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Abstract

Manual memory management required in programming languages like C and
C++ has its advantages, but comes at a significant cost in complexity, fre-
quently leading to bugs and security vulnerabilities. One such example is
temporal memory errors, whereby an object is accessed after it has been
deallocated, through a pointer (or C++ reference) that outlived it: a dan-
gling pointer. Such bugs, even after decades of research and development
both in tooling and programming languages, are still extremely common to-
day.

We propose a new solution, called Dangless, which protects against tem-
poral memory errors by ensuring that any memory accesses through dan-
gling pointers are detected immediately and cause the application to be ter-
minated. This is achieved by maintaining a unique virtual alias for each
individual allocation, similarly to the shadow pages in previous work such as
Electric Fence [ele] and Oscar [DMW17]. Dangless iterates on these existing
techniques by significantly improving performance by running the process in
a light-weight virtual environment, giving us direct access to the page tables
and allowing us to remap virtual pages and modify page protection flags
without having to pay the overhead of system calls.

We have evaluated performance on the SPEC2006 benchmarking suite
and have found a geometric mean of 5.7% runtime performance overhead
and 8.2% physical memory overhead. This makes Dangless one of the best-
performing tools for preventing temporal memory errors, although its practi-
cal usefulness is reduced by not offering protection against a more widespread
set of memory errors.



Chapter

Introduction

1.1 Memory errors

Developing software is difficult. Developing software that is bug-free is all
but impossible. “Low-level” programming languages such as C and C++ offer
a great deal of control to the programmer, allowing them to write small and
efficient computer programs. However, they also require the programmer to
take a great deal of care with their development: the same level of control that
allows extremely efficient software to be built also places a large burden on
the developer, as making mistakes has steeper consequences than in higher-
level, safer programming languages such as Java or C#. (Indeed, this is one
of the primary motivators for working in high-level languages.)

Typically, low-level programming languages require the programmers to
manage memory manually, while higher-level languages generally include a
garbage collector (GC) that frees the programmer from this burden. Man-
aging memory manually means that objects whose lifetime is dynamic (not
tied to a particular program scope) have to be allocated as well as deallocated
(freed) explicitly.

In C, such memory allocation typically occurs using the malloc() or
calloc() functions. These allocate a region inside the heap memory of the
application, reserving it for use, and returning a pointer (typically, an un-
typed void x) to it. On the x86 and x86-64 architectures, which we will
mainly concern ourselves with in this thesis, a pointer is just a linear mem-
ory address: a number representing the index of the first byte of the pointed
region in the main memory. This makes pointer arithmetic, such as accessing
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numbers[4] in a int xnumbers very easy and efficient to perform: just load
sizeof(int) bytes from the memory address (uintptr_t)numbers + 4 «
*x sizeof(int). Conversely, after we are done with using a given memory
region, we can and should deallocate it using the free() function. This
marks the memory region as no longer in use, and potentially reusable — a
characteristic that forms the basis of this thesis.

In C++, memory allocation typically happens using the new or new[] op-
erators, and deallocation using the delete or delete[] operators. However,
these behave exactly like malloc() and free() used in C in all ways that
are important from a memory management point of view. I should note that
in modern C+-+, the use of such memory management is discouraged and
generally unnecessary since smart pointers — wrappers around pointers that
automate the lifecycle management of the pointed memory region, concep-
tually similarly to a garbage collector — were introduced. However, a lot of
applications are still being developed and maintained that do not make use
of such features.

Making mistakes with manual memory management is very easy. Allo-
cating but not freeing a memory region even after it is no longer used is called
a memory leak and it increases the memory usage of the application, often
in an unbounded manner, potentially until a crash occurs due to insufficient
memory. Attempting to deallocate an object twice — double free — causes
the memory allocator to attempt to access accounting data stored typically
alongside the user data in the since-freed region, often leading to seemingly
nonsensical behaviour or a crash, given that the region may have been re-
used. Accessing an offset that falls outside the memory region reserved for
the object — out-of-bounds access, sometimes also called buffer overflow or
buffer underflow — can lead to reading unexpected data or overwriting an
unrelated object, again often causing hard-to-understand bugs and crashes.
One example for this would be attempting to write to numbers[5] when only
enough space to hold 5 elements was allocated, e.g. using int *numbers <
= malloc(5 * sizeof(int)) (recall that in C and related languages, indexes
start at 0, so the first item is located at index 0, the second at index 1, and
so on). Finally, accessing a memory region that has been deallocated — use
after free — is similarly problematic. This generally occurs when a pointer is
not cleaned up along with the object it referenced, leaving it dangling; often
also called a dangling pointer [AS07].

Besides the instability and general mayhem that such memory errors rou-
tinely cause, they can also leave the application vulnerable to attacks, for
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instance by enabling unchecked reads or writes to sensitive data, sometimes
even allowing an attacker to hijack the control flow of the application, execute
almost arbitrary instructions, and in essence take over the application.

It should be clear by now why modern, “high-level” programming lan-
guages restrict or completely prohibit the direct use of pointers, often by
making it impossible and unnecessary to manage memory manually. In such
languages, the programmer can perform allocations only by creating objects
(preventing another class of bugs relating to the use of uninitialized mem-
ory), and leaving their deallocation to the runtime environment, commonly
its component called the garbage collector (GC). The GC will periodically
analyse the memory of the application, and upon finding objects that are
no longer referenced, marks them for reclaiming, and eventually deallocating
them automatically. This, of course, comes at a cost in performance, often
one that is unpredictable as the GC is controlled by the runtime environment
as opposed to the user code. (It is worth noting that this scheme does not
protect against all possibilities of memory errors; for instance, leaks are still
both possible and common.)

A notable exception is the Rust programming language, which, while
does allow pointers, heavily restricts how they can be used, preventing any
code that could potentially be unsafe. It does so using static (compile-time)
checking using their so-called borrow checker. However, realizing that in
doing so it also disallows some valid uses of pointers, it also provides an escape
hatch, allowing code sections to be marked as unsafe and go unchecked. (For
example, it is not possible to implement a linked list in safe Rust, and even
the built-in vec type is written using unsafe code.) Another programming
language that follows a similar pattern is C#: normally used as a high-level,
managed language employing a GC, it also allows pointers to be used directly
in code marked as unsafe !.

Still, applications written in languages like C or (older) C++ with no
safe alternatives to pointers have been written and are being maintained, and
these applications remain affected by memory errors. Significant amount of
research has been and continues to be conducted in this topic, as such appli-
cations are often high-value targets for attackers: operating system kernels,

!Usage of raw pointers in an otherwise managed environment comes with caveats; for
instance, the memory is often compacted after GC passes with the surviving objects moved
next to each other to reduce fragmentation. Such relocation is not possible if there are
raw pointers in play; therefore, programmers are required to mark the pointers they use
as pinned using the fixed() construct.
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device drivers, web servers, anti-virus programs are commonly developed us-
ing these technologies.

This thesis is focused specifically on dangling pointer errors, a class of
memory issues defending against which has traditionally been difficult and
inefficient.

1.2 Dangling pointers

A pointer is said to be dangling when it outlives the memory region it refer-
ences. Dereferencing such a pointer will generally lead to unwanted, confusing
behaviour.

In the very best-case scenario, the memory access fails, and the applica-
tion is killed by the operating system kernel; for example on Unix systems
by sending it a signal like SIGSEGV, leading to the well-known “Segmentation
fault” error and a groan from the programmer. This is useful (and often
highly underrated by programmers), because it clearly indicates a bug, and
the responsible memory address is readily available, greatly helping with
debugging.

Unfortunately, in the majority of cases in practice, the memory access will
not fail. The reason for this is that most modern architectures in widespread
use (such as x86 and ARM) handle memory on the granularity of pages, where
a single page is usually 4096 bytes (4 kilobytes). From the point of view of the
hardware and the kernel, a page is either in use or is not; pages are treated
as a unit and are never split up. Of course, typical memory allocations tend
to be significantly smaller than this, and it would be wasteful to dedicate an
entire page of memory to just hold for instance 200 bytes of user data.

Therefore, all memory allocator implementations used in practice do split
up pages, and will readily place two allocations on the same page, typically
even directly next to each other (not counting any meta-data). After the
deallocation of one of the objects, the page as a whole still remains in use,
and so the hardware will not fault on subsequent accesses to it, regardless
of the offset; see Figure 1.1. Notably, even if a memory page holds no live
objects, it is often still not returned to the system; the memory allocator
retains it as an optimization, expecting more allocations in the future. (This
is because the memory allocators being discussed run in user-space, so in
order to gain access to memory pages to use, they have to perform a system
call such as mmap() or brk(), which is costly.)
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X Y Unused memory
* -
X =malloc()
Y = malloc()
. Y
One memory page
(4096 bytes)
X Y
* -
free(X)
— . y
Unused memory Unused memory

Figure 1.1: Memory layout of two small allocations. X and Y are pointers,
referencing their corresponding memory regions. X becomes dangling



1.2. DANGLING POINTERS

X = malloc() X

Y = malloc() X Y

Z = malloc() x Y Z
free(Y) X Z

A = malloe() X A z

Figure 1.2: (Simplified) Memory layout view when using traditional malloc():
memory is re-used

If a page is known to be unused by the hardware and kernel, then accessing
it will trigger a page fault in the kernel, which will generally terminate the
application, leading to the best-case scenario described earlier. This is a far
more manageable problem than the alternative, because the error is clear,
even if in practice it is often difficult to discover the underlying reason, given
that time may have passed between the deallocation and attempted access,
and so the code executing at the time of access may not have any relation
to the code that was responsible for the deallocation. Furthermore, this
scenario does not generally pose a security problem, as a crashed application
is difficult to exploit. Therefore, I will generally ignore this scenario for the
remainder of this thesis.

The effect of an unchecked access through a dangling pointer depends
on whether or not the referenced memory region has been reused since the
time of deallocation. If it has not, the data read often will still be valid, and
execution may continue without anyone the wiser, masking the bug — at least
until a modification in the code or one of the libraries leads to a change in the
memory allocation pattern. Otherwise, the dangling pointer will point inside
another allocation, and the data read or overwritten will almost always be a
source of unexpected behaviour: see Figure 1.2.

One typical case is type confusion: the value read or written will be
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treated as a different type than the value stored there. A string value can
be for instance accessed as an integer, causing the characters that make up
the string to be interpreted as bytes in an integer, essentially leading to the
same behaviour as this code snippet:

1 |char xs = "foobar";
2 |int 1 = x(int x*)s;

This code compiles and runs successfully. What will be the value of i? Of
course, we are deep into undefined behaviour territory here, meaning that the
programming language promises nothing. In practice, on x86-64 architectures
where the int C type is 4 bytes long (sizeof(int)== 4), the result will
typically be 1651470182, or 0x626f6f66 in hexadecimal. This makes sense:
the string "foobar" (including the null terminator) is represented by the byte
sequence Ox66 0x6f Ox6f 0x62 Ox61 0x72 Ox00. Interpreting it as an
int means reading the first 4 bytes (0x66 0x6f 0x6f 0x62) and assembling
it into a multi-byte integer according to the endianness of the processor. My
laptop has an Intel CPU in it, which is little endian, meaning that the bytes
of an integral type are stored as least significant byte first (this is 0x62),
followed by bytes of increasing significance; simply put, bytes are interpreted
in “reverse order”.

Of course, type confusion does not have to occur in order for invalid
behaviour to occur. For instance, overwriting an Unix file descriptor with
the number of characters in a text will typically result in an invalid file
descriptor; or consider a buffer’s length overwritten by the age of the user;
or an integer representing the next free index in an array overwritten by the
length of a file in bytes. Once memory corruption occurs, sanity flees.

1.3 An example

Let us look at a less trivial example. This is a simplistic codebase, written
in C++ of an in-memory messaging system. Each User has an inbox and
outbox, Mailbox objects, which wrap an std::vector<Message *>. Message
objects are allocated on the heap, referenced by plain pointers, allowing the
sender and recipient mailboxes to just both retain a pointer to the same
message — a memory optimization. Each message object keeps track of who
has deleted it, and when both the sender and receiver have done so, the
message can be safely deallocated.
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struct Message {
const std::string mContent;
bool mHasSenderDeleted = false;
bool mHasRecipientDeleted = false;
explicit Message(std::string content)
mContent{std: :move(content)}
{}
void OnDeleted() {
if (mHasSenderDeleted && mHasRecipientDeleted)
delete this;
}
}
struct Mailbox {

std: :vector<Messagex> mMessages;

void AddMessage(Messagex msg) {
mMessages.push_back(msg);

}

void DeleteMessage(Messagex msg) {
mMessages.erase(std::find(mMessages.begin(), <«
mMessages.end(), msg));
msg->0nDeleted();

}

struct User {
Mailbox mInbox;
Mailbox mOutbox;

void SendMessage(User& recipient, std::string content) {
Messagex msg = new Message{std::move(content)};

mOutbox.AddMessage(msg) ;
recipient.mInbox.AddMessage(msg);
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40

41 void DeleteReceivedMessage(Messagex msg) {
42 msg->mHasRecipientDeleted = true;
43 mInbox.DeleteMessage(msg);

44 }

45

46 void DeleteSentMessage(Messagex msg) {
47 msg->mHasSenderDeleted = true;

48 mOutbox.DeleteMessage(msg);

49 }

50 |}

The noteworthy lines have been highlighted. While this design is error-
prone, as we will see, it does work correctly and does not — in its current
form — represent a vulnerability.

However, code evolves over time as bugs are fixed and new features are
added, often by a different developer than the original authors. Sometimes
these programmers understand the codebase less, or have less experience
with programming or the technologies used, and can easily make mistakes.
Especially with a language like C and C++, mistakes are extremely easy to
make, and sometimes hard to notice, let alone debug.

Consider now that another programmer comes along and has to imple-
ment a feature to allow forwarding messages. His deadline is in an hour,
perhaps there is a presentation scheduled with a big client, and this feature
was simply forgotten about until now. This programmer adds a simple func-
tion as a quick hack to get message forwarding to work, and schedules some
time for next month to revisit the feature and implement it properly. This
function is added:

1 |struct User {

210// ...

3

4 void ForwardMessage(User& recipient, Messagex msg) {
) // TODO: do this properly later

6 recipient.mInbox.AddMessage(msg);

7 }

8

91// ...

10 |}

He did not understand how the simplistic reference counting of the Message

10
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objects work, and a quick test showed that this feature seems to work rea-
sonably well. His attention was quickly drawn away by another tasks and
this code will not be revisited for a while.

The problem shows itself when a message that was forwarded gets de-
stroyed. While the code correctly ensures that the message is removed from
the both the sender and the recipient’s mailbox before it can be destroyed,
but any potential forwardees were not taken into account. Consider now the
following chain of events:

1 |Messagex funnyMessage = bob.SendMessage(alice, "Hey, look at «
this funny gif: <image>");
bob.DeleteSentMessage(funnyMessage);

alice.SendMessage(cecile, "Haha, look at this funny gif!");
alice.ForwardMessage(cecile, funnyMessage);

alice.SendMessage(bob, "HAHA that’'s pretty awesome");
alice.DeleteReceivedMessage(funnyMessage);

0O ~J O U = W N

Bob sends a message to Alice, who forwards it to Cecile. Both Bob and
Alice delete the message, causing the object to be destroyed, while Cecile’s
inbox still retains a pointer to it: a dangling pointer! What will happen if
Cecile looks at her inbox? The application will attempt to dereference the
dangling pointer, with unpredictable results.

What if there is another message, containing some sensitive information,
is sent directly afterwards, potentially between completely unrelated users?

1 |bob.SendMessage (daniel, "My PIN code is 6666");

Depending on the memory allocator, it is entirely possible that the mem-
ory referenced by funnyMessage before is now reused for the new, secret
message. In this case, Cecile’s inbox now contains a message not intended
for her, containing sensitive information.

1 |for (const Messagex msg : cecile.mInbox.mMessages) {
2 std::cerr << msg->mContent << "\n";

31}

The following output is produced when compiled with a recent version of
GCC (regardless of optimizations or other options) and run:

Haha, look at this funny gif!
My PIN code is 6666

11
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This is an example of how dangling pointer errors can pose a security
vulnerability, even without the active efforts of an attacker.

It is worth noting that using a correct implementation of reference-counting,
such as with the standard std::shared_ptr (since C++11), this problem
could have been avoided. However, while smart pointers go a long way to-
wards making dynamic memory safer and more convenient to use, they do
have limitations even in the current C++ version (C++17 as of the time
of writing). For instance, it is common to use plain pointers to represent a
non-owning, optional reference to memory owned by another object, such as
an std::unique_ptr, enabling dangling pointer errors to occur.

1.3.1 Dangling pointers and late binding in C++

Dangling pointers are an even more severe vulnerability in C+-+ because it
supports the object-oriented programming paradigm, and therefore allows
programmers to define classes, virtual methods, and express inheritance. In
order to support virtual methods being overridden in derived classes, the
C++ compiler creates a data structure called a vtable for each class that
contains virtual methods, whether defined in the class or inherited from a
base class. This vtable is essentially a look-up table, containing function
pointers to the class’s own implementations of the virtual methods. Fur-
thermore, an additional vptr pointer field is added to any objects of such
classes, which points to the correct vtable. This pointer value persists even
through derived-to-base casts, to allow the program to behave as expected.
For instance:

1 |class Base {

2 |public:

3 virtual ~Base() = default;

4

) virtual std::string getTypeName() const {
6 return "Base";

7 }

81}

This defines a class Base with a virtual method getTypeName(), the de-
fault implementation of which returns the string "Base". Since the class
contains virtual methods, the C++ compiler emits a vtable for it with 2
entries: one for the destructor, and one for getTypeName(), both of them

12
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pointing to Base’s own implementations. When we call the Base() construc-
tor and instantiate an object of the class, it will contain a hidden field (usually
as the first field, placed before any user-defined ones): the vptr that points
to Base’s own vtable. (The destructor has to be virtual, otherwise objects
may not be correctly destroyed.)

1 |class Derived : public Base {

2 std::string getTypeName() const override {
3 return "Derived";

4 }

5}

We have now defined a second class which inherits from Base and overrides
getTypeName() with its own implementation, one that returns "Derived".
(The compiler also automatically emits a trivial destructor that overrides
the base class’.) The vtable emitted for Derived has the same structure
as that of Base, but contains the addresses to Derived’s virtual method
implementations. Similarly, when a Derived object is constructed, the object
contains a vptr hidden field pointing to its vtable.

1 |void print(const Base& obj) {

2 std::cout << obj.getTypeName() << '\n’;
31}

4

5 |int main() {

6 print(Base{}); // prints "Base"

7 print(Derived{}); // prints "Derived"

8 return 0;

91}

Note how the global function print() accepts a const Baseé&: this func-
tion has no idea about any derived of Base. Yet when it calls the getTypeName ()
method on it, the actual function executed is different between the two calls.
The reason is that when a virtual method is called, the C++ compiler will
emit code that dereferences the vptr field, searches the referenced vtable
for the entry corresponding to the method being called, and performs an
indirect function call to the address contained in the entry. This is how late
binding function calls are implemented in C++-.

Now we know enough to understand why dangling pointers are particu-
larly dangerous in applications written in C++: should the attacker be able
to construct its own fake vtable in memory, as well as get the application

13
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to perform a virtual method call on an object whose vptr field it managed
to overwrite with one pointing to the fake vtable, the attacker can hijack
the control flow of the application. This can be tricky to do, as the vptr is
typically at the same offset in all objects, which makes it more difficult to
overwrite with attacker-controlled data.

It is also worth noting that although rare, objects of classes that inherit
from multiple base classes (since C++ allows multiple inheritance) have mul-
tiple vptr fields at different offsets. This potentially makes the job of the
attacker easier. Furthermore, access through dangling pointers are not the
only way to perform such an attack: a buffer overflow or underflow vulnera-
bility in the object can also enable the attacker to hijack the vptr field.

Defenses against such attacks do exist: examples include SafeDispatch [JTL14],
work by Gawlik et al [GH14|, or the research of Bounov et al [BKL16].

14
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Background

2.1 Virtual memory

Virtual memory is an abstraction over the physical memory available to the
hardware. It is an abstraction that is typically transparent to both the
applications and developers, meaning that they do not have to be aware of
it, while enjoying the significant benefits. This is enabled by the hardware
and operating system kernel working together in the background.

From a security and stability point of view, the biggest benefit that virtual
memory provides is address space isolation: each process executes as if it was
the only one running, with all of the memory visible to it belonging either to
itself or the kernel. This means that a malicious or misbehaving application
cannot directly access the memory of any other process, to either deliberately
or due to a programming error expose secrets of the other application (such
as passwords or private keys) or destabilize it by corrupting its memory.

An additional security feature is the ability to specify permission flags on
individual memory pages: they can be independently made readable, write-
able, and executable. For instance, all memory containing application data
can be marked as readable, writeable, but not executable, while the memory
pages hosting the application code can be made readable, executable, but
not writeable, limiting the capabilities of attackers.

Furthermore, virtual memory allows the kernel to optimize physical mem-
ory usage by:

e Compressing or swapping out (writing to hard disk) rarely used memory

15
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Physical
memary page

Physical
address space

-
-

—

Virtual
address space

b4
=<

1

Virtual
memory page

Figure 2.1: Mapping two physical memory pages X and Y to virtual memory

pages (regions) to reduce memory usage

e De-duplicating identical memory pages, such as those resulting from
commonly used static or shared libraries

e Lazily allocating memory pages requested by the application

Virtual memory works by creating an artificial (virtual) address space for
each process, and then mapping the appropriate regions of it to the backing
physical memory. A pointer will reference a location in virtual memory, and
upon access, is resolved (typically by the hardware) into a physical memory
address. The granularity of the mapping is referred to as a memory page,
and is typically 4096 bytes (4 kilobytes) in size. (See Figure 2.1.)

This mapping is encoded in a data structure called the page table. This
is built up and managed by the kernel: as the application allocates and
frees memory, virtual memory mappings have be created and destroyed. The
representation of the page table varies depending on the architecture, but on
x86-64, it can be represented as a tree, with each node an array of 512 page
table entries of 8 bytes each making up a 4096 byte page table page. The
root of this tree is where all virtual memory address resolution begins, and it

16
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Virtual memory address:

____________________________

Entry 157 E v
i
A I'| Page table level 4
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0x72f8a0e000 <+ Ox4F0 =0x72F8A0E4F0 Physical memory address

Figure 2.2: Translating a virtual memory address to physical using the page
tables

identifies the address space. The leaf nodes are the physical memory pages
that contain the application’s own data.

The bits of the virtual memory address identify the page table entry
to follow during address resolution. For each level of page tables, 9 bits
are required to encode an index into the array of 512 entries. Each entry
contains the physical memory address of the next page to traverse during
the address resolution, as well as a series of bits that represent the different
access permissions, such as writeable and executable. Finally, the least-
significant 12 bits are used to address into the application’s physical page
(which is 4096 bytes) itself and so require no translation. (See Figure 2.2.)

On x86-64, there are currently 4 levels of page tables, using 4 x 9+12 = 48
out of the 64 available bits in the memory addresses, and limiting the size of
the address space to 2% bytes or 256 terabytes. (The size of addressable space
per page table level, in reverse resolution order being: 512 x 4 kilobytes = 2
megabytes; 512 x 2 megabytes = 1 gigabyte; 512 gigabytes; 256 terabytes.)

It is important to realize that it is possible to map a physical page into
multiple virtual pages, as well as to have unmapped virtual pages. Attempt-
ing to access a virtual page (by dereferencing a pointer to it) that is not
mapped — i.e. not backed by a physical memory page — will cause a page
fault and execution to trap inside the kernel. The kernel then can decide
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what to do — for instance if it determines that the memory access was in
error (an access violation), it passes the fault on to the process which usually
terminates it. On Linux this is done by raising the SIGSEGV signal (segmen-
tation violation or segmentation fault) in the process, normally aborting its
execution.

Other types of access violation, such as attempting to write a non-writeable
page — a page on which writing was disallowed by setting the corresponding
bit in its page table entry to 0 — or attempting to execute a non-executable
page — a page which has its no-execute bit set, a new addition in the x86-64
architecture over x86-32 — will also trigger a page fault in the kernel the same
way.

This mechanism also allows the kernel to perform memory optimizations.
These are important, because (physical) memory is often a scarce resource.
For example, a common scenario is that multiple running processes use the
same shared library. The shared library is a single binary file on disk that
is loaded into memory by multiple processes, meaning that naively the same
data would be loaded into memory multiple times, taking up precious re-
sources for no gain. The kernel can instead load the shared library into
physical memory only once and then map this region into the virtual address
space of each user application. Other de-duplication opportunities include
static libraries that are commonly linked into applications (such as the C
standard library), or the same binary executing in multiple processes.

In addition to memory de-duplication, the kernel can also choose to com-
press or even swap out rarely used memory. In these cases, the kernel marks
the relevant page table entries as invalid, causing the hardware to trigger a
page fault in the kernel if they are accessed. Upon access, instead of sending
a signal to the process, the kernel restores the data by decompressing it or
reading it from disk, after which it will resume the process which can con-
tinue without even being aware of what happened. Modern kernels such as
Linux include a large number of similar optimizations [lin].

2.2  Related work

Memory errors are a well-understood problem and a significant amount of
research has already been conducted in this field. Numerous solutions have
been proposed, often using similar ideas and offering alternative approaches,
optimizations, or other incremental improvements. However, in spite of all
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this effort, memory errors remain extremely common [vdVdCB12|.

SafeC [ABS94], published in 1994, transforms programs at compile-time
by turning pointers into fat pointers, attaching to them metadata such as
the size of the referenced object, its storage class (local, global, or heap), as
well as a capability that references an entry in the global capability store,
which maintains a record of all active dynamic memory. Detecting memory
errors becomes a matter of checking the fat pointer metadata. Unsurprisingly,
this approach comes with a very steep performance cost, both in terms of
execution speed as well as memory usage. Improvements were proposed
later by H. Patil and C. Fischer in 1997 [PF97], as well as by W. Xu, D. C.
DuVarney, and R. Sekar in 2004 [XDS04|.

Rational Purify [HJ91]| is another one of the earliest comprehensive tools
for detecting memory errors, originally published in 1991, and existing in
various forms until today as a paid product. Purify works by instrumenting
the object code in order to keep track of each memory allocation and check
every access. It provides a widespread range of features, detecting uninitial-
ized memory accesses, buffer overflows and underflows, as well as dangling
pointer errors so long as the memory has not been reused. However, there
do not appear to be any published results on its performance characteristics.

Electric Fence [ele] and Microsoft PageHeap [pag| (now existing as part of
the Global Flags Editor on Windows) are similar tools developed before 2000.
They work by placing each allocation on their own virtual memory pages that
is marked as protected upon deallocation to catch temporal memory errors.
They also provide bounds checking using extra virtual memory. As such, they
are the earliest implementations of the same idea that powers Dangless, but
they do so with a very heavy overhead in performance and memory usage,
so they are advertised as debugging tools.

Another tool that is ultimately only deemed useful as a development and
debugging utility, but still sees widespread use today is Valgrind [NS07].
It is a dynamic binary instrumentation framework designed to build heavy-
weight (i.e. computationally expensive) tools, in particular focused on shadow
values which allows tools to store arbitrary metadata for each register and
memory location, enabling the development of tooling that would otherwise
be impossible. Valgrind Memcheck [val] is the tool that implements extensive
memory checking. However, it is only capable of detecting dangling pointer
errors until the memory region is reused, although effort is made to delay
this for as long as possible,

Dhurjati et al. proposed a different approach in 2003 [DKALO3]| that limits
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the severity of temporal memory errors by restricting memory re-use to be
type-safe. This means that objects of different types are never allocated in a
location where they could ever possibly alias. While this does not prevent all
dangling pointer errors, it does ensure that type confusion does not occur,
making the problem easier to diagnose and harder to exploit by a malicious
user.

Cling |[Akr10] builds on top of the same idea and is a memory allocator
that similarly limits, but does not prevent, the threat surface posed by dan-
gling pointer errors by restricting memory re-use to objects of the same type.
It does so by noting down the caller function of each memory allocation,
assigning a unique memory pool to each, under the assumption that one call
site always performs allocations of the same type.

In 2006 Dhurjati et al. [DAO6] presented a paper building on the ideas
of Electric Fence and PageHeap, claiming that their approach detects all
dangling pointer errors efficiently enough for it to be practical to use in
production. They combine the idea of virtual memory remapping (using
system calls) with a modified version of LLVM’s [llv] compiler transformation
called Automatic Pool Allocation that allows them to safely reclaim virtual
memory in cases when they are able to prove that no references remain to
the allocated region. This requires the target application’s source code to be
available and the build process to be significantly modified. Their approach
also adds an 8 byte overhead to each allocation, similarly to Electric Fence,
in order to keep track of the canonical pointer.

2012 saw the introduction of the LLVM AddressSanitizer [SBPV12|. This
is a safety tool easily enabled from Clang or another LLVM frontend, aiming
to make memory checking more easily available for users. It relies on code
instrumentation, as well as shadow memory acting as allocation metadata,
similarly to Valgrind.

DangNull [LSJ*15]’s approach from 2015 is similar in the sense that they
utilize the LLVM compiler infrastructure to instrument the application code,
gathering information during runtime about allocations, deallocations, and
storage of pointer values. The goal, ultimately, is to be able to keep track
of all pointers that refer to a given object, such that when the object is
deallocated, all pointers can be sanitized, preventing use-after-free bugs.

Dangsan [vdKNG17| in 2017 improved on the idea of DangNull and pro-
vided a more efficient implementation.

DangDone [WGST18] is a recent proposal from 2018 in which an extra
layer of pointer indirection is used to guard allocations. When allocating an
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object, an additional object is also allocated, containing the only pointer to
the object itself, while the user code receives a pointer to the intermediary
object. All memory loads and stores then have to be instrumented, such that
the intermediary pointer is loaded, checked, and then the actual referenced
object is read or written. When deallocating, the object itself is deallocated
as normal, while the intermediary object remains dereferenceable, though
invalid. The authors claim a negligible performance impact, although it is
worth noting that they made their measurements with all compiler optimiza-
tions disabled.

Undangle [CGMN12] is a tool presented in 2012 by Microsoft Research
that aims to detect any dangling pointers as soon as they are created, regard-
less of whether they are used or lead to errors. It is built on top of the TEMU
dynamic analysis platform [SBY 08|, which in turn is implemented on top
of the QEMU open-source whole-system emulator [qem|. First, the binary
under test is executed inside the emulated analysis environment, producing
an execution trace as well as an allocation log. Undangle then uses these
as inputs to perform the dangling pointer detection, leveraging a pointer
tracking module which is built upon a generic taint analysis module.

Oscar [DMW17], put forward in 2017, is another iteration on the idea
of Electric Fence and PageHeap. They similarly re-map virtual pages, by
creating “shadow pages”, and store an additional pointer to the canonical
virtual page with each allocation. Improving on previous approaches, they
present techniques for optimizing performance by decreasing the number of
system calls needed.

Dangless builds on top of the same ideas as Electric Fence, PageHeap,
Dhurjati et al., and Oscar, but is able to improve on their performance by
moving the process being protected into a virtualized environment, where
the virtual memory page protections can be manipulated efficiently.

2.3 Unikernels and Rumprun

The idea of unikernels stems from the observation [MMR*13] that in many
cloud deployment scenarios, a virtual machine is typically used to host only
a single application, such as a web server or database server. These virtual
machines all run a commodity operating system — typically a Linux distri-
bution, or less often, Windows — that is built to support multiple users and
many arbitrary applications running concurrently on various hardware. This
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adds up to a significant amount of effectively dead code in these scenarios.
A tiny library operating system with only the necessary modules enabled
and tied directly together with the application would result in a much more
efficient image.

Given the widespread use of cloud technologies and the prevalence of
commodity cloud providers since 2013, unikernels and similar technologies
became a topic of research and development, yielding solutions such as Mi-
rageOS, IncludeOS, Rump kernels, HaLVM, and OSv [uni|]. Notably, similar
research has also resulted in technologies such as Docker [doc].

One approach to building unikernels is basing them on applications de-
veloped for commodity operating systems, and then through a mix of manual
and automated methods adapt them to be able to run with a unikernel run-
time. This approach is taken by Rump kernels [rumb|, which provides various
drivers and operating system modules (based on NetBSD) as well as a near-
complete POSIX system call interface, allowing many existing applications
to be run without any modifications [rumal.

When the development of Dangless began, it was initially supporting both
Rumpkernels and Dune. However, over time, maintaining both has become a
major burden, and focus shifted to only supporting Dune. One of the reasons
for this was entirely practical: development of Dangless on Rumpkernels was
more difficult, due to the complete virtual machine isolation which is required
to run them, making debugging and data collection (statistics, logging) more
difficult.

Furthermore, Rumpkernels would have also needed custom modifications
(similarly to how Dune ended up requiring them), for instance in order to
make it possible for Dangless to provide the symbols for malloc() and co.
while Rumpkernels also define the same strong symbols.

Regardless, I still believe that unikernels are a promising field, because
it is focused on providing environments for efficiently hosting long-running,
publicly exposed services such as web servers, which are particularly relevant
for security research, and by extension for Dangless itself.

2.4 Dune: light-weight process virtualization
Dune [duna] is a technology developed to enable the development of Linux

applications that can run on an unmodified Linux kernel while having the
ability to directly and safely (in isolation from the rest of the system) access
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hardware features normally reserved for the kernel (ring 0) code [BBM*12].
Importantly, while getting all the benefits of having direct access to privi-
leged hardware features, the application still has access to the Linux host
operating system’s interface (system calls) and features. This means that
the same process that can, for instance, directly manipulate its own inter-
rupt descriptor table, can also call a normal fopen() function (or open()
Linux system call) and it will behave as expected: the system call will pass
through to the host kernel.

This is achieved using hardware-assisted virtualization (Intel VT-x) on
the process level, rather than on the more common machine level. Dune con-
sists of a kernel module dune. ko for x86-64 Linux that initializes the virtual
environment and mediates between the Dune-mode process and the host ker-
nel, as well as a user-level library called 1ibdune for setting up and managing
the virtualized (guest) hardware. The two components communicate via the
ioctl() system call on the /dev/dune special device that is exposed by the
kernel module. Finally, 1ibdune/dune.h exposes a number of functions to
help the application manage the now-accessible hardware features.

An application wishing to use Dune has to statically link to libdune.a,
and call dune_init() and dune_enter() to enter Dune mode. For this to
succeed, the Dune kernel mode has to be already loaded. That done, the
application keeps running as before: file descriptors remain valid, system
calls continue to work, and so on, except privileged hardware features also
become available. This opens up drastically more efficient methods of imple-
menting some applications, such as those utilizing garbage collection, process
migration, and sandboxing untrusted code. It also enables Dangless to work
efficiently.

2.4.1 Patching Dune

Dangless was built using ix-project’s fork of Dune [dunb]|, because when
the Dangless project started that was more maintained and supported more
recent kernel versions. However, since then, work appears to have resumed
on the original Dune repository [dunc|, and they now claim to be supporting
Linux kernel versions 4.x.

I have patched Dune with a couple of modifications to allow Dangless to
do its work. These are available in the vendor directory in the Dangless
source code.

dune-ix-guestppages.patch: this maps the guest system’s pagetable
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pages into its own virtual memory, allowing Dangless to modify them. The
code for this already existed in the original implementation of Dune, but was
removed at some point from the ix-project’s fork.

dune-ix-nosigterm.patch: for unclear reasons, upon exiting, Dune
was raising the SIGTERM signal, causing the Dune process to appear to have
crashed even when it exited normally. This patch disables this behaviour,
without appearing to affect anything else.

dune-ix-vmcallhooks.patch: this is a significant patch that allows a
pre- and post-hook to be registered for vmcall-s. That is, any time a system
call is not handled inside Dune, and is about to be forwarded to the host ker-
nel, the pre-hook, if set, is invoked with the system call number, arguments,
and return address, allowing the hook to inspect and modify them. Similarly,
once the vmcall returns, but before the normal code execution resumes, the
post-hook is invoked, with the system call result passed to it as argument.
This is critical for Dangless, and is explained in detail by Section 3.4.

Finally, Dangless contains a work-around for an issue in Dune which ap-
pears with allocation-heavy code. glibc’s default malloc() implementation
relies on the brk() system call to perform small memory allocations (in my
tests, up to 9000 bytes). After a sufficient number of brk() calls, the resulting
address crosses the 4 GB boundary, i.e. the memory address 0x100000000.
However, this area does not appear to be mapped by Dune in the embedded
page table, causing an EPT violation error on access. In the Dangless source
code, testapps/memstress can be used to trigger this bug:

$ cd build/testapps/memstress
$ ./memstress 1500000 9000

To work around this, Dangless registers a post-vmcall hook, and if it
detects a brk() system call with a parameter above the 4 GB mark, it over-
writes the system call’s return code to make it appear to have failed. glibc’s
memory allocator will then fall back to using mmap() even for these smaller
allocations, which will continue to work.

2.4.2 Memory layout

Dune offers two memory layouts, specified when calling dune_init(): precise
and full mappings. With precise mappings, Dune will consult /proc/self/
maps for the memory regions of the so-far ordinary Linux process and map
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each region found there into the guest environment. With the version of
Dune I was using for development, this did not appear to work correctly, and
so I used full mappings for Dangless.

In full mappings, Dune creates the following mappings in the guest virtual
memory:

e Identity-mapping for the first 4 GB of memory: this is where the exe-
cutable code and data lives, so this is also where the default malloc()
implementation places small memory allocations (allocated via brk())

e The stack memory, max 1 GB
e The mmap memory region, max 63 GB
e The static VDSO and VVAR regions

e Any mappings needed for the executable and libraries (code and data)

Furthermore, the Dune kernel module creates the embedded page table
(EPT), the part of the Intel VT-x virtualization technology that is used for
translating host virtual addresses (HVA) to guest physical addresses (GPA)
and vica versa. The EPT is set up and is kept in sync with the process
memory automatically, meaning that mappings are created on-demand on
EPT faults, within the limits of the layout defined by Dune and described
above.

Dangless makes extensive use of the knowledge of the guest memory lay-
out, for instance for translating physical addresses (e.g. of pagetable pages)
to virtual addresses.
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Chapter

Design & Implementation

3.1 Overview

Dangless is a drop-in replacement memory allocator that provides a custom
implementation of the standard C memory management functions malloc(),
calloc(), realloc(), free() and a few others. It aims to solve the prob-
lems that dangling pointers lead to by guaranteeing that any access through
a dangling pointer will fail, and the application will terminate. It relies on
the underlying memory allocator to perform the actual allocation and deal-
location. In principle, because Dangless makes no assumptions on the nature
or behaviour of the underlying allocator — referred to as “system allocator” by
Dangless —, it should be usable on top of even non-standard implementations
such as Google tcmalloc [goo].

Catching dangling pointer accesses is ensured by permanently marking
memory regions as no longer in use upon deallocation (e.g. a call to free()).
Therefore, during the lifetime of the application, in principle, no other mem-
ory will be allocated in such a way that it would visibly alias a previously
used location: see Figure 3.1.

Of course, the physical memory available is very limited even on modern
systems, and not re-using is hopeless. The trick then, is to leave the man-
agement of physical memory to the system allocator, and change how the
physical allocations are mapped to virtual memory: the address space that
user applications interact with.

Since we want to rely on the system allocator to efficiently manage phys-
ical memory, instead of hijacking the pointer it returns following a successful
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Figure 3.1: A simplified view of the virtual memory address space when using
Dangless: memory pages are never re-used.

allocation, we rather re-map the physical memory region into a new virtual
memory region that is entirely controlled by us. This means that the same
allocation will be visible at two virtual memory addresses: the canonical ad-
dress, managed by the system allocator but not returned to the user code;
and the remapped address, managed by Dangless. Note that this re-mapping
occurs on the page level (as all virtual memory management has to be), lead-
ing to each allocation using up at least one virtual memory page, even if it
is smaller than that. See Figure 3.2 and Figure 3.3. A detailed explanation
of these diagrams will follow in Section 3.3.3.

Virtual memory is plentiful: on the x86-64 architecture, pointers are 64-
bit long — which in theory means 254 bytes of addressable memory. In practice
however, on all current processors that use this architecture, only 48 bits are
used, which limits the size of the address space we can work with to 2*® bytes,
or 256 terrabytes. That is also not unlimited, but in practice it is close enough
to be sufficient. We will discuss this in more detail in Section 5.4.

Normally, the difference between physical and virtual memory is entirely
hidden from the user code, and is dealt with only by the operating system
kernel. This allows the overwhelming majority of users and developers - even
programmers working with lower-level languages such as C++ - to work and
develop software without ever being aware of the difference, while enjoying
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Figure 3.3: View of the virtual memory with Dangless remapping allocations
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the benefits of it. The Linux kernel does provide some system calls that
allow the virtual memory to be manipulated, notably mprotect() which is
used to manage access permissions (readable, writeable, executable) of mem-
ory regions. This is useful for example when developing just-in-time (JIT)
compilers such as the ones employed by browsers to run JavaScript code.
Another example is mremap (), which allows a memory region to be moved
almost for free, an ability that makes it useful for garbage collectors for in-
stance. Of course, mmap() and munmap () also primarily work by manipulating
virtual memory mappings.

These system calls are sufficient to implement the functionality of Dang-
less, with some caveats — in fact, this is exactly how tools like Oscar operate,
as discussed in Related Work 2.2. The biggest issue is that of performance:
system calls are expensive compared to normal memory allocations, and in
this scheme, for every single memory allocation, at least one extra system call
would be required. The costs and possibilities for optimizations are explored
in depth by the Oscar paper.

3.2 Initialization

Dangless has to be initialized before any memory allocation is performed,
otherwise those allocations will not be protected. The REGISTER_PREINIT
option, enabled by default, controls whether Dangless should automatically
register its initialization function (dangless_init()) to the .preinit_array
section of the executable, to be called automatically during start-up.

During initialization, Dangless initializes and enters Dune by calling dune_init ()
and dune_enter(). Dangless relies on Dune to enter into a virtualized en-
vironment where it can have direct access to the page tables. Dangless also
uses Dune to register its own pagefault handler function, which enables us to
detect when a memory access has failed due to the protection that Dangless
offers.

It is important to note that heap memory allocation can and does hap-
pen before Dangless is initialized — whether manually or automatically — for
example as part of the glibc runtime initialization. This case needs to be han-
dled, so all of the dangless_ functions simply pass the call through to the
underlying (system) allocator without doing anything else if they are called
before initialization. A noteworthy edge-case that Dangless has to be able
to handle is when an allocation happens before Dangless initialization, so is
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not protected, but then it is used and finally deallocated after initialization.

3.3 Performing an allocation

Whenever Dangless is asked to allocate some memory via a call to dangless_malloc(),
dangless_calloc(), or dangless_realloc(), a number of steps have to hap-

pen: physical memory has to be allocated, virtual memory has to be al-
located, and the mapping between the two created. Most of the process

is the same regardless of the exact function called. The only exception is
dangless_realloc(), which I will cover later.

3.3.1 Allocating physical memory

The first step Dangless has to perform is to acquire the physical memory it
can use to satisfy the allocation. It does not currently defer allocating physi-
cal memory like kernels typically do, although in principle it could. Since the
goal of Dangless is only to provide security benefits, Dangless has no strategy
of physical memory management that we would find in normal implementa-
tions. In fact, the way this is done ultimately does not matter for Dangless’s
purposes. Due to these reasons, Dangless delegates the responsibility of ac-
tually performing (physical) memory allocation to the memory allocator that
was in place before Dangless “hijacked” the memory management function
symbols.

Specifically, it uses dlsym(RTLD_NEXT, "malloc") to determine the ad-
dress of the original malloc(), etc. functions. Then it simply calls these
functions whenever it needs physical memory allocation done: primarily when
the user code requests an allocation, but sometimes also for internal purposes,
such as for keeping track of available virtual memory regions.

There is a caveat to using dlsym(): when dlsym() is first called on a
thread, it allocates a thread-specific buffer for holding a struct dl_action_result
object using calloc() [glic|. This means that without special handling for
this case, execution can easily get into an infinite loop:

1. User calls malloc(), which is a strong alias of dangless_malloc()

2. dangless_malloc() defers the physical memory allocation to the un-
derlying allocator by calling sysmalloc()
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3. sysmalloc() does not yet have the address of the original malloc()
function, so it calls dlsym() to get it

4. dlsym() notices it is running on this thread for the first time, so it calls
calloc() to allocate a buffer

5. calloc() is a strong alias of dangless_calloc(), which calls syscalloc()
to allocate physical memory

6. syscalloc() does not yet have the address of the original calloc()
function, so it calls dlsym()

7. Repeat steps 4-6 forever...

To get around this, syscalloc() uses a static buffer of CONFIG_CALLOC_SPECIAL_BUFSIZE
size for the very first allocation. This allows dlsym() to complete and popu-
late the addresses of the original allocation functions, which are used normally
for all subsequent calls. The same approach was used by other projects that
implement their own memory allocator replacements [dls|.

Finally, when sysmalloc(), etc. returns, we have a completed physi-
cal memory allocation. However, what is returned to us is a virtual memory
address, while we need a physical one in order to create a second virtual mem-
ory mapping. We could perform a pagetable walk to find the corresponding
physical memory address, but this is unnecessary, as the mapping provided
by Dune is very simple, so it is sufficient to use Dune’s dune_va_to_pa()
function from libdune/dune.h that is far cheaper computationally than a
page-table walk.

The current implementation of Dangless cannot handle the system al-
locator returning a (guest) virtual memory region that is backed by non-
contiguous (guest) physical memory. This should not normally be a prob-
lem, unless Dangless is used together with code that implements the system
calls used by memory allocators, such as brk() and mmap(). This is not a
limitation of the design, and can be addressed easily if necessary.

Note that it does not matter whether the host physical memory is con-
tiguous or not: any mmap() (or brk() for that matter) allocation is mapped
into the guest memory contiguously by Dune.
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3.3.2  Allocating virtual memory

Given a physical memory address of the user allocation, Dangless needs to
allocate the same amount of virtual memory pages that user code will interact
with. In the memory layout created by Dune, there is plenty of virtual
memory that is not used, nor will ever be used normally due to the size
limitations of the various memory regions that Dune enforces.

For simplicity, and in order to minimize the chance of conflicts, by default
Dangless upon the first memory allocation request that it cannot satisfy due
to not having sufficient virtual memory, will take any unused entries from
the top-level page table (PML4) and initialize its virtual memory alloca-
tor with them marked as available. This behaviour can be disabled using
the AUTO_DEDICATE_PML4ES option. Users can also dedicate virtual memory
to Dangless using the dangless_dedicate vmem(void *start, void xend)
function (declared in dangless_malloc.h).

The amount of virtual memory available to Dangless has to be very large,
as each allocation will use up at least one whole 4 KB page from it. This
is done so that during deallocation the page can be marked as unmapped
in order to cause any further accesses to it fail. (The most precise level of
granularity it is possible to do this on x86-64 based systems today is the 4
KB page.) This means that 1 GB of virtual memory can be used to satisfy
1GB/4K B = 256 % 1024 = 262144 allocations, assuming each of them is less
than 4 KB in size. This is because currently Dangless lacks any mechanisms
for detecting that a virtual memory region is no longer referenced, meaning
that it will never mark a virtual memory page as available for reuse.

To keep track of the virtual memory available to it, Dangless employs a
simple freelist-based span allocator. A freelist is simply a singly linked-list
of vp_span objects each representing a free span of virtual memory, ordered
by their end address:

struct vp_span {
vaddr_t start;
vaddr_t end;

LIST_ENTRY(vp_span) freelist;
+

struct vp_freelist {
LIST_HEAD(, vp_span) items;

O 00 O T W -
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10 |};

(The NetBSD queue.h [net] v1.68 is used for the linked list handling
macros. )

When virtual memory is needed, the freelist is walked until a vp_span
object representing a region of sufficient size is found. When one is found,
the allocated space is removed from the beginning of the span (by adjusting
start), and the span is deleted if it is now empty. If no such span is found,
the allocation fails.

When an allocation fails, Dangless checks if it is allowed to auto-dedicate
virtual memory by consulting the AUTO_DEDICATE_PML4ES option. If this
option is enabled, and Dangless has not yet done so, it will proceed to do
this before re-trying the allocation.

Otherwise, Dangless concludes that it is unable to satisfy the user’s mem-
ory allocation. If ALLOW_SYSMALLOC_FALLBACK is enabled (defaults to off),
then Dangless proceeds by simply acting as a proxy to the system allocator,
and gives up on attempting to protect the allocation. Otherwise, Dangless
prints an error message and terminates the application.

Note that in the current, simple implementation of the virtual memory al-
locator there is only a single freelist, which is sufficient because we do not ever
re-use any virtual memory. If we were to add a garbage collector-like solu-
tion, then this approach would likely lead to significant fragmentation with a
negative performance impact on each allocation. In this situation, a possible
enhancement would be to have several independent freelists of different page
sizes, similar to common memory allocator designs. Other improvements are
also possible: memory allocation is a well-understood problem.

3.3.3 Remapping

Now that Dangless has the physical memory address and a brand new virtual
memory address, all that is left to do is mapping the virtual memory to the
physical memory by modify the corresponding page table.

In a normal Linux userland application, in order to do this we would have
to perform a system call, given that page table manipulation requires ring 0
privileges meaning that it is only available to the kernel. However, thanks
to Dune, the process is running inside its own virtualized environment, in
which we can act as the kernel, and for instance read control register 3 (cr3)
containing the (guest) physical address of the page table root.
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Having applied the dune-ix-guestppages.patch patch to Dune, the
host memory pages used to hold the guest’s page tables are mapped into the
guest virtual memory, allowing us to manipulate them during runtime from
inside the guest environment.

It is important to understand that the system allocator will generally
place smaller allocations adjacent to each other, and often inside the same
page. Consider the earlier example shown on Figure 3.2: X and Y share the
same page, with Y overflowing a bit onto the next page that it is sharing
with Z and some unallocated memory at the end.

Now, when Dangless is re-mapping X, it has to do so with the entire
page that holds X, given that that is the granularity of virtual memory
management on x86 (as well as most modern architectures). The remapped
page will unavoidably also contain a part of Y, although that address for
Y is never going to be presented to the user code. However, the user code
could still, by error, access Y through the page dedicated to X, for instance
via an out-of-bounds access into X. This will result in the same (undefined)
behaviour that the program would display when compiled and ran without
Dangless.

In turn, consider the allocation Z on the same diagram: it does not start
at the beginning of page, since that is where the second part of Y lives. So
when remapping Z (more precisely: the page holding Z), in order to get a
pointer to Z itself inside the page, we have to take into account its in-page
offset, as shown on the diagram. You can observe the same behaviour for Y.

The allocation Y holds an additional caveat: it spans two pages instead
of one due to its in-page offset, even though its size is less than the size of a
page. As an effect, when remapping Y, we have to allocate two virtual pages.

In the same fashion, it is true in general for all allocations that we re-map,
that due to the remapping they will each use at least one whole extra virtual
memory page in addition to the one(s) managed by the system allocator.
This is the main cause of the virtual memory overhead of using Dangless,
as well as its physical memory overhead, although small: the page tables
that have to be allocated in order to contain the mappings for the remapped
regions.

3.3.4 Deallocations

Whenever Dangless is given a pointer in realloc() or free(), the first thing
it needs to figure out is whether the pointer is a canonical address, i.e. ref-
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erences a virtual memory region managed directly by the system allocator,
or does it point to a remapped virtual memory region managed by Dangless.
The former is possible in two circumstances:

1. The allocation happened before Dangless was initialized. This means
that the process was not yet executing in Dune mode, and therefore
Dangless could not have accessed the page tables directly to perform
the remapping.

2. The allocation happened when Dangless did not have sufficient virtual
memory dedicated to its allocator to be able to perform the remapping.
Unless the user manages the virtual memory that Dangless can use for
such purpose (e.g. by calling dangless_dedicate_vmem()) this means
that Dangless has ran out of virtual memory.

If we can determine that the pointer we received was canonical, then
Dangless had nothing to do with the original allocation, and therefore now
also has nothing to do besides forwarding the call to the system allocator’s
free() function — sysfree().

The challenge then is detecting whether the given pointer was success-
fully remapped previously, and if so, obtaining the original virtual address
that can be passed to sysfree(). This is necessary if we do not want to
make assumptions about the underlying allocator’s implementation details.
Typically, memory allocators will not behave correctly if a different virtual
memory address is used for deallocation than the one returned during allo-
cation, even if both map to the same physical memory address.

To obtain the original virtual memory address, we make use of Dune’s
simple memory layout. First, we perform a page walk on the virtual memory
address to obtain the corresponding physical address. Then we compare it to
physical address that would result in that virtual address being assigned by
Dune, by calling dune_va_to_pa(ptr), where ptr is the potentially-remapped
memory address we are trying to free. If they match, then ptr was mapped
into virtual memory by Dune itself, meaning that it is not a memory address
assigned by Dangless: as discussed earlier, we can just forward the call to
sysfree() and we are done.

Otherwise we have to determine the canonical pointer belonging to this
allocation. In other words, given the physical memory address PA, we have to
determine the canonical virtual address VA such that dune_va_to_pa(VA)= «+
PA. Once again, this is something that Dune’s memory layout makes easy to
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do, as these conversions are performed using simple arithmetic: we simply in-
vert the logic of dune_va_to_pa(). Finally, we can proceed to call sysfree()
to perform the physical memory deallocation.

What is left to do is invalidating the page table entries for the remapped
virtual memory address, to ensure that any later dangling pointer access will
fail. Locating the relevant page table entries is done by performing a page-
table walk down to the 4K pages, which are then overwritten by an entry that
does not have the present bit set. Dangless uses the 64-bit value @xDEADQO
for this purpose, in order to make the invalidated entries easily identifiable.
We then flush the Translation Lookaside Buffer (TLB) which is used by the
CPU’s Memory Management Unit (MMU) to cache the results of page walks
to improve performance, to make sure that the old, now invalidated entry
values will not accidentally be used again (which would defeat the entire
purpose of Dangless).

In order to determine how many of the page table entries we need to inval-
idate, we have to know how many 4K pages did the allocation span. Recall
that Dangless places each allocation on one or more dedicated virtual mem-
ory pages that will never be used for anything else. malloc_usable_size()
is used to get the size of the allocation in bytes. (Of course, this has to be
done before calling sysfree().) Note though that determining the number
of spanned pages is not as easy as it might seem at the first glance, because
the allocation can start anywhere within a memory page. This means that,
for instance a 512-byte region can span 1 or 2 pages depending on where it
begins within the first page (Figure 3.3.4).

3.3.5 Handling re-allocations

Handling realloc() is a combination of a deallocation and an allocation,
with a couple of tweaks. I will present the logic here in the conceptual level,
as the Dangless-specific technical details of it are the same as with allocations
and deallocations already covered previously.

First, the call realloc(NULL, some_size) is valid according to the stan-
dard and is equivalent to malloc(some_size). Second, we have to be able
to handle the unusual case when the original pointer did not originate from
Dangless, but directly from the system allocator: this can happen for instance
if the original allocation occurred before Dangless was initialized. We deal
with both of these cases by treating them the same way as a malloc() call:
simply allocate some new virtual memory to remap the system allocator’s
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1 page spanned:

4K page 4K page

Al
512-byte allocation

2 pages spanned:

4K page 4K page

T
512-byte allocation

Figure 3.4: A memory allocation can span different number of pages depend-
ing on where it begins
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result to.

Finally, we want to perform the reallocation in-place when possible: that
is, re-use the same remapped virtual memory region. There are 3 cases to
consider with regards to how the number of pages spanned by the allocation
changes:

1. Stays the same: nothing to do.

2. Decreases, i.e. the new size is less than the old size such that the al-
location is now held by fewer pages than before: invalidate the pages
that were cut off, in the same way as we would handle a deallocation.

3. Increases, i.e. the new size is greater than the old size such that the
allocation is now held by more pages than before: allocate a new vir-
tual memory region large enough to fit the new allocation size, and
invalidate the entire old region. This could potentially be optimized:
if the virtual memory allocator owns the pages that are directly after
the old virtual memory region (ensuring that these pages are not in use
nor have they been invalidated before), then we could simply grow our
virtual memory region in-place.

It is worth noting that if the system allocator was unable to perform the
reallocation in-place, that does not mean that we cannot perform our work
in-place: in this case it is sufficient if we just update the physical memory
addresses of the original virtual memory region and flush the corresponding
TLB entries. However, this optimization is not currently implemented in
Dangless.

3.4 Fixing up vmecalls

3.4.1 The problem

One of the goals of Dune is to remain as simple as possible, and not re-
implement most functionality of operating system kernels when not abso-
lutely necessary. This means that most system calls performed by the ap-
plication running inside Dune are not actually handled by Dune itself, but
rather are passed on to the host kernel via the vmcall instruction. (vmcall
is identical to syscall, except it exits the virtual environment first.) This
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includes tasks as common as I/O operations (such as printf() or fopen()),
or even memory management (such as mmap()).

This presents a challenge for Dangless, which can be efficient because it
can directly manipulate the page tables inside the virtual environment (guest
machine) itself, without having to manipulate the host’s page tables (which
would only be possible via a system call such as mprotect()). However, any
virtual memory addresses returned from Dangless will only be valid inside
the guest environment, meaning that attempting to pass such a memory
address to the host kernel when performing a system call (vmcall) will fail
with EINVAL.

To demonstrate the problem, first consider the following;:

1 |puts("Hello world!\n");

The puts() standard library function used here is a comparatively sim-
ple wrapper around the write() system call, and unlike printf(), does not
perform any formatting or other manipulation of the string [glie|. Recall
that in C, strings are represented by null-terminated character arrays, and
are typically passed to functions as const char*: a (virtual) memory ad-
dress pointing to the first character of the string. Since in this example,
the argument to puts() is a string literal, the string data is stored in the
executable’s data section (such as .rodata) without any dynamic memory
allocation that would go through Dangless. The result is that the pointer
passed to the write() vmcall references virtual memory that is mapped by
the host machine, so the call will succeed.

1 |void determineAnswer(charx buffer) {
2 strcpy(buffer, "Fourty-two");
31}

4

5 | charx answerBuffer = malloc(64 x sizeof(char));
6 |determineAnswer(answerBuffer);

7

8 |puts("The answer is: ");

9 |puts(answerBuffer);

10 |puts("\n");

11

12 | free(answerBuffer);

The problem here is that we are passing a malloc()-d buffer to puts().
Since malloc() refers to dangless_malloc(), it will perform virtual memory
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remapping inside the guest system, yielding a pointer value in answer that
is valid inside the guest machine, but not in the host machine. (Of course,
the data is present in the host physical memory, but is not mapped to host
virtual memory.) The write() system call when executed by the host, is
not going to be amused by this fact, and is going to return the error code
EINVAL, indicating an invalid argument.

In this case by knowing how Dangless works it is easy to spot the problem.
However, often dynamic memory allocation is performed and the resulting
pointer is passed to a system call in a way that is not immediately obvious
from the user code, such as when done internally by the standard library
implementation. The simplest example is probably printf(), which can call
malloc() in some circumstances [glib| [glia]. T have also already mentioned
how dlsym() when running for the first time will call calloc().

3.4.2 Intercepting vmecalls

In order to fix this problem, Dangless needs to intercept any system calls
that are about to be forwarded to the host kernel. This capability is not pro-
vided by default in Dune, so I have implemented it (dune-ix-vmcallhooks.
patch), allowing Dangless to register a pre- and post-hook function that will
be called before and after a vmcall instruction is performed by Dune, re-
spectively. In the pre-hook, Dangless can access and modify the system call
number, any of the arguments, and even the return address. Similarly, the
post-hook exposes the syscall return code.

3.4.3 Determining which arguments to rewrite

The next problem is how to determine what the system call arguments are,
and which of them can possibly reference a Dangless-remapped pointer. Note
that it is not sufficient to find the pointers among the arguments themselves,
as pointers can be nested: the arguments can be pointers to arrays or struc-
tures which in turn contain pointers — sometimes, after a few layers of in-
direction. Examples include the readv() and writev() system calls, which
are used by GNU implementation of the <iostream> standard C++ header
such as when writing to std: :cout, i.e. stdout:

1 |ssize_t readv (int fd, const struct iovec *v, int n);
2 |ssize_t writev(int fd, const struct iovec xv, int n);
3
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4 |struct iovec {

5 void =iov_base; /x Starting address x*/
6 size_t iov_len; /* Number of bytes x/
T}

When handling either of these functions, not just the const struct «
iovec v pointer has to be fixed, but also the void *iov_base pointer inside
the pointer struct iovec.

Another example is the functions execve() and execveat():

1 |int execve(const char xfilename, char xconst argv[], char <
xconst envp[]);

2 |int execveat(int dirfd, const char xpathname, char *const «
argv[], char xconst envp[], int flags);

Besides the const char *xfilename simple pointer, the parameters char <«
xconst argv[] and char xconst envp[] are both a null-terminated array of
pointers, in which every entry has to be fixed.

Finally, pointers to more complicated structures are also sometimes passed
as system call arguments:

1 |ssize_t recvmsg(int sockfd, struct msghdr xmsg, int flags);

2

3 |struct msghdr {

4 void xMsg_name; /* optional address x/

5 socklen_t msg_namelen; /* size of address x/

6 struct iovec xmsg_iov; /* scatter/gather array */

7 size_t msg_iovlen; /* # elements in msg_iov */

8 void *msg_control; /* ancillary data, see «
below */

9 size_t msg_controllen; /* ancillary data buffer <«
len *x/

10 int msg_flags; /* flags on received
message */

11 | };

So, we need some way to determine which arguments of the system call
can be a pointer, and identify what data structure it points to in order to
find any nested pointers. Essentially, what we need is to be able to tell for
a system call number what arguments it takes and what type they are. For
this purpose, I have created a Python module linux-syscallmd (source
on GitHub |[git]) that parses the Linux kernel header file include/linux/
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syscalls.h and exposes system call metadata to user code. The Dangless
script at make/gen_vmcall_fixup_info.py then uses this information to
generate a file containing C code that can be #include-d to utilize this data
inside Dangless:

© 0 N O Ot = W N+

DO DO N = = = = b e e e e
N = O O© 00 3O Ui W= O

23
24
25

// sources/src/platform/dune/vmcall_fixup_info.h

enum vmcall_param_fixup_type {
VMCALL_PARAM_NONE,
VMCALL_PARAM_FLAT_PTR,
VMCALL_PARAM_IOVEC,
VMCALL_PARAM_PTR_PTR,
VMCALL_PARAM_MSGHDR

}

struct vmcall_param_fixup_info {
enum vmcall_param_fixup_type fixup_type;

}

struct vmcall_fixup_info {

18 num_params;

struct vmcall_param_fixup_info params[SYSCALL_MAX_ARGS];
}

// sources/src/platform/dune/vmcall_fixup_info.c

static const struct vmcall_fixup_info «
g_vmcall_fixup_info_table[] = {
// generated by make/gen_vmcall_fixup_info.py
#include "dangless/build/common/vmcall_fixup_info.inc"

}

The generated array is indexed by the number of a system call to find its

corresponding entry. Then we can iterate through the arguments and act on
them based on the enum vmcall_param_fixup_type value.

1
2
3
4
)

As an example, the entry for the clone() system call looks like this:

static const struct vmcall_fixup_info s_clone_info = {
.num_params = 5,

.params = {
// unsigned long flags
(0] = {
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© 00 3 >

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

}

.fixup_type = VMCALL_PARAM_NONE

+
// void xchild_stack
[1] = {
.fixup_type = VMCALL_PARAM_FLAT_PTR
},
// int xptid
[2] = {
.fixup_type = VMCALL_PARAM_FLAT_PTR
},
// int xctid
[3]1 = {
.fixup_type = VMCALL_PARAM_FLAT_PTR
},

// unsigned long newtls
[4] = {

.fixup_type = VMCALL_PARAM_NONE
}

3.4.4 Rewriting the pointers

Now that we know which arguments to rewrite or “fix-up”, we can use the
same logic as dangless_free() to get the canonical pointer from a potentially-
remapped one (see Section 3.3.4). We then replace the remapped pointer
value with the canonical one in the system call arguments.

In case of nested pointers this involves modifying the referenced in-memory
data, meaning we cannot simply replace the pointer. This is because the
original pointer was a remapped pointer, allocated via Dangless, and will
be deallocated via Dangless. However, due to the nested pointer fix-up, the
user code can now potentially access the canonical (non-remapped) pointer,
opening the door to dangling pointer errors. Furthermore, should a canoni-
cal pointer be passed to dangless_free(), it cannot invalidate the remapped
memory region as it does not know where it might be.

43



3.4. FIXING UP VMCALLS

To demonstrate, consider the following code:

char xfirst = malloc(32);
strcpy(first, "Hello ");

char xsecond = malloc(32);
strcpy(second, "world!");

struct iovec iov[2];
iov[0].iov_base = first;
iov[0@].iov_len = strlen(first);

O 00 ~J O T = W=

10 |iov[1l].iov_base = second;

11 |iov[1l].iov_len = strlen(second);
12

13 |writev(STDOUT_FILENO, iov, 2);

Due to pointer rewriting the system call succeeds, but afterwards we
end up with iov[0].iov_base != first and iov[1l].iov_base != second,
as they have been replaced by their canonical counterparts to make the sys-
tem call succeed on the host kernel.

Later, we deallocate the buffers:

1 |free(second);
2 |free(first);

This is fine, since the first and second variables were not affected by
the pointer rewriting, so Dangless correctly invalidates the remapped regions
in dangless_free(). But then, later:

1 |fprintf(stderr, "Attempted writev() with ’'%s’ and '%s’!\n", <«
iov[0O].iov_base, iov[1l].iov_base);

Here we have an attempted memory access through two dangling pointers.
Recall that, due to pointer rewriting, iov[0].iov_base and iov[1].iov_base
are the canonical pointers (as returned by sysmalloc()) and so do not point
into the remapped region that was invalidated by the earlier dangless_free()
calls. Therefore, this error will not be caught by Dangless!

To resolve this situation, for every nested pointer fix-up, Dangless records
the pointer location (a pointer to the user pointer) as well as the original value
stored there (the Dangless-remapped pointer value) in a buffer. After the
vimcall returns but before it jumps back into user code, we then go through
the records and restore any such rewritten pointer values to their original
ones, preventing the user from being exposed to non-remapped pointer values.
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3.4.5 Limitations

This approach is limited in that Dangless can only handle system calls, argu-
ments, and argument types that Linux-syscallmd recognizes when building
Dangless.

For instance, linux-syscallmd currently does not understand or pro-
cess preprocessor macros, such as #if and #ifdef sections. This means that
system call signatures not relevant for the current system will also be parsed,
leading to conflicting signatures for some system calls, such as clone().
linux-syscallmd currently does not handle this situation, and will just
pick the last occurrence of the same system call in the source file, which may
be different than the signature actually used by the kernel. Because of this,
Dangless has special handling of the clone() system call, but naturally that
cannot extend to e.g. system calls introduced in the future.

As of writing, I do not know of a better way to approach this. Fixing
the present limitation would involve knowing what values were used for each
preprocessor macro while building the kernel, and I am not aware of any way
in which the kernel exposes this information.

Another issue is understanding which arguments can hold pointer or
nested pointer values. For the vast majority of system calls this is straight-
forward, as linux/syscall.h consistently marks the pointer arguments as
__user *, and the pointed type is obvious, whether it is char or struct <
iovec. But some system calls will interpret the same argument differently
depending on the context of the call, such as ptrace(). The signature of
ptrade() is as follows:

1 |long ptrace(enum __ptrace_request request, pid_t pid, void «
xaddr, void xdata);

Notice that addr and data are both untyped (void) pointers. How they
are interpreted differs depending on the value of the request argument. Some
examples:

e PTRACE_TRACEME: both addr and data are ignored.

e PTRACE_PEEKTEXT: addr does not correspond to pointer in the address
space of the caller, but rather, refers to a location in the address space of
the target application. The same pointer value may reference a memory
region that is unmapped, or worse, mapped for something completely
different in the address space of the calling process. As such, Dangless
should not touch it. data is ignored.
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e PTRACE_POKEDATA: addr refers to a memory address in the target pro-
cess. data might not be a pointer value at all, but rather the word to
be copied into the target process’s memory.

e PTRACE_GETREGS: data is an actual pointer in the calling process, while
addr is ignored.

e PTRACE_GETREGSET: addr is not a pointer value at all, but rather an
enumeration. data is an actual pointer to the calling process’s memory;,
but it references a struct iovec value, meaning that it will contain
nested pointers that also have to be fixed up by Dangless.

ptrace() is a special case due to its very specialized nature, and it is
unlikely to be used at all in the vast majority of applications that Dang-
less would be relevant for. Because of this Dangless ignores ptrace(), even
though it would be possible to cover all of these scenarios.

There may be other system calls that have similar behaviour, although
likely not as pathological as ptrace(). These are currently not handled in any
way by textttlinux-syscallmd nor Dangless. Supporting all of these scenarios
would inevitably involve extending Dangless to handle each on a case-by-case
basis.
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Chapter I

User Guide

This chapter is about building, configuring, and using Dangless. Most of this
information in less detail is also described in the repository README file.

4.1 System requirements

Most requirements are posed by Dune itself:

e A 64-bit x86 Linux environment

A relatively recent Intel CPU with VT-x support

Kernel version of 4.4.0 or older

Installed kernel headers for the running kernel

Root (sudo) privileges

Enabled and sufficient number of hugepages (see below)
The remaining requirements posed by Dangless itself are fairly usual:

e A recent C compiler that supports C11 and the GNU extensions (either
GCC or Clang will work)

e Python 3.6.1 or newer

o CMake 3.5.2 or newer
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4.1.1 Hugepages

Besides the above, Dune requires some 2 MB hugepages to be available during
initialization for setting up its safe stacks. It will also try to use huge pages
to acquire memory for the guest’s page allocator, although it will gracefully
fall back if there are not enough huge pages available.
To make sure that some huge pages remain available, it is recommended to
limit or disable transparent hugepages by setting /sys/kernel/mm/transparent_
hugepage/enabled to madvise or never (you will need to use su if you want
to change it).
Then, you can check the number of huge pages available:

1|$ cat /proc/meminfo | grep Huge
2 | AnonHugePages: 49152 kB

3 |HugePages Total: 512

4 |HugePages Free: 512

5 |HugePages Rsvd: 0

6 | HugePages Surp: 0

7 | Hugepagesize : 2048 kB

In my tests, it appears that at minimum 71 free huge pages are required
to satisfy Dune, although it is not quite clear to me as to why: by default
for 2 safe stacks of size 2 MB each, we should only need 2 hugepages.

You can dedicate more huge pages by modifying /proc/sys/vm/nr_
hugepages (again, you will need to use su to do so), or by executing:

1 ‘sudo sysctl —w vm.nr hugepages=NUM>

.. where <NUM> should be replaced by the desired number, of course.

When there is not a sufficient number of huge pages available, Dangless
will fail while trying to enter Dune mode, and you will see output much like
this:

1 |dune: failed to mmap() hugepage of size 2097152 <
for safe stack 0

2 |dune: setup safe stack() failed

dune: create percpu() failed

4 |Dangless: failed to enter Dune mode: Cannot <
allocate memory

w
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4.2 Building and configuring

The full Dangless source code is available on GitHub at https://github.
com/shdnx/dangless-malloc. After cloning, you will have to start by
setting up its dependencies (such as Dune) which are registered as git sub-
modules in the vendor folder:

1| git submodule init
2 | git submodule update

Then we have to apply the Dune patches as described in Section 2.4 and
build it:

1 |cd vendor/dune—ix
2
3 |# patch dune, so that the physical page metadata <
1s accessible inside the guest, allowing us to <
e.qg. mess with the pagetables

4 | git apply ../dune—ix—guestppages.patch

ot

6 |# patch dune, so that we can register a prehook <
function to run before system calls are passed <
to the host kernel

7 |git apply ../dune—ix—vmcallprehook.patch

oo

9 |# patch dune, so that it does not kill the process <
with SIGTERM when handling the exit group <
syscall — this causes runs to be registered as <
failures when they succeeded

10 | git apply ../dune—ix—nosigterm .patch

11
12 |# need sudo, because it ts building a kernel module
13 |sudo make

Now configure and build Dangless using CMake:

cd ../../sources

mkdir build
cd build

Uk~ W N+~
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7
8
9
10
11
12
13
14

# you can specify your configuration options here, <
or e.g. use ninja (—GNinja) instead of make
cmake \
—D CMAKE BUILD TYPE=Debug \
—D OVERRIDE SYMBOLS-ON \
—D REGISTER_PREINIT=ON \
—D COLLECT _STATISTICS=OFF \

cmake —build

You should be able to see libdangless_malloc.a and dangless_user.

make afterwards in the build directory.

You can see what configuration options were used to build Dangless by

listing the CMake cache:

1
2
3

ot

0]

10
11
12

13

$ cmake —LH
— Cache values
// Whether to allow dangless to gracefully handle <

running out of wvirtual memory and continue <
operating as a proxy to the underlying memory <
allocator.

ALLOW_SYSMALLOC FALIBACK:BOOL-ON

// Whether Dangless should automatically dedicate <
any unused PML4 pagetable entries (large unused <
virtual memory regions) for its wvirtual memory <
allocator. If disabled, user code will have to <

call dangless_dedicate_vmem ().
AUTODEDICATE PMIAES: BOOL=ON

// Choose the type of build, options are: <
None (CMAKE CXX FLAGS or CMAKE C FLAGS used) <
Debug Release RelWithDebInfo MinSizeRel.

CMAKE BUILD TYPE:STRING=Debug

// Install path prefiz, prepended onto install <
directories.

CMAKE INSTALL PREFIX:PATH=/usr/local
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14
15 | // Whether to collect statistics during runtime <
about Dangless usage. If enabled, statistics <
are printed after every run to stderr. These <
are only for local developer wuse and are not <
uploaded anywhere.

16 |COLLECT _STATISTICS : BOOL=OFF

17
18 | // Debug mode for dangless malloc.c
19 |DEBUG DGLMALLOC: BOOL=OFF

20
21 | // Debug mode for wvmcall fizup.c
22 |DEBUG_DUNE_ VMCALL_FIXUP:BOOL=OFF
23

You can also use a CMake GUI such CCMake [ccm], or check the main
CMake file (sources/CMakelLists.txt) for the list of available configura-
tion options, their description and default values.

4.3 API overview

Dangless is a Linux static library libdangless_malloc.a that can be linked
to any application during build time. It defines a set of functions for allocat-
ing and deallocating memory:

1 |// sources/include/dangless/dangless_malloc.h

2

3 |void xdangless_malloc(size_t sz) __attribute__((malloc));

4 |void *dangless_calloc(size_t num, size_t size) <«
__attribute__((malloc));

void xdangless_realloc(void *p, size_t new_size);

6 |int dangless_posix_memalign(void *xpp, size_t align, size_t <«

size);

7 |void dangless_free(void *p);

ot

These functions have the exact same signature and behaviour as their
standard counterparts malloc(), calloc(), and free(). In fact, because the
GNU C Library defines these standard functions as weak symbols [glid|, Dan-
gless provides an option (OVERRIDE_SYMBOLS) to override the symbols with its
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own implementation, enabling the user code to perform memory management
without even being aware that it is using Dangless in the background.

Besides the above, Dangless defines a few more functions, out of which
the following two are important.

1 |void dangless_init(void);

Initializes Dangless as described in Section 3.2. Whether or not this
function is called automatically during application start-up is controlled by
the REGISTER_PREINIT option, defaulting to On.

1 \int dangless_dedicate_vmem(void *start, void *end);

Dedicates a memory region to Dangless’s virtual memory allocator, as
described in Section refsec:dangless-alloc-virtmem. Whether or not any ded-
ication happens automatically is controlled by the AUTO_DEDICATE_PML4ES
option.

4.4 Integrating into existing applications

Dangless can be integrated into an application which relies, directly or indi-
rectly, the C memory management API. To do this:

e link to libdangless_malloc.a using the -whole-library option
e link to libdune.a

e link to 1ibd1l to allow Dangless to resolve the symbols for the system
allocator

e disable building a position-independent executable (PIE) using -no-pie,
due to the limitation of Dune

When building, Dangless generates a dangless_user.make file that
makes this easier to do with Makefile-based build systems.
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Chapter 5

Evaluation

5.1 Setup

All measurements were made on Intel Core i7-4510U CPU @ 2.00GHz with
16 GB RAM, running Ubuntu 14.04 LTS, with Linux kernel version 4.4.0-
161. Performance overhead was measured on the standard SPEC2006 bench-
marking suite using the VUSec group’s instrumentation-infra frame-
work [vus].

Dangless was built and configured in the following manner:

./setup.py build \
—dangless—config ALLOW_ SYSMALLOC FALIBACK=Off \
—dangless—config COLLECT STATISTICS=0Off \
—dangless—config ENABLE PERF EVENTS=Off \
—dangless—config REPORT RUSAGE-=Off \
—dangless—config SYSCALLMETA HAS INFO=Off \
—targets spec2006
—instances baseline dune—only dangless—malloc

This builds SPEC2006 in three configurations (referred to as “instances”):

O 1 O Ui W N =

1. baseline: plain, unmodified benchmarks.

2. dune-only: all benchmarks are built linking to libdune, as well as
a small utility library ensuring that Dune is entered automatically at
program startup (libdune-autoenter). This is used to measure the
overhead of Dune itself compared to baseline.
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3. dangless-malloc: linking to libdangless-malloc and its dependen-
cies, measuring the overhead of Dangless itself.

The above command line corresponds to building Dangless manually like

cmake \

~D CMAKE BUILD TYPE-RelWithDebInfo
—D ALLOW_SYSMALLOC FALIBACK-Off
—D COLLECT STATISTICS-Off

~D ENABLE PERF EVENTS-Off \

—D REPORT RUSAGE-Off

—D SYSCALLMETA HAS INFO-Off

cmake —build

Finally, the benchmarks were run using the command:

./ setup .py run \

—parallel=proc \
—parallelmax=1 \
—iterations=5 \

spec2006 \

baseline \

dune—only \
dangless—malloc \
—benchmarks all c¢ all cpp

This runs all of the C and C++ SPEC2006 benchmarks in all three con-

figurations, sequentially (parallelmax=1), 5 times each.

5.2  Performance overhead on SPEC2006

Dangless successfully runs on all C and C++ benchmarks with following
exceptions:

e 400.perlbench with test workload fails due to using the unsupported
clone() system call
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e 400.perlbench and 471.omnetpp with reference workload both fail
in very similar circumstances, indicating an EPT violation error. It is
not clear what the cause is, but I suspect it is some limitation or bug
in Dune.

The performance overhead results are summarized in Table 5.1 and visu-
alized in Figure 5.2. Memory overhead results are summarized in Table 5.2
and visualized in Figure 5.2.

For comparison with Dangless, I have included the overheads from Os-
car [DMW17|, which represents the current state of the art with overheads
that are lower than that of previous technologies. Unfortunately, they have
not published the exact numbers, so the values I reported for them are esti-
mations based on their graphs.

The overhead values of Dune were measured together with those of Dan-
gless, and correspond to the dune-only instance configured earlier. These
numbers confirm the findings of the Dune paper [BBM112|, in which they
indicated insignificant performance overhead. Dune is therefore a promising
technology to base further protections on.

5.3 Performance analysis
The overhead posed by Dangless comes from the following primary sources:

1. The additional work performed during every memory operation, such
as the extra page walk on realloc() and free().

2. The increased TLB pressure due to each object being mapped to a
unique virtual memory page. This results in a significant increase in
the number of TLB misses, and so requires a full page-table walk on
main memory access. In the case of the Dune-enabled process, the
additional two layers of page-tables (the guest page tables and the
embedded page tables) make this extra-expensive.

3. The overhead imposed by the virtualization and Dune, mainly in adding
to the cost of system calls when they have to pass through the virtual-
ization boundary. Recall also that Dangless has to “fix-up” remapped
pointers when they are about to be passed to the host kernel in system
call arguments.
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Benchmark Dune | Dangless | Oscar
401.bzip2 0% 1.3% 0%
403.gcc 0% 15.2%

429.mcf 0.3% 11.5% 0%
433.milc 3.9% 10.7% 5.5%
444 namd 0% 0.4% 0%
445.gobmk 0.1% 2.5% 0.5%
447 .dealll 0.8% 7.4% | 190.0%
450.soplex 0.4% 3.0% 4.0%
453.povray 0.3% 0% 5.0%
456.hmmer 2.3% 2.3% 0.7%
458.sjeng 0% 1.1% 1.0%
462 libquantum 0% 0% 2.5%
464.h264ref 0.1% 0% 4.5%
470.1bm 0% 0.3% 0%
473.astar 1.3%

482.sphinx3 1.2% 3.0% 8.0%
483.xalancbmk | 1.8% 305.0%

Table 5.1: Runtime performance overhead measurements: Dune, Dangless,
and Oscar. A value of 0% indicates no overhead, while a value of 100% means
that runtime was double that of baseline. Overhead values of 20% or higher
were highlighted in , while over 100% are in red.
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Benchmark Dune | Dangless | Oscar
401.bzip2 0% 0.1% 0%
403.gcc 0% 0.5% 5.0%
429.mcf 0% 0% 0%
433.milc 0% 0.2% | 18.0%
444 namd 0.7% 2.2% 1.0%
445.gobmk 1.0% 3.0% 0%
447 .dealll 0% 410.0%
450.soplex 0% 0%

453.povray 0% 11.9%

456.hmmer 0.4% 3.4%

458 sjeng 0.1% 0.4% 0%
462.libquantum | 0.2% 1.0% 4.0%
464.h264ref 0.1% 1.4% 10.0%
470.1bm 0.1% 0.2% 0%
473.astar 0% 0.3%

482.sphinx3 0.8% 3.3% | 400.0%
483.xalancbmk 0% 180.0%

Table 5.2: Memory overhead measurements: Dune, Dangless, and Oscar. A
value of 0% indicates no overhead, while a value of 100% means that memory
usage was double that of baseline. Overhead values of 20% or higher were
highlighted in , while over 100% are in red.
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In comparison, the overhead added by Oscar and similar user-space tech-
niques, while not suffering from the third reason (the overhead imposed by
the virtualization), come from a couple of extra sources:

1. Having to perform system calls to create, update, or invalidate the
remapped (shadow) virtual memory. System calls are well-known to
be expensive, due to the complexity and cost of switching from user
code to kernel code, as well as the “pollution” of the various hardware
caches [SS10]. (Dangless does not need to use system calls, having
direct access to the guest page tables.)

2. The kernel having to track the existence of every virtual memory area
used by the process, beyond the data required by the hardware and en-
coded in the page tables. In Linux, these are stored in a vm_area_struct
object, and are a major source of overhead for Oscar [DMW17| and sim-
ilar technologies. (The additional virtual memory regions created by
Dangless are not known to the host kernel, therefore it does not have
to keep track of them.)

3. Having to store the original virtual memory address (the canonical
pointer) for each allocation. This means an overhead of 8 bytes on x86-
64 per allocation, which turns out to be very significant for applications
that allocate a lot of small objects. (Dangless does not need to store the
canonical pointer, as it can just get them by performing a page-table
walk and relying on Dune’s simple virtual memory layout.)

In general, applications (and benchmarks) that perform a large number of
memory allocations are going to be the most affected by the overhead imposed
by Dangless, Oscar, and similar technologies. To specifically understand the
source of overhead and the (often huge) differences between the performance
of Dangless and Oscar, we have added extensive statistics to Dangless as well
as the reporting of hardware performance metrics.

The most important results are summarized in Table 5.3. Matching this
table with the overheads observed, it is clear that benchmarks with few
memory allocations (such as bzip2, mcf, namd, gobmk, 1bm) suffer very little
overhead, confirming our earlier assertion. Further, we can observe a very
large increase in the TLB miss rate: however, the TLB miss rate overall still
remained very low.
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Base.line Allocations Baseline | Dangless ?E%gless
Benchmark runtime TLB TLB .

(seconds) [ B! miss rate | miss rate | o rate

increase

401.bzip2 1023,816 0,03 0,0006% 0,0014% 160,71%
403.gcc 479,326 6.814,98 0,0480% 0,2424% 405,36%
429.mcf 471,984 0,02 1,2473% 2,6666% 113,79%
433.milc 681,409 9,56 0,1702% 0,3608% 111,95%
444 namd 821,979 1,62 0,0001% 0,0003% 180,71%
445.gobmk 748,740 295,77 0,0207% 0,0327% 58,16%
447.dealll 1961,820 77.101,32 0,0038% 0,0910% | 2310,45%
450.soplex 558,581 421,05 0,0896% 0,1765% 97,08%
453.povray 420,569 5.773,20 0,0186% 0,0236% 26,78%
456.hmmer 1576,148 634,55 0,0000% 0,0007% | 3251,75%
458.sjeng 826,666 0,01 0,0451% 0,1083% 140,29%
462.libquantum 691,407 0,23 0,0027% 0,0049% 81,05%
464.h264ref 1310,727 79,99 0,0096% 0,0342% 255,93%
470.1bm 494,989 0,01 0,0261% 0,0522% 99,79%
473.astar 786,287 1.420,12 0,1248% 0,5454% 337,21%
482.sphinx3 1408,159 10.101,62 0,0268% 0,0776% 189,67%
483.xalanchmk 1287,433 104.980,66 0,0385% 0,6835% | 1675,31%

Table 5.3: Performance analysis of the SPEC2006 benchmarks, focusing on

TLB misses.

Benchmarks like dealll, sphinx3, and xalancbmk are very allocation-
heavy applications, and indeed these represent most of the benchmarks on
which Oscar’s performance has suffered. This shows how significant overhead
is involved in maintaining the Linux kernel’s vm_area_struct-s, as well as
having to store the canonical pointers.
Finally, the performance impact of having to perform vmcalls instead of
regular system calls, as well as having to “fix-up” remapped virtual memory
pointers in their arguments is shown to be minimal by Table 5.4, as even
on benchmarks that perform a large number of system calls (dealll, povray,
xalancbmk), the number of pointers we had to rewrite remained low (dealll,
xalancbmk) or did not measurably affect performance (povray).
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Basel.ine VMCalls VMCall Dangless
Benchmark run time arg fixups | runtime
(seconds) [/ e / second | overhead

401.bzip2 1023,816 0,06 0,04 1,30%
403.gcc 479,326 7,12 1,04 15,20%
429.mcf 471,984 1,92 1,90 11,50%
433.milc 681,409 2,79 0,09 10,70%
444 namd 821,979 2,47 2,33 0,40%
445.gobmk 748,740 2,86 0,49 2,50%
447 .dealll 1961,820 24,56 4,51 7,40%
450.soplex 558,581 6,65 6,56 3,00%
453.povray 420,569 62,85 62,55 0,00%
456.hmmer 1576,148 0,05 0,05 2,30%
458.sjeng 826,666 4,16 0,46 1,10%
462.libquantum | 691,407 0,11 0,06 0,00%
464.h264ref 1310,727 1,02 0,43 0,00%
470.1bm 494,989 1,40 1,38 0,30%
473.astar 786,287 1,36 0,08 24.,60%
482 sphinx3 1408,159 | 4,72 4,34 3,00%
483.xalancbmk | 1287,433 15,22 12,86 19,80%

Table 5.4: Performance overhead analysis of vmcalls with Dangless.
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5.4 Virtual memory exhaustion

Let us recall that Dangless, in its current implementation, does not ever
reclaim virtual memory. Once a page has been used to shadow an allocated
object, it is never reused, meaning that eventually, virtual memory will run
out, and we will no longer be able to re-map the allocations as they happen.

Dangless is focused on the x86-64 architecture, which uses 48 bits (out
of the 64 available) for virtual memory addresses, meaning that the entire
address space is 256 terabytes big. Assuming a worst-case scenario of many
small object allocations (since each need to be remapped on a unique virtual
memory page, regardless of whether it is 32 bytes or 4 kilobytes), this would
be sufficient for 68 719 476 736 (= 235 = 021000000000) allocations. Let us
take into account that normal, non-shadow memory also needs space, and
reserve a full terabyte for them (or 268 435 456 pages), leaving us with space
for 68 451 041 280 shadow pages.

Looking at the most allocation-heavy SPEC2006 benchmarks as seen on
Table 5.3, xalancbmk performs almost 150 000 allocations per second on
average. With the calculated virtual memory available, this means that it
would be able to keep running at this pace for 456 340 seconds, or almost
127 hours. (The benchmark, however, on my machine completes in just
1287 seconds.) The second most intensive benchmark, dealll, performs 77
100 allocations every second (on average), so it run continuously for almost
double of that time. These benchmarks are also highly unusual in their
memory intensity.

The third most allocation-intensive benchmark is sphinx3, with an av-
erage of a bit over 10 100 allocations per second. It could keep on running
with the protection of Dangless for more than 1882 hours without exhausting
virtual memory. The soplex benchmark could do the same for over 45 164
hours. Benchmarks that perform very few allocations, such as bzip2, mcf,
milc, namd, and so on, could run virtually indefinitely.

These numbers go to show that while not reclaiming virtual memory is
certainly wasteful and eventually leads to Dangless being unable to protect
further allocations, this limitation is not necessarily crippling. Nonetheless,
this is the primary opportunity for improvement on its design and implemen-
tation.
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5.5 Summary of contributions

Dangless MAlloc demonstrates the power of process-level, hardware-assisted
virtualization and its use for hardening processes against bugs and malicious
users without having to pay the usual performance penalties. This makes
the approach of creating and destroying shadow virtual pages, used by pre-
vious work such as Oscar [DMW17]|, noticeably cheaper, without making
the design significantly more complex. (Although the implementation does
take somewhat more effort, due to the virtualization making a Dune-enabled
application more difficult to debug.)

Specifically, by running the process in a virtualized environment, Dangless
does not have to perform a system call for managing the remapped (shadow)
virtual memory, being able to manipulate the (guest) page tables directly —
at the minor cost of having to pass all normal system calls to the host kernel
as measured by the original Dune research paper [BBM™12].

Because these extra virtual memory mappings only exist in the guest
system, the hosting Linux kernel is not aware of them, and does not have to
maintain a vm_area_struct structure for each of them — something that is a
source of significant overhead in similar approaches [DMW17|. This comes
at the cost of having to “fix-up” remapped pointers in system call arguments
before they can be passed on the host kernel, but in practice this was not
found to have noticeable performance implications.

Finally, Dangless does not have to store the canonical memory address
of each allocation, because the virtual memory layout of Dune is very sim-
ple and predictable, allowing us to compute the canonical virtual addresses
based on the physical ones. This does add the overhead of a single page walk
to determine the physical memory address for every allocation management
operation such as realloc() and free(), but the cost of these is insignif-
icant compared to cost of prior approaches. Therefore, the only memory
overhead posed by Dangless is the extra page tables used to encode these
virtual memory mappings.

5.6 Limitations and improvement opportunities
Dangless Malloc was created as a proof of concept, and its implementation

could be improved in various ways.
For instance, the realloc() implementation is not optimal: even if the
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system allocator was unable to perform an in-place reallocation, we could
still potentially do so with the remapped pages, if the virtual memory region
following them is available. Care should only be taken to modify the page
table entry of each of the old virtual page mappings to point to the new
physical addresses.

Similarly, there’s no real reason why Dangless is currently unable to han-
dle the system allocator returning a virtual memory region that is not backed
by contiguous guest physical memory.

As discussed earlier, Dangless could be smarter about its virtual memory
auto-dedication logic, for example by acquiring unused virtual memory re-
gions on-demand. We could also be using hugepages for the shadow virtual
memory when the allocation size is greater than 2 MB or 1 GB.

In order to make it easier to incorporate Dangless into projects, it should
support installation and exporting its CMake targets.

Major improvement opportunities would be supporting multi-threaded
applications, after investigating Dune’s state of support for it, and supporting
the clone() system call.

Finally, some mechanism for reclaiming virtual memory once we can rea-
sonably guarantee the absence of pointers to them would ensure that we
never run out of virtual memory even in long-running applications such as
web servers. In order to measure the impact of Dangless on these types of
workloads, further performance testing should be performed.

5.7 Conclusion

Memory errors have plagued software developers and users alike since the
day computers became widespread. After decades of research and develop-
ment, they remain a major source of bugs and security vulnerabilities. While
tooling to help avoid and quickly diagnose such problems underwent serious
development, they remain too expensive and complicated to use outside of de-
velopment and testing. As the Internet today represents an invaluable global
resource, overseeing a myriad of functions, security vulnerabilities created by
such errors become more critical than ever.

Temporal memory errors such as those arising from dangling pointers
represent a difficult problem to solve using traditional means, as they are
difficult to identify using static analysis, and even if found through other
means, remains difficult to diagnose. This necessitated the development of
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tools that were specialized for this task.

In this thesis, I have presented an improvement over previous approaches
by utilizing light-weight process-based virtualization aided by Dune. This
enabled the implementation of well-known techniques, such as using virtual
memory remapping (or shadow virtual memory) in a manner that comes at
a significant lower performance cost.

While further work is definitely needed to explore the topic, Dangless
represents a major step towards a world where we can continue using low-
level, “unsafe” programming languages without sacrificing memory safety.
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