4078.4± 85.6738 4028.6± 47.7396
objdump 5414.6± 224.121 5529.6± 338.651 5035.6± 54.5944
tiff2pdf 8765.6± 183.682 8577.6± 99.2457 8623.2± 183.399
listswf 9008.4± 122.81 8801.4± 96.4045 8916.6± 83.8381

Table 4.4: Mean coverage with 95% confidence intervals for winning strate-
gies that select single or multiple winners and without coopera-
tion.

single winner strategy against the union of fuzzers and Figure A.4

for the multiple winners strategy against the union. In both cases,

however, respectively 95.4% and 96.7% of the credible values of the

difference of means are greater than zero (i. e. in favour of the coop-

erative strategy).

In the case of tiff2pdf and listswf we are presented with similar

results as in both cases the single winner strategy is outperformed by

the other cooperative strategy and the union of fuzzers. Figure A.6

and Figure A.7 show the results of Bayesian estimation on tiff2pdf

for the multiple winners strategy against the union and the single

winner strategy respectively; either case provides with means to say

with an high degree of certainty that the multiple winners strategy

performs better than the other. The coverage over time presented in

Figure 4.6c suggests one more thing: as time progresses, the distance

between the multiple winners strategy and the other two seems to in-

crease; an evaluation over a period of time longer than 6 hours might

reduce the variability of final coverage and yield more conclusive re-

sults. Moreover we note how none of the curves on the graph seem to

end with a small or zero trend (i. e. none seem close to convergence),

suggesting that more time might reveal more basic block transitions

and possibly a more credible difference of means.

For listswf, yet again, Bayesian estimation cannot provide us with

enough confidence to say that the multiple winners strategy uncovers

more basic block transitions than the union of fuzzers, as shown in

Figure A.8. Running the analysis to compare the results of the two

cooperative strategies yields uncertainty in confirming that selecting

multiple winners uncovers more basic block transitions than selecting

4.3 crash analysis 57

(a) djpeg (b) objdump

(c) tiff2pdf (d) listswf

Figure 4.6: Mean coverage over time for two cooperative strategies and
union of fuzzers.

a single one; this is shown in Figure A.9 where we see that the HDI

includes zero and 94% of the credible values are above zero.

4.3 crash analysis

This section presents our findings regarding crashes based on the ex-

periments already described in Section 4.2. In the following we com-

pare the union of fuzzers and two cooperative strategies; in figures,

“mono” (colour red) refers to the union, “multi” (green) and “single”

(blue) refer to the multiple and single winner strategies respectively.

Unfortunately we were able to find crashes only in listswf; when

discussing results, the remaining of the section does not refer to the

SUT explicitly as there is only one to consider for this analysis.

Before presenting the results, we ought to define some terminol-

ogy and the process that we used to obtain the final data. A unique

crash is an input that causes a crash in the SUT through a unique

58 evaluation

path. Each of the fuzzers we used in our experiments already track

unique crashes, we developed some additional scripts to post-process

the data and aggregate results of the five rounds we ran for each ex-

periment. In particular, for each round of an experiment we collect

all unique crashes from the fuzzer’s folder and run the SUT with the

given file (we also disable ASLR and limit the address space appropri-

ately). If the program terminates with a crash or timeouts (the time

limit is taken from the respective fuzzer’s parameter), we run the

GDB utility exploitable [46] and backtrace command and store the

output into a file. The stack hash computed by exploitable, which

is the hash of the last five calls on the stack, is used to identify a

unique crash. Then, for each experiment, we aggregate the results of

the rounds into a single file that contains the elapsed time at which

the crash was discovered and the stack hash; moreover, we do not

remove duplicates.

Table 4.5 shows the number of distinct unique crashes found across

five rounds of each experiment, alongside the number of distinct

crashes that were found by one experiment and not by the other.

Unique crashes Vs. single Vs. multi Vs. union

union 75 21 13

multi 98 44 36

single 63 9 9

Table 4.5: Distinct unique crashes and amount discovered by one and not
discovered by another.

Figure 4.7 presents the evolution over time of the unique crashes

aggregated from the five rounds; in particular, Figure 4.7a shows the

cumulative count of unique crashes, while Figure 4.7b shows their

density.

With regards to the cumulative count, we see that not only the

multiple winners strategy finds more distinct unique crashes (i. e. 98

against 75), but also the number of unique crashes itself it higher.

Moreover, we see that the number of unique crashes for multiple

winners is briefly taken over by that of the union of fuzzers, before

4.3 crash analysis 59

0

100

200

0 2 4 6
Time (hours)

U
ni

qu
e

cr
as

he
s

co
un

t

mono multi single

Unique crashes over time

(a) Cumulative count of unique crashes.

0

25

50

75

0 2 4 6
Time (hours)

U
ni

qu
e

cr
as

he
s

mono multi single

Unique crashes over time

(b) Density of unique crashes.

Figure 4.7: Unique crashes over time for listswf.

becoming the highest again toward the end of the runs; this is also

highlighted by the strongly bi-modal nature of the density.

Figure 4.8 presents a subdivision of the results already presented

in Figure 4.7b: Figure 4.8a shows the density of unique crashes only

for those that fall in the intersection among all three experiments;

Figure 4.8b shows the density for those that do not fall in the inter-

section.

From the figure, we see that for the intersection of crashes, the

union of fuzzers produces the most amount and, with the help of the

density of the remaining, we see that the multiple winners strategy’s

effort is spend producing more crashes that are not found by the other

experiments.

4.3.1 Known Vulnerabilities

For each of the unique crashes, we manually investigated the nature

of the crash and tried to link it to a known vulnerability with an as-

signed Common Vulnerabilities and Exposures (CVE) identifier; note

that multiple unique crashes may be caused by the same bug. We

60 evaluation

0

20

40

60

0 2 4 6
Time (hours)

U
ni

qu
e

cr
as

he
s

mono multi single

Only found by all
Unique crashes over time

(a) Common unique crashes.

0

5

10

15

20

25

0 2 4 6
Time (hours)

U
ni

qu
e

cr
as

he
s

mono multi single

Not found by others
Unique crashes over time

(b) Uncommon unique crashes.

Figure 4.8: Density of unique crashes over time for listswf, divided in in-
tersection of hashes and not in the intersection.

found exclusively memory access violations caused by unchecked

heap memory allocations or reallocations, an example of which is

given in Listing 4.1. We were able to link six (of the over 25 found) to

a CVE; for those we report on the time of discovery in Figure 4.9.

char *readBytes(FILE *f,int size)
{
int i;
char *buf;

buf = (char *)malloc(sizeof(char)*size);

for(i=0;i<size;i++)
{
buf[i]=(char)readUInt8(f);

}

return buf;
}

Listing 4.1: Unchecked memory allocation in util/read.c:222 causing
CVE-2017-7582.

We see that all CVEs found by the union of fuzzers have been found

by the multiple winners strategy; moreover all but one are found on

4.4 overhead evaluation 61

average before the union does. The multiple winners strategy finds

also two CVEs that are not discovered by the union of fuzzers.

4.4 overhead evaluation

In this final section we evaluate the overhead exercised by the op-

eration of our implementation of the CFF over the regular operation

of the underlying fuzzers. The fuzzers operation within the context

of the CFF incur in some overhead due to the synchronization of ex-

ternal test cases injected from other fuzzers. AFLFast and FairFuzz

inherit from AFL a mechanism that periodically checks for test cases

to import; each new file is fed to the SUT and saved to the internal

queue if deemed interesting. VUzzer, instead, synchronizes with in-

puts on the file system after each generation. As already mentioned

in Section 3.2.2, Honggfuzz had to be extended to allow for a synchro-

nization mechanism similar to that of AFL; our extension periodically

checks for new files in a given folder and directly imports them into

its local queue.

The remaining overhead is given by the drivers and master oper-

ation. Recall from Section 3.2.2 that a driver’s responsibility is three-

fold:

• checks for new interesting inputs via inotify and collects cov-

erage information by running the SUT with BTS enabled before

pushing a new message to the master;

• replies to metric requests by processing the attached BTS trace;

• receives new inputs from the master, copies the attached test

case into the fuzzer’s directory (to later be synced) and updates

the coverage information with the attached BTS trace.

The master, recall from Section 3.2.3, is responsible to collect new

inputs from the drivers, request metric evaluations, select a winner

(or multiple ones) and broadcast it via ZeroMQ. The average CPU

usage after six hours for driver and master is respectively 2.63%

and 0.18% without including the time spent by waited-for children

62 evaluation

processes; with the inclusion of this, the CPU usage is 3.05% for each

driver and is unchanged for the master (because the drivers run the

SUT and wait for its completion). Note also that these measures are

based on the amount of time the respective process has been sched-

uled and so it includes the time the process has spent idling.

The CPU usage of the master is clearly negligible; for the drivers

instead, given that the CPU usage is only slightly higher with the

inclusion of waited-for processes, we can deduce that the majority

of resources are spent processing BTS traces and computing metrics

instead of running the SUT.

4.4 overhead evaluation 63

0

2

4

6

mono multi single

T
im

e
(h

ou
rs

)

mono multi single

CVE−2017−7582

0

2

4

6

mono multi single

T
im

e
(h

ou
rs

)
mono multi single

CVE−2017−8782

0

2

4

6

mono multi single

T
im

e
(h

ou
rs

)

mono multi single

CVE−2017−9988

0

2

4

6

mono multi single

T
im

e
(h

ou
rs

)

mono multi single

CVE−2017−9989

0

2

4

6

mono multi single

T
im

e
(h

ou
rs

)

mono multi single

util/parser.c:2029
CVE−2018−13066

0

2

4

6

mono multi single

T
im

e
(h

ou
rs

)

mono multi single

util/parser.c:619
CVE−2018−13066

Figure 4.9: Bugs with assigned CVE identifier found in listswf.

5
D I S C U S S I O N

This chapter contains a discussion of the evaluation results presented

in Chapter 4. With regards to our research question of whether for

fuzzing the No Free Lunch Theorem holds, Section 4.1 showed that

some fuzzers perform decisively better than the other on some pro-

grams while perform poorly for other. This confirms our initial hy-

pothesis that there are no free lunches for fuzzing.

In Section 4.2 we tried to establish whether introducing coopera-

tion into a group of fuzzers running in parallel proves beneficial. We

tackled the question from two points of view: coverage and crashes

found. When analyzing coverage results we were unable to declare

a winner with credibly high certainty. Bayesian estimation could not

provide strong evidence supporting the hypothesis that cooperation

is beneficial; the results are nonetheless promising and one missing

key ingredient to obtain a more decisive result, in our opinion, is

more data. With more data, Bayesian estimation would return a pic-

ture of the difference of means that reflects more the true distribution,

giving more space to the possibility to draw a confidant conclusion.

Moreover we are unable to find a decisive winner among the two

cooperative strategies; although, we note that the multiple winners

strategy performs better than the union of fuzzers even when the

single winner strategy performs the best.

The analysis of crashes presented in Section 4.3 reveals an image

more in favour of cooperation. The cooperative strategy that uncov-

ered the most basic block transitions uncovers also the most unique

crashes. Furthermore the multiple winners cooperative strategy un-

covers more distinct unique crashes than the union of fuzzers with

a factor of 1.3. Also, it finds all CVEs that the union of fuzzers finds,

plus two more that are not found by the union.

65

66 discussion

Besides doing more, longer runs, having data on a wider array of

test programs would give a more generalized view on the subjects.

In the process of developing the present work, we tried a number of

other candidate programs which revealed to be problematic in a way

or another:

tcptrace-4.9.0 writes a lot to the temporary file system causing

the OS performance to degrade;

gif2png-2.5.11 writes its output in the same folder as its input,

causing the fuzzer to use consider it a new input. VUzzer solves

this with an optional parameter to filter input files by file exten-

sion; other fuzzers unfortunately don’t offer this feature;

xmllint from libxml2-2.9.4. AFL-based fuzzers fail because un-

able to communicate with the fork server (recall we run in

QEMU mode) and report a possible out-of-memory failure;

tcpdump-4.9.0 encounters a known bug in angr1 which is used

by a pre-processing script in VUzzer. We experienced the same

problem also with nm and cxxfilt from binutils-2.28;

mutool from mupdf-1.9 fails in the same angr script because claripy,

its constraint solver, is unable to minimize a constraint;

mpg321-0.3.2 fails in VUzzer’s pre-processing script because a node

in the control-flow graph contains no instructions and the script

expects at least one.

Finally, we turn our discussion toward the overhead evaluation pre-

sented in Section 4.4 and add some performance considerations. Al-

though no concrete data is available measuring the overhead of syn-

chronization for each fuzzer, we note that the single source of over-

head for AFL-based fuzzers is given by the execution of the SUT with

the injected test case and in the decision of whether the test case is

deemed interesting. In Honggfuzz the overhead is negligible as new

1 https://github.com/angr/angr/issues/288

https://github.com/angr/angr/issues/288

discussion 67

test cases are simply copied into the internal queue; a similar situa-

tion happens in VUzzer where the corpus is re-evaluated after each

generation, picking injected test cases along newly generated inputs.

The remaining overhead given by drivers and master, reported

respectively as 3.05% and 0.18% in average CPU usage, can be con-

sidered small compared to the normal operation of a fuzzer, which

consistently uses one core at roughly 100%. Moreover note that the

implementation of the CFF on which this evaluation is based, is not

optimized with performance in mind and should be considered a

prototype open to future improvements.

6
F U T U R E W O R K

In this chapter we discuss possible improvements to the CFF and its

evaluation. To begin with, one possible line of research for future

improvements may be to devise a more complex strategy that can

exploit the BTS trace to the fullest. For example, one strategy could

reason about the path exercised by a test case and compare it to the

tree of already-discovered paths; a similarity metric can be returned

to the master which will decide to which fuzzer to inject the test

case. The similarity metric should be crafted so that higher values are

associated to the exercised path which is closer to the discovered tree

of the fuzzer. The intuition behind this is that the injection of such test

cases may allow a fuzzer to better explore its vicinity. On the other

hand one could devise a metric based on dissimilarity with the aim

of injecting test cases that differ the most from the discovered tree to

broaden the search and possibly escape local maxima.

Another possible extension to the present work is to broaden the

spectrum of fuzzers used to evaluate the CFF. For example, the in-

clusion of a black box fuzzer wouldn’t require any modification to

the current implementation of the CFF to integrate it into the roster

of fuzzers. A fuzzer of this kind would provide with much more

throughput in terms of number of SUT executions given that no in-

strumentation is used; because of this though, a black box fuzzer is

missing the notion of interesting input and its interaction with the

CFF (only in the direction from the fuzzer to the driver) would need

to be designed. To circumvent this, a black box mutational fuzzer

may also be used only to inject new test cases (produced by other,

more application-aware fuzzers) and not to extract them. The inclu-

sion of a purely white box solution such as a symbolic execution

engine could also yield interesting results. In this case, the CFF might

integrate with it using the congestion control mechanism as has been

69

70 future work

done for VUzzer (i. e. by injecting the test case with the highest score

over a time window).

Finally, as already noted in Chapter 5, the evaluation of the CFF

would greatly benefit from having more than five runs for each exper-

iment. This may allow for the Bayesian estimation to provide results

on the difference of means that express less noise (i. e. more decisive

results). On the same note, increasing the time length of the runs

(e. g. from 6 hours to 24) would allow for the fuzzers to explore the

SUT more and possibly reach and even more definite plateau in terms

of coverage.

7
C O N C L U S I O N

In this work we investigated the efficacy of running different fuzzers

on different programs. Our hypothesis is that, due to the No Free

Lunch theorem for optimization, no best fuzzer exists when their per-

formance is averaged across all possible programs. To contrast this,

we devise a Cooperative Fuzzing Framework (CFF) to allow commu-

nication and exchange of information between heterogeneous fuzzer

instances running in parallel. We design a set of APIs that fuzzers

must comply to in order for them to interface with our framework.

These APIs, which are usually already implemented by most fuzzers,

allow for extraction and injection of test cases from and into the fuzzer.

A third, optional, interfacing method allows for a form of congestion

control for slower fuzzers (e. g. those using heavier-weight analysis).

For every newly extracted test case, the framework evaluates it in

terms of code coverage with regards to the already discovered execu-

tion tree for each of the running fuzzers (besides the one that found

the test case); this evaluation consists in running the SUT with Intel

BTS enabled in order to obtain an hardware-generated execution trace

in the form of basic block transitions and then synthesizing a numeric

value to represent this evaluation. A central decisional unit is responsi-

ble to collect these evaluations and reason about their returned values

to come up with a set of fuzzers that are going to receive the given

test case. The central decisional unit and the evaluation metric realize

a specific cooperative fuzzing strategy.

We have implemented a prototype of the CFF that uses the number

of newly discovered basic block transitions in a test case as evalu-

ation metric and supports a configurable winning strategy (i. e. the

component responsible to select the set of fuzzers that are going to

receive the new test case). Four general winning strategies can be con-

71

72 conclusion

figured: highest or lowest evaluation metric and higher or lower than

a predetermined threshold.

In the evaluation, we presented the results of running four fuzzers

without cooperation with the aim of proving our hypothesis of no

best fuzzer. We ran five experiments of 24 hours long on each SUT —

for four SUTs — and compared the average obtained coverage over

time. The results of Bayesian estimation of the difference of means

provided support to the confirmation of our hypothesis as, for all

considered SUTs, the best performing fuzzer is always different.

Then, we evaluated the effect of introducing cooperation by show-

ing results of running our implementation of the CFF for 6 hours on

the same SUTs. We configured the framework to evaluate two strate-

gies: one selects a single winner with the highest metric, the other

selects all fuzzers that have returned a metric higher than zero. In

the experiments we used AFLFast, FairFuzz, Honggfuzz and VUzzer

as fuzzer components to the CFF. We compared the results from the

two cooperative strategies with the union of the results from running

the same four fuzzers without cooperation. Unfortunately, although

the final mean coverage is higher for all programs for one of the co-

operative strategies, we cannot claim a definitive winner as Bayesian

estimation of the difference of means does not support it with strong

confidence, revealing instead a need for more data.

Moreover, we compared the capability of finding unique crashes

and known vulnerabilities of the CFF and the union of fuzzers. In

particular, the cooperative strategy that uncovers the most basic block

transitions also finds more unique crashes than the union of fuzzers

with a factor of 1.3. Furthermore, the CFF finds all the CVEs that the

union finds, plus two more.

Lastly, we provided an overhead evaluation in which we note that

the resources consumed by the components of the CFF are not exces-

sive compared to the normal operation of its fuzzers. This is espe-

cially true, given that the present implementation has not been exten-

sively developed with performance in mind and should be consid-

ered a prototype.

A
B AY E S I A N E S T I M AT I O N O F C O O P E R AT I V E

S T R AT E G I E S

3900 3950 4000 4050 4100 4150 4200
0.

00
0

0.
00

8
y

p(
y)

Data Group 1 w. Post. Pred.

N1 = 5

3900 3950 4000 4050 4100 4150 4200

0.
00

0
0.

00
8

y

p(
y)

Data Group 2 w. Post. Pred.

N2 = 5

Normality

log10(ν)
0.5 1.0 1.5 2.0

95% HDI
0.515 2.11

mode = 1.48

Group 1 Mean

µ1

3000 4000 5000 6000

95% HDI
3920 4240

mean = 4080

Group 2 Mean

µ2

3000 4000 5000 6000

95% HDI
39404110

mean = 4030

Difference of Means

µ1 − µ2

−200 −100 0 100 200 300

95% HDI
−130 235

mean = 52.2
23.3% < 0 < 76.7%

Group 1 Std. Dev.

σ1

0 1000 2000 3000 4000

95% HDI
43.6 330

mode = 93.6

Group 2 Std. Dev.

σ2

0 1000 2000 3000 4000

95% HDI
21.5181

mode = 54.2

Difference of Std. Dev.s

σ1 − σ2

−200 0 200 400 600

95% HDI
−128 312

mode = 42

Effect Size

(µ1 − µ2) (σ1
2 + σ2

2) 2

−1 0 1 2

95% HDI
−0.854 1.86

mode = 0.433
23.3% < 0 < 76.7%

Figure A.1: Bayesian estimation for single winner strategy vs. union of
fuzzers for djpeg.

73

74 bayesian estimation of cooperative strategies

3900 3950 4000 4050 4100 4150 4200

0.
00

0
0.

00
4

0.
00

8

y

p(
y)

Data Group 1 w. Post. Pred.

N1 = 5

3900 3950 4000 4050 4100 4150 4200

0.
00

0
0.

00
4

0.
00

8
y

p(
y)

Data Group 2 w. Post. Pred.

N2 = 5

Normality

log10(ν)
0.5 1.0 1.5 2.0

95% HDI
0.513 2.09

mode = 1.5

Group 1 Mean

µ1

2000 3000 4000 5000 6000

95% HDI
3920 4240

mean = 4080

Group 2 Mean

µ2

2000 3000 4000 5000 6000

95% HDI
39204200

mean = 4060

Difference of Means

µ1 − µ2

−200 0 200 400

95% HDI
−192 237

mean = 22.7
39.1% < 0 < 60.9%

Group 1 Std. Dev.

σ1

0 500 1000 1500 2000 2500 3000

95% HDI
44.4 330

mode = 99.2

Group 2 Std. Dev.

σ2

0 500 1000 1500 2000 2500 3000

95% HDI
35.8 294

mode = 87.3

Difference of Std. Dev.s

σ1 − σ2

−400 −200 0 200 400 600

95% HDI
−245 295

mode = 7.87

Effect Size

(µ1 − µ2) (σ1
2 + σ2

2) 2

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

95% HDI
−1.11 1.48

mode = 0.217
39.1% < 0 < 60.9%

Figure A.2: Bayesian estimation for single winner strategy vs. multiple win-
ners strategy for djpeg.

bayesian estimation of cooperative strategies 75

4800 5000 5200 5400 5600 5800 6000

0.
00

0
0.

00
4

0.
00

8

y
p(

y)

Data Group 1 w. Post. Pred.

N1 = 5

4800 5000 5200 5400 5600 5800 6000

0.
00

0
0.

00
4

0.
00

8

y

p(
y)

Data Group 2 w. Post. Pred.

N2 = 5

Normality

log10(ν)
0.5 1.0 1.5 2.0

95% HDI
0.552 2.1

mode = 1.52

Group 1 Mean

µ1

0 2000 4000 6000 8000 10000 12000

95% HDI
4900 6160

mean = 5530

Group 2 Mean

µ2

0 2000 4000 6000 8000 10000 12000

95% HDI
49305140

mean = 5040

Difference of Means

µ1 − µ2

−500 0 500 1000 1500

95% HDI
−145 1130

mean = 493
4.6% < 0 < 95.4%

Group 1 Std. Dev.

σ1

0 2000 4000 6000 8000 10000 12000

95% HDI
179 1300

mode = 382

Group 2 Std. Dev.

σ2

0 2000 4000 6000 8000 10000 12000

95% HDI
28210

mode = 60.6

Difference of Std. Dev.s

σ1 − σ2

0 500 1000 1500 2000

95% HDI
15 1270

mode = 313

Effect Size

(µ1 − µ2) (σ1
2 + σ2

2) 2

0 1 2 3 4

95% HDI
−0.285 3.18

mode = 1.39
4.6% < 0 < 95.4%

Figure A.3: Bayesian estimation for single winner strategy vs. union of
fuzzers for objdump.

76 bayesian estimation of cooperative strategies

4800 5000 5200 5400 5600 5800 6000

0.
00

0
0.

00
6

y

p(
y)

Data Group 1 w. Post. Pred.

N1 = 5

4800 5000 5200 5400 5600 5800 6000

0.
00

0
0.

00
6

y
p(

y)

Data Group 2 w. Post. Pred.

N2 = 5

Normality

log10(ν)
0.5 1.0 1.5 2.0

95% HDI
0.514 2.09

mode = 1.5

Group 1 Mean

µ1

0 2000 4000 6000 8000 10000

95% HDI
5000 5820

mean = 5410

Group 2 Mean

µ2

0 2000 4000 6000 8000 10000

95% HDI
49305140

mean = 5030

Difference of Means

µ1 − µ2

0 500 1000

95% HDI
−47 795

mean = 374
3.3% < 0 < 96.7%

Group 1 Std. Dev.

σ1

0 2000 4000 6000

95% HDI
105 852

mode = 245

Group 2 Std. Dev.

σ2

0 2000 4000 6000

95% HDI
28.3211

mode = 62.5

Difference of Std. Dev.s

σ1 − σ2

0 500 1000 1500

95% HDI
−73 827

mode = 164

Effect Size

(µ1 − µ2) (σ1
2 + σ2

2) 2

0 1 2 3 4

95% HDI
−0.167 3.45

mode = 1.49
3.3% < 0 < 96.7%

Figure A.4: Bayesian estimation for multiple winners strategy vs. union of
fuzzers for objdump.

bayesian estimation of cooperative strategies 77

5000 5200 5400 5600 5800 60000.
00

00
0.

00
15

y
p(

y)

Data Group 1 w. Post. Pred.

N1 = 5

5000 5200 5400 5600 5800 60000.
00

00
0.

00
15

y

p(
y)

Data Group 2 w. Post. Pred.

N2 = 5

Normality

log10(ν)
0.5 1.0 1.5 2.0

95% HDI
0.523 2.1

mode = 1.5

Group 1 Mean

µ1

0 2000 4000 6000 8000 10000

95% HDI
4890 6150

mean = 5530

Group 2 Mean

µ2

0 2000 4000 6000 8000 10000

95% HDI
50105830

mean = 5410

Difference of Means

µ1 − µ2

−1000 −500 0 500 1000 1500

95% HDI
−637 885

mean = 120
34.3% < 0 < 65.7%

Group 1 Std. Dev.

σ1

0 2000 4000 6000 8000 10000

95% HDI
181 1310

mode = 390

Group 2 Std. Dev.

σ2

0 2000 4000 6000 8000 10000

95% HDI
104 853

mode = 253

Difference of Std. Dev.s

σ1 − σ2

−1000 0 1000 2000

95% HDI
−662 1200

mode = 106

Effect Size

(µ1 − µ2) (σ1
2 + σ2

2) 2

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

95% HDI
−1.03 1.58

mode = 0.282
34.3% < 0 < 65.7%

Figure A.5: Bayesian estimation for single winner strategy vs. multiple win-
ners strategy for objdump.

78 bayesian estimation of cooperative strategies

8400 8600 8800 9000 9200

0.
00

0
0.

00
2

0.
00

4

y

p(
y)

Data Group 1 w. Post. Pred.

N1 = 5

8400 8600 8800 9000 9200

0.
00

0
0.

00
2

0.
00

4
y

p(
y)

Data Group 2 w. Post. Pred.

N2 = 5

Normality

log10(ν)
0.5 1.0 1.5 2.0

95% HDI
0.521 2.11

mode = 1.47

Group 1 Mean

µ1

4000 6000 8000 10000 12000 14000

95% HDI
84309110

mean = 8760

Group 2 Mean

µ2

4000 6000 8000 10000 12000 14000

95% HDI
82808960

mean = 8620

Difference of Means

µ1 − µ2

−500 0 500 1000

95% HDI
−341 634

mean = 147
22.4% < 0 < 77.6%

Group 1 Std. Dev.

σ1

0 2000 4000 6000 8000

95% HDI
93.7 704

mode = 206

Group 2 Std. Dev.

σ2

0 2000 4000 6000 8000

95% HDI
84.1 707

mode = 203

Difference of Std. Dev.s

σ1 − σ2

−1000 −500 0 500 1000

95% HDI
−606 621

mode = 11.1

Effect Size

(µ1 − µ2) (σ1
2 + σ2

2) 2

−1 0 1 2

95% HDI
−0.825 1.87

mode = 0.425
22.4% < 0 < 77.6%

Figure A.6: Bayesian estimation for multiple winners strategy vs. union of
fuzzers for tiff2pdf.

bayesian estimation of cooperative strategies 79

8400 8600 8800 9000 9200

0.
00

0
0.

00
4

y
p(

y)

Data Group 1 w. Post. Pred.

N1 = 5

8400 8600 8800 9000 9200

0.
00

0
0.

00
4

y

p(
y)

Data Group 2 w. Post. Pred.

N2 = 5

Normality

log10(ν)
0.5 1.0 1.5 2.0

95% HDI
0.549 2.09

mode = 1.47

Group 1 Mean

µ1

4000 6000 8000 10000 12000 14000 16000

95% HDI
84209110

mean = 8770

Group 2 Mean

µ2

4000 6000 8000 10000 12000 14000 16000

95% HDI
83908760

mean = 8580

Difference of Means

µ1 − µ2

−400 −200 0 200 400 600 800

95% HDI
−207 580

mean = 187
12.6% < 0 < 87.4%

Group 1 Std. Dev.

σ1

0 2000 4000 6000 8000

95% HDI
95.4 710

mode = 205

Group 2 Std. Dev.

σ2

0 2000 4000 6000 8000

95% HDI
52.6387

mode = 113

Difference of Std. Dev.s

σ1 − σ2

−500 0 500 1000

95% HDI
−280 671

mode = 79.6

Effect Size

(µ1 − µ2) (σ1
2 + σ2

2) 2

−1 0 1 2

95% HDI
−0.591 2.25

mode = 0.758
12.6% < 0 < 87.4%

Figure A.7: Bayesian estimation for multiple winners strategy vs. single win-
ner strategy for tiff2pdf.

80 bayesian estimation of cooperative strategies

8700 8800 8900 9000 9100 9200

0.
00

0
0.

00
3

0.
00

6

y

p(
y)

Data Group 1 w. Post. Pred.

N1 = 5

8700 8800 8900 9000 9100 9200

0.
00

0
0.

00
3

0.
00

6
y

p(
y)

Data Group 2 w. Post. Pred.

N2 = 5

Normality

log10(ν)
0.5 1.0 1.5 2.0

95% HDI
0.555 2.1

mode = 1.51

Group 1 Mean

µ1

5000 6000 7000 8000 9000 10000

95% HDI
87809240

mean = 9010

Group 2 Mean

µ2

5000 6000 7000 8000 9000 10000

95% HDI
87609070

mean = 8920

Difference of Means

µ1 − µ2

−400 −200 0 200 400 600

95% HDI
−186 376

mean = 92.2
20.5% < 0 < 79.5%

Group 1 Std. Dev.

σ1

0 1000 2000 3000 4000 5000

95% HDI
64.4 475

mode = 143

Group 2 Std. Dev.

σ2

0 1000 2000 3000 4000 5000

95% HDI
43.7324

mode = 94.6

Difference of Std. Dev.s

σ1 − σ2

−600 −400 −200 0 200 400 600 800

95% HDI
−254 437

mode = 38.5

Effect Size

(µ1 − µ2) (σ1
2 + σ2

2) 2

−1 0 1 2

95% HDI
−0.796 1.92

mode = 0.552
20.5% < 0 < 79.5%

Figure A.8: Bayesian estimation for multiple winners strategy vs. union of
fuzzers for listswf.

bayesian estimation of cooperative strategies 81

8600 8700 8800 8900 9000 9100 9200

0.
00

0
0.

00
3

0.
00

6

y
p(

y)

Data Group 1 w. Post. Pred.

N1 = 5

8600 8700 8800 8900 9000 9100 9200

0.
00

0
0.

00
3

0.
00

6

y

p(
y)

Data Group 2 w. Post. Pred.

N2 = 5

Normality

log10(ν)
0.5 1.0 1.5 2.0

95% HDI
0.531 2.09

mode = 1.48

Group 1 Mean

µ1

6000 7000 8000 9000 10000 11000 12000

95% HDI
87809230

mean = 9010

Group 2 Mean

µ2

6000 7000 8000 9000 10000 11000 12000

95% HDI
86208980

mean = 8800

Difference of Means

µ1 − µ2

−200 0 200 400 600

95% HDI
−82.6 504

mean = 207
6% < 0 < 94%

Group 1 Std. Dev.

σ1

0 1000 2000 3000 4000

95% HDI
64.4 473

mode = 142

Group 2 Std. Dev.

σ2

0 1000 2000 3000 4000

95% HDI
47.5 372

mode = 107

Difference of Std. Dev.s

σ1 − σ2

−500 0 500

95% HDI
−305 426

mode = 31.1

Effect Size

(µ1 − µ2) (σ1
2 + σ2

2) 2

0 1 2 3

95% HDI
−0.355 2.79

mode = 1.13
6% < 0 < 94%

Figure A.9: Bayesian estimation for multiple winners strategy vs. single win-
ner strategy for listswf.

B I B L I O G R A P H Y

[1] Mike Aizatsky, Kostya Serebryany, Oliver Chang, Abhishek

Arya, and Meredith Whittaker. Announcing OSS-Fuzz: Contin-

uous Fuzzing for Open Source Software. Dec. 2016. url: https:

//security.googleblog.com/2016/12/announcing-oss-fuzz-

continuous-fuzzing.html.

[2] Frances E. Allen. “Control Flow Analysis.” In: Proceedings of a

Symposium on Compiler Optimization. Urbana-Champaign, Illi-

nois: ACM, 1970, pp. 1–19. doi: 10.1145/800028.808479. url:

http://doi.acm.org/10.1145/800028.808479.

[3] Frances E Allen and John Cocke. Graph-theoretic constructs for

program control flow analysis. IBM Thomas J. Watson Research

Center, 1972.

[4] American Fuzzy Lop + Dyninst == AFL Fuzzing blackbox binaries.

url: https://github.com/vrtadmin/moflow/tree/master/

afl-dyninst.

[5] Paul Ammann and Jeff Offutt. Introduction to software testing.

Cambridge University Press, 2016.

[6] David Aspinall and Martin Hofmann. “Dependent Types.” In:

Advanced Topics in Types and Programming Languages. Ed. by

Benjamin C. Pierce. The MIT Press, 2004. Chap. 2, pp. 45–86.

isbn: 0262162288.

[7] Lennart Augustsson. “Cayenne&Mdash;a Language with De-

pendent Types.” In: Proceedings of the Third ACM SIGPLAN

International Conference on Functional Programming. ICFP ’98.

Baltimore, Maryland, USA: ACM, 1998, pp. 239–250. isbn: 1-

58113-024-4. doi: 10.1145/289423.289451. url: http://doi.

acm.org/10.1145/289423.289451.

83

https://security.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://security.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://security.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://doi.org/10.1145/800028.808479
http://doi.acm.org/10.1145/800028.808479
https://github.com/vrtadmin/moflow/tree/master/afl-dyninst
https://github.com/vrtadmin/moflow/tree/master/afl-dyninst
https://doi.org/10.1145/289423.289451
http://doi.acm.org/10.1145/289423.289451
http://doi.acm.org/10.1145/289423.289451

84 bibliography

[8] Alberto Bacchelli and Christian Bird. “Expectations, outcomes,

and challenges of modern code review.” In: Proceedings of the

2013 international conference on software engineering. IEEE Press.

2013, pp. 712–721.

[9] James Bach and Patrick J Schroeder. “Pairwise testing: A best

practice that isn’t.” In: Proceedings of 22nd Pacific Northwest Soft-

ware Quality Conference. Citeseer. 2004, pp. 180–196.

[10] Greg Banks, Marco Cova, Viktoria Felmetsger, Kevin Almeroth,

Richard Kemmerer, and Giovanni Vigna. “SNOOZE: toward a

Stateful NetwOrk prOtocol fuzZEr.” In: International Confer-

ence on Information Security. Springer. 2006, pp. 343–358.

[11] Earl T Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz,

and Shin Yoo. “The oracle problem in software testing: A sur-

vey.” In: IEEE transactions on software engineering 41.5 (2015),

pp. 507–525.

[12] Osbert Bastani, Rahul Sharma, Alex Aiken, and Percy Liang.

“Synthesizing program input grammars.” In: ACM SIGPLAN

Notices. Vol. 52. 6. ACM. 2017, pp. 95–110.

[13] Mike Batongbacal and Syed Medhi. Microsoft Security Risk De-

tection. May 2017. url: https://devblogs.microsoft.com/

premier-developer/microsoft-security-risk-detection/.

[14] Kent Beck and Cynthia Andres. Extreme Programming Explained:

Embrace Change (2Nd Edition). Addison-Wesley Professional,

2004. isbn: 0321278658.

[15] Boris Beizer. Black-box Testing: Techniques for Functional Testing

of Software and Systems. New York, NY, USA: John Wiley &

Sons, Inc., 1995. isbn: 0-471-12094-4.

[16] Fabrice Bellard. “QEMU, a fast and portable dynamic transla-

tor.” In: USENIX Annual Technical Conference, FREENIX Track.

Vol. 41. 2005, p. 46.

[17] Donald A Berry and Bert Fristedt. “Bandit problems: sequen-

tial allocation of experiments (Monographs on statistics and

https://devblogs.microsoft.com/premier-developer/microsoft-security-risk-detection/
https://devblogs.microsoft.com/premier-developer/microsoft-security-risk-detection/

bibliography 85

applied probability).” In: London: Chapman and Hall 5 (1985),

pp. 71–87.

[18] William Blum. Neural fuzzing: applying DNN to software security

testing. Nov. 2017. url: https : / / www . microsoft . com / en -

us/research/blog/neural-fuzzing/.

[19] Barry W. Boehm. “Verifying and validating software require-

ments and design specifications.” In: IEEE software 1.1 (1984),

p. 75.

[20] Marcel Böhme and Soumya Paul. “A probabilistic analysis of

the efficiency of automated software testing.” In: IEEE Transac-

tions on Software Engineering 42.4 (2016), pp. 345–360.

[21] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury.

“Coverage-based greybox fuzzing as markov chain.” In: IEEE

Transactions on Software Engineering (2017).

[22] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and

Abhik Roychoudhury. “Directed greybox fuzzing.” In: Proceed-

ings of the 2017 ACM SIGSAC Conference on Computer and Com-

munications Security. ACM. 2017, pp. 2329–2344.

[23] Konstantin Böttinger. “Chemotactic Test Case Recombination

for Large-Scale Fuzzing.” In: Journal of Cyber Security 5.4 (),

pp. 269–286.

[24] Konstantin Böttinger. “Fuzzing binaries with Lévy flight swarms.”

In: EURASIP Journal on Information Security 2016.1 (2016), p. 28.

[25] Konstantin Böttinger. “Hunting bugs with Lévy flight forag-

ing.” In: 2016 IEEE Security and Privacy Workshops (SPW). IEEE.

2016, pp. 111–117.

[26] Konstantin Böttinger. “Guiding a colony of black-box fuzzers

with chemotaxis.” In: 2017 IEEE Security and Privacy Workshops

(SPW). IEEE. 2017, pp. 11–16.

[27] Robert S. Boyer, Bernard Elspas, and Karl N. Levitt. “SELECT—a

formal system for testing and debugging programs by sym-

bolic execution.” In: 1975.

https://www.microsoft.com/en-us/research/blog/neural-fuzzing/
https://www.microsoft.com/en-us/research/blog/neural-fuzzing/

86 bibliography

[28] Edwin C. Brady. “Idris — systems programming meets full

dependent types.” In: In Proc. 5th ACM workshop on Program-

ming languages meets program verification, PLPV ’11. ACM, 2011,

pp. 43–54.

[29] Melvin A Breuer. “A random and an algorithmic technique

for fault detection test generation for sequential circuits.” In:

IEEE Transactions on Computers 100.11 (1971), pp. 1364–1370.

[30] Jacob Burnim and Koushik Sen. “Heuristics for Scalable Dy-

namic Test Generation.” In: 2008 23rd IEEE/ACM International

Conference on Automated Software Engineering (2008), pp. 443–

446.

[31] John N Buxton and Brian Randell. Software engineering tech-

niques: report on a conference sponsored by the NATO Science Com-

mittee, Rome, Italy, 27th to 31st October 1969. NATO Science

Committee, 1970.

[32] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. “KLEE:

Unassisted and Automatic Generation of High-Coverage Tests

for Complex Systems Programs.” In: OSDI. Vol. 8. 2008, pp. 209–

224.

[33] Cristian Cadar, Vijay Ganesh, Peter M Pawlowski, David L

Dill, and Dawson R Engler. “EXE: automatically generating in-

puts of death.” In: ACM Transactions on Information and System

Security (TISSEC) 12.2 (2008), p. 10.

[34] L Cardelli. “Typeful Programming. Formal Descriptions of Pro-

gramming Concepts.” In: Springer-Verlag, Berlin/New York 45

(1991), p. 1989.

[35] Luca Cardelli. “Type Systems.” In: Computer Science Handbook,

Second Edition. Ed. by Allen B. Tucker. Chapman & Hall/CRC,

2004. isbn: 158488360X.

[36] Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert, and

David Brumley. “Unleashing mayhem on binary code.” In:

2012 IEEE Symposium on Security and Privacy. IEEE. 2012, pp. 380–

394.

bibliography 87

[37] Oliver Chang, Abhishek Arya, Kostya Serebryany, and Josh

Armour. OSS-Fuzz: Five months later, and rewarding projects. May

2017. url: https://security.googleblog.com/2017/05/oss-

fuzz-five-months-later-and.html.

[38] Tsong Yueh Chen, Hing Leung, and I. K. Mak. “Adaptive Ran-

dom Testing.” In: ASIAN. 2004.

[39] Lori A. Clarke. “A System to Generate Test Data and Sym-

bolically Execute Programs.” In: IEEE Transactions on Software

Engineering SE-2 (1976), pp. 215–222.

[40] Philip B Crosby. “The art of making quality certain.” In: New

York: New American Library 17 (1979).

[41] Jacek Czerwonka. “Pairwise testing in real world.” In: 24th

Pacific Northwest Software Quality Conference. Vol. 200. Citeseer.

2006.

[42] Giuseppe A Di Lucca and Anna Rita Fasolino. “Testing Web-

based applications: The state of the art and future trends.” In:

Information and Software Technology 48.12 (2006), pp. 1172–1186.

[43] Edsger Wybe Dijkstra et al. Notes on structured programming.

1970.

[44] Chris Evans, Matt Moore, and Ormandy Travis. Fuzzing at

scale. Aug. 2011. url: https://security.googleblog.com/

2011/08/fuzzing-at-scale.html.

[45] Dror G Feitelson, Eitan Frachtenberg, and Kent L Beck. “Devel-

opment and deployment at Facebook.” In: IEEE Internet Com-

puting 17.4 (2013), pp. 8–17.

[46] Jonathan Foote. Cert triage tools. 2013. url: https://github.

com/jfoote/exploitable.

[47] Martin Fowler, Kent Beck, John Brant, William Opdyke, and

Don Roberts. Refactoring: improving the design of existing code.

Addison-Wesley Professional, 1999.

[48] Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamen-

tals of software engineering. Prentice Hall PTR, 2002.

https://security.googleblog.com/2017/05/oss-fuzz-five-months-later-and.html
https://security.googleblog.com/2017/05/oss-fuzz-five-months-later-and.html
https://security.googleblog.com/2011/08/fuzzing-at-scale.html
https://security.googleblog.com/2011/08/fuzzing-at-scale.html
https://github.com/jfoote/exploitable
https://github.com/jfoote/exploitable

88 bibliography

[49] Patrice Godefroid. “Random testing for security: blackbox vs.

whitebox fuzzing.” In: Proceedings of the 2nd international work-

shop on Random testing: co-located with the 22nd IEEE/ACM In-

ternational Conference on Automated Software Engineering (ASE

2007). ACM. 2007.

[50] Patrice Godefroid, Adam Kiezun, and Michael Y Levin. “Grammar-

based whitebox fuzzing.” In: ACM Sigplan Notices. Vol. 43. 6.

ACM. 2008, pp. 206–215.

[51] Patrice Godefroid, Nils Klarlund, and Koushik Sen. “DART:

directed automated random testing.” In: PLDI. 2005.

[52] Patrice Godefroid, Michael Y Levin, David A Molnar, et al.

“Automated Whitebox Fuzz Testing.” In: NDSS. Vol. 8. 2008,

pp. 151–166.

[53] Patrice Godefroid, Michael Y Levin, and David Molnar. “SAGE:

whitebox fuzzing for security testing.” In: Communications of

the ACM 55.3 (2012), pp. 40–44.

[54] Patrice Godefroid, Hila Peleg, and Rishabh Singh. “Learn&fuzz:

Machine learning for input fuzzing.” In: Proceedings of the 32nd

IEEE/ACM International Conference on Automated Software Engi-

neering. IEEE Press. 2017, pp. 50–59.

[55] James Gosling, Bill Joy, Guy L. Steele, Gilad Bracha, and Alex

Buckley. The Java Language Specification, Java SE 8 Edition. 1st.

Addison-Wesley Professional, 2014. isbn: 013390069X, 9780133900699.

[56] Mats Grindal, Jeff Offutt, and Sten F Andler. “Combination

testing strategies: a survey.” In: Software Testing, Verification and

Reliability 15.3 (2005), pp. 167–199.

[57] Anthony Hall. “Seven Myths of Formal Methods.” In: IEEE

Softw. 7.5 (Sept. 1990), pp. 11–19. issn: 0740-7459. doi: 10 .

1109/52.57887. url: https://doi.org/10.1109/52.57887.

[58] Anders Hejlsberg, Scott Wiltamuth, and Peter Golde. C# Lan-

guage Specification. Boston, MA, USA: Addison-Wesley Long-

man Publishing Co., Inc., 2003. isbn: 0321154916.

https://doi.org/10.1109/52.57887
https://doi.org/10.1109/52.57887
https://doi.org/10.1109/52.57887

bibliography 89

[59] Aki Helin. Radamsa fuzzer. 2015. url: https://github.com/

aoh/radamsa.

[60] S Hocevar. zzuf—multi-purpose fuzzer. 2011. url: http://caca.

zoy.org/wiki/zzuf.

[61] Allen D Householder and Jonathan M Foote. Probability-based

parameter selection for black-box fuzz testing. Tech. rep. CARNEGIE-

MELLON UNIV PITTSBURGH PA SOFTWARE ENGINEER-

ING INST, 2012.

[62] William E Howden. “Theoretical and empirical studies of pro-

gram testing.” In: IEEE Transactions on Software Engineering 4

(1978), pp. 293–298.

[63] “IEEE Standard for System, Software, and Hardware Verifica-

tion and Validation.” In: IEEE Std 1012-2016 (Revision of IEEE

Std 1012-2012/ Incorporates IEEE Std 1012-2016/Cor1-2017) (2017),

pp. 1–260. doi: 10.1109/IEEESTD.2017.8055462.

[64] Ann Johnson. Application fuzzing in the era of Machine Learn-

ing and AI. Jan. 2018. url: https : / / www . microsoft . com /

security/blog/2018/01/03/application-fuzzing-in-the-

era-of-machine-learning-and-ai/.

[65] Simon Peyton Jones, ed. Haskell 98 Language and Libraries: The

Revised Report. Cambridge University Press, 2003.

[66] Cem Kaner. “A tutorial in exploratory testing.” In: Tutorial pre-

sented at QUEST2008 (2008).

[67] Cem Kaner, Jack Falk, and Hung Quoc Nguyen. Testing Com-

puter Software Second Edition. Dreamtech Press, 2000.

[68] Niall Kennedy. Google Mondrian: web-based code review and stor-

age. 2006. url: https://www.niallkennedy.com/blog/2006/

11/google-mondrian.html.

[69] Brian W. Kernighan. The C Programming Language. Ed. by Den-

nis M. Ritchie. 2nd. Prentice Hall Professional Technical Refer-

ence, 1988. isbn: 0131103709.

[70] James C. King. “Symbolic Execution and Program Testing.” In:

Commun. ACM 19 (1976), pp. 385–394.

https://github.com/aoh/radamsa
https://github.com/aoh/radamsa
http://caca.zoy.org/wiki/zzuf
http://caca.zoy.org/wiki/zzuf
https://doi.org/10.1109/IEEESTD.2017.8055462
https://www.microsoft.com/security/blog/2018/01/03/application-fuzzing-in-the-era-of-machine-learning-and-ai/
https://www.microsoft.com/security/blog/2018/01/03/application-fuzzing-in-the-era-of-machine-learning-and-ai/
https://www.microsoft.com/security/blog/2018/01/03/application-fuzzing-in-the-era-of-machine-learning-and-ai/
https://www.niallkennedy.com/blog/2006/11/google-mondrian.html
https://www.niallkennedy.com/blog/2006/11/google-mondrian.html

90 bibliography

[71] Gerwin Klein et al. “seL4: Formal Verification of an OS Ker-

nel.” In: Proceedings of the ACM SIGOPS 22Nd Symposium on

Operating Systems Principles. SOSP ’09. Big Sky, Montana, USA:

ACM, 2009, pp. 207–220. isbn: 978-1-60558-752-3. doi: 10.1145/

1629575 . 1629596. url: http : / / doi . acm . org / 10 . 1145 /

1629575.1629596.

[72] Bogdan Korel. “Automated Software Test Data Generation.”

In: IEEE Trans. Software Eng. 16 (1990), pp. 870–879.

[73] John K Kruschke. “Bayesian estimation supersedes the t test.”

In: Journal of Experimental Psychology: General 142.2 (2013), p. 573.

[74] D Richard Kuhn, Dolores R Wallace, and Albert M Gallo. “Soft-

ware fault interactions and implications for software testing.”

In: IEEE transactions on software engineering 30.6 (2004), pp. 418–

421.

[75] Volodymyr Kuznetsov, Johannes Kinder, Stefan Bucur, and

George Candea. “Efficient state merging in symbolic execu-

tion.” In: In Proceedings of the ACM SIGPLAN 2012 Conference

on Programming Language Design and Implementation (PLDI ’12).

2012.

[76] Yu Lei and Kuo-Chung Tai. “In-parameter-order: A test gener-

ation strategy for pairwise testing.” In: Proceedings Third IEEE

International High-Assurance Systems Engineering Symposium (Cat.

No. 98EX231). IEEE. 1998, pp. 254–261.

[77] Caroline Lemieux and Koushik Sen. “FairFuzz: Targeting Rare

Branches to Rapidly Increase Greybox Fuzz Testing Cover-

age.” In: arXiv preprint arXiv:1709.07101 (2017).

[78] Steve Lipner. “The trustworthy computing security develop-

ment lifecycle.” In: Computer Security Applications Conference,

2004. 20th Annual. IEEE. 2004, pp. 2–13.

[79] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Ar-

tur Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa Reddi,

and Kim Hazelwood. “Pin: building customized program anal-

https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/1629575.1629596
http://doi.acm.org/10.1145/1629575.1629596
http://doi.acm.org/10.1145/1629575.1629596

bibliography 91

ysis tools with dynamic instrumentation.” In: Acm sigplan no-

tices. Vol. 40. 6. ACM. 2005, pp. 190–200.

[80] Kin-Keung Ma, Khoo Yit Phang, Jeffrey S. Foster, and Michael

Hicks. “Directed Symbolic Execution.” In: Proceedings of the

18th International Conference on Static Analysis. SAS’11. Venice,

Italy: Springer-Verlag, 2011, pp. 95–111. isbn: 978-3-642-23701-

0. url: http : / / dl . acm . org / citation . cfm ? id = 2041552 .

2041563.

[81] Rupak Majumdar and Koushik Sen. “Hybrid concolic testing.”

In: 29th International Conference on Software Engineering (ICSE’07).

IEEE. 2007, pp. 416–426.

[82] Robert Mandl. “Orthogonal Latin squares: an application of

experiment design to compiler testing.” In: Communications of

the ACM 28.10 (1985), pp. 1054–1058.

[83] Robert C Martin. Clean code: a handbook of agile software crafts-

manship. Pearson Education, 2009.

[84] Nicholas D. Matsakis and Felix S. Klock II. “The Rust Lan-

guage.” In: Ada Lett. 34.3 (Oct. 2014), pp. 103–104. issn: 1094-

3641. doi: 10.1145/2692956.2663188. url: http://doi.acm.

org/10.1145/2692956.2663188.

[85] Barton P Miller, Louis Fredriksen, and Bryan So. “An empir-

ical study of the reliability of UNIX utilities.” In: Communica-

tions of the ACM 33.12 (1990), pp. 32–44.

[86] Max Moroz and Kostya Serebryany. Guided in-process fuzzing

of Chrome components. Aug. 2016. url: https : / / security .

googleblog.com/2016/08/guided-in-process-fuzzing-of-

chrome.html.

[87] Kshirasagar Naik and Priyadarshi Tripathy. Software testing

and quality assurance: theory and practice. John Wiley & Sons,

2011.

[88] Hung Q Nguyen. Testing applications on the Web: Test planning

for Internet-based systems. John Wiley & Sons, 2001.

http://dl.acm.org/citation.cfm?id=2041552.2041563
http://dl.acm.org/citation.cfm?id=2041552.2041563
https://doi.org/10.1145/2692956.2663188
http://doi.acm.org/10.1145/2692956.2663188
http://doi.acm.org/10.1145/2692956.2663188
https://security.googleblog.com/2016/08/guided-in-process-fuzzing-of-chrome.html
https://security.googleblog.com/2016/08/guided-in-process-fuzzing-of-chrome.html
https://security.googleblog.com/2016/08/guided-in-process-fuzzing-of-chrome.html

92 bibliography

[89] Brian S Pak. “Hybrid fuzz testing: Discovering software bugs

via fuzzing and symbolic execution.” In: School of Computer

Science Carnegie Mellon University (2012).

[90] Van-Thuan Pham, Marcel Böhme, and Abhik Roychoudhury.

“Model-based whitebox fuzzing for program binaries.” In: 2016

31st IEEE/ACM International Conference on Automated Software

Engineering (ASE). IEEE. 2016, pp. 543–553.

[91] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cris-

tiano Giuffrida, and Herbert Bos. “Vuzzer: Application-aware

evolutionary fuzzing.” In: Proceedings of the Network and Dis-

tributed System Security Symposium (NDSS). 2017.

[92] Alexandre Rebert, Sang Kil Cha, Thanassis Avgerinos, Jonathan

Foote, David Warren, Gustavo Grieco, and David Brumley. “Op-

timizing seed selection for fuzzing.” In: 23rd {USENIX} Secu-

rity Symposium ({USENIX} Security 14). 2014, pp. 861–875.

[93] Debra J Richardson and Lori A Clarke. “A partition analysis

method to increase program reliability.” In: Proceedings of the

5th international conference on Software engineering. IEEE Press.

1981, pp. 244–253.

[94] “SO/IEC/IEEE Draft Standard for Software and Systems Engineering–

Software Testing–Part 1: Concepts and Definitions.” In: ISO/IEC/IEEE

P29119-1/DIS, September 2012 (2012), pp. 1–64.

[95] Theodoor Scholte, Davide Balzarotti, and Engin Kirda. “Have

things changed now? An empirical study on input validation

vulnerabilities in web applications.” In: Computers & Security

31.3 (2012), pp. 344–356.

[96] Koushik Sen and Gul A. Agha. “CUTE and jCUTE: Concolic

Unit Testing and Explicit Path Model-Checking Tools.” In: CAV.

2006.

[97] Koushik Sen, Darko Marinov, and Gul A. Agha. “CUTE: a

concolic unit testing engine for C.” In: 2005.

bibliography 93

[98] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens,

Mario Polino, Andrew Dutcher, John Grosen, Siji Feng, Christophe

Hauser, Christopher Kruegel, et al. “Sok:(state of) the art of

war: Offensive techniques in binary analysis.” In: 2016 IEEE

Symposium on Security and Privacy (SP). IEEE. 2016, pp. 138–

157.

[99] IEEE Computer Society, Pierre Bourque, and Richard E. Fair-

ley. Guide to the Software Engineering Body of Knowledge (SWE-

BOK(R)): Version 3.0. 3rd. Los Alamitos, CA, USA: IEEE Com-

puter Society Press, 2014. isbn: 0769551661, 9780769551661.

[100] Matt Staats and Corina Pǎsǎreanu. “Parallel Symbolic Execu-

tion for Structural Test Generation.” In: Proceedings of the 19th

International Symposium on Software Testing and Analysis. ISSTA

’10. Trento, Italy: ACM, 2010, pp. 183–194. isbn: 978-1-60558-

823-0. doi: 10.1145/1831708.1831732. url: http://doi.acm.

org/10.1145/1831708.1831732.

[101] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher,

Ruoyu Wang, Jacopo Corbetta, Yan Shoshitaishvili, Christo-

pher Kruegel, and Giovanni Vigna. “Driller: Augmenting Fuzzing

Through Selective Symbolic Execution.” In: NDSS. Vol. 16. 2016,

pp. 1–16.

[102] Bjarne Stroustrup. The C++ Programming Language. 4th. Addison-

Wesley Professional, 2013. isbn: 0321563840, 9780321563842.

[103] Nikhil Swamy et al. “Dependent Types and Multi-Monadic

Effects in F*.” In: 43rd ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages (POPL). ACM, Jan. 2016,

pp. 256–270. isbn: 978-1-4503-3549-2. url: https://www.fstar-

lang.org/papers/mumon/.

[104] Robert Swiecki. Honggfuzz. url: https://github.com/google/

honggfuzz.

[105] Ari Takanen, Jared D Demott, and Charles Miller. Fuzzing

for software security testing and quality assurance. Artech House,

2008.

https://doi.org/10.1145/1831708.1831732
http://doi.acm.org/10.1145/1831708.1831732
http://doi.acm.org/10.1145/1831708.1831732
https://www.fstar-lang.org/papers/mumon/
https://www.fstar-lang.org/papers/mumon/
https://github.com/google/honggfuzz
https://github.com/google/honggfuzz

94 bibliography

[106] Keizo Tatsumi. “Test case design support system.” In: Proc. In-

ternational Conference on Quality Control (ICQC’87). 1987, pp. 615–

620.

[107] Tielei Wang, Tao Wei, Guofei Gu, and Wei Zou. “TaintScope: A

checksum-aware directed fuzzing tool for automatic software

vulnerability detection.” In: 2010 IEEE Symposium on Security

and Privacy. IEEE. 2010, pp. 497–512.

[108] Gerald M. Weinberg. Perfect Software: And Other Illusions About

Testing. New York, NY, USA: Dorset House Publishing Co.,

Inc., 2008. isbn: 0932633692, 9780932633699.

[109] David H Wolpert, William G Macready, et al. “No free lunch

theorems for optimization.” In: IEEE transactions on evolution-

ary computation 1.1 (1997), pp. 67–82.

[110] Maverick Woo, Sang Kil Cha, Samantha Gottlieb, and David

Brumley. “Scheduling black-box mutational fuzzing.” In: Pro-

ceedings of the 2013 ACM SIGSAC conference on Computer & com-

munications security. ACM. 2013, pp. 511–522.

[111] Jim Woodcock, Peter Gorm Larsen, Juan Bicarregui, and John

Fitzgerald. “Formal Methods: Practice and Experience.” In:

ACM Comput. Surv. 41.4 (Oct. 2009), 19:1–19:36. issn: 0360-

0300. doi: 10.1145/1592434.1592436. url: http://doi.acm.

org/10.1145/1592434.1592436.

[112] Hongwei Xi. “Dependent ML An approach to practical pro-

gramming with dependent types.” In: Journal of Functional Pro-

gramming 17.2 (2007), pp. 215–286.

[113] Hongwei Xi and Frank Pfenning. “Dependent types in practi-

cal programming.” In: Proceedings of the 26th ACM SIGPLAN-

SIGACT symposium on Principles of programming languages. ACM.

1999, pp. 214–227.

[114] Michal Zalewski. American Fuzzy Lop. url: http://lcamtuf.

coredump.cx/afl/.

https://doi.org/10.1145/1592434.1592436
http://doi.acm.org/10.1145/1592434.1592436
http://doi.acm.org/10.1145/1592434.1592436
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/

bibliography 95

[115] Michal Zalewski. Binary fuzzing strategies: what works, what doesn’t.

Aug. 2014. url: https://lcamtuf.blogspot.nl/2014/08/

binary-fuzzing-strategies-what-works.html.

[116] Michal Zalewski. Pulling JPEGs out of thin air. Nov. 2014. url:

https://lcamtuf.blogspot.nl/2014/11/pulling-jpegs-out-

of-thin-air.html.

[117] Michal Zalewsky. Technical “whitepaper” for afl-fuzz. url: http:

//lcamtuf.coredump.cx/afl/technical_details.txt.

https://lcamtuf.blogspot.nl/2014/08/binary-fuzzing-strategies-what-works.html
https://lcamtuf.blogspot.nl/2014/08/binary-fuzzing-strategies-what-works.html
https://lcamtuf.blogspot.nl/2014/11/pulling-jpegs-out-of-thin-air.html
https://lcamtuf.blogspot.nl/2014/11/pulling-jpegs-out-of-thin-air.html
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt

	Dedication
	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Listings
	Acronyms
	1 Introduction
	1.1 Quality Assurance and Control
	1.2 Developing High-Quality Software
	1.2.1 Defensive Programming
	1.2.2 Code Reviews
	1.2.3 Advancements in Programming Languages
	1.2.4 Formal Methods

	1.3 Software Testing
	1.3.1 Testing Techniques
	1.3.2 Fuzz Testing

	1.4 Thesis Outline

	2 Background and Related Work
	2.1 Black-Box Mutational Fuzzing
	2.2 Coverage-Based Gray-Box Fuzzing
	2.2.1 American Fuzzy Lop
	2.2.2 Honggfuzz
	2.2.3 VUzzer

	2.3 Symbolic-Assisted Fuzzing
	2.4 Hybrid Techniques
	2.5 Cooperative Fuzzing

	3 Cooperative Fuzzing Framework
	3.1 System Design
	3.1.1 Common Fuzzer Interface
	3.1.2 Central Decisional Unit
	3.1.3 Cooperative Fuzzing Strategies

	3.2 System Implementation
	3.2.1 Communication Channels
	3.2.2 Driver Implementation
	3.2.3 Master Implementation

	4 Evaluation
	4.1 Single Fuzzer Evaluation
	4.2 Cooperative Fuzzing Evaluation
	4.3 Crash Analysis
	4.3.1 Known Vulnerabilities

	4.4 Overhead Evaluation

	5 Discussion
	6 Future Work
	7 Conclusion
	A Bayesian Estimation of Cooperative Strategies
	 Bibliography

