
Vrije Universiteit Amsterdam

Master Thesis

Safe Patch Fingerprinting

Author:

Nathan

Schagen

Supervisors:

Koen Koning (Msc)

Dr. Cristiano Giuffrida

Prof. Dr. Herbert Bos

A thesis submitted in fulfilment of the requirements

for the degree of Parallel and Distributed Computer Systems

in the

Faculty of Sciences

Department of Computer Science

August 2017

http://www.vu.nl/en/index.asp
http://www.few.vu.nl/~author/
http://www.few.vu.nl/~author/
http://www.cs.vu.nl/~jane/
http://www.cs.vu.nl/~janet/
http://www.cs.vu.nl/~janet/
Research Group Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)

Declaration of Authorship

I, Nathan Schagen, declare that this thesis titled, ’Safe Patch Fingerprinting’ and the

work presented in it are my own. I confirm that:

� This work was done wholly or mainly while in candidature for a Master’s degree

at this University.

� Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

i

VRIJE UNIVERSITEIT AMSTERDAM

Abstract

Faculty of Sciences

Department of Computer Science

Parallel and Distributed Computer Systems

Safe Patch Fingerprinting

by Nathan Schagen

In this thesis, we explore a novel method called safe patch fingerprinting. It allows

for potentially automated discovery of inputs that safely discriminate vulnerable from

patched servers for the latest vulnerabilities. This enables rapid updates to scanning

tools, allowing administrators to scan and secure their networks more quickly. To ensure

such scans are safe, it is required to reject inputs having malicious side-effects.

We focused on testing both the safety and this discriminative property for given inputs.

We have implemented a framework that uses delta execution, to successfully recognize

these so called discriminators for both the infamous heartbleed vulnerability and a

number of vulnerable test servers we built ourselves.

We made further attempts to automate the process by generating candidate inputs which

were then tested using the aforementioned framework. This allowed us to automatically

find discriminators for most of our vulnerable test servers. Although many challenges

are ahead, we provide many insights that can lead to the development of more effective

patch fingerprinting tools.

http://www.vu.nl/en/index.asp
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)

Acknowledgements

This project initially sparked my interest because potentially had a high impact and al-

lowed me to learn many different things about computer systems and security. However,

doing this project with a demanding part-time job on the side proved very challenging.

Also, it turned out that many problems were more difficult than initially assumed. Fi-

nally, I have high expectations of myself, which drives me to achieve great things, but

can also cause my productivity to grind to a halt when hope of reaching my goals di-

minishes. During the last 2 years and 2 months, I had multiple episodes where I was

about to give up on this project. Now that I’ve made it, it seems appropriate to thank

some people for their help and support.

First of all, I would like to thank my parents, Cees Schagen and Anja Kroon, for their

unwavering support, especially at times when I was losing hope of ever finishing the

project. I would also like to thank Chris Dekker for his support and understanding and

bringing up my thesis at parties. He could relate to my struggles, but also made me laugh

about it at times. Christian Ouwehand is a longtime friend of mine who is currently

working on his thesis in Herbert’s group. I would like to thank him for the conversations

we had about the challenges we both faced in our own journeys. As opposed to a work

environment, writing a thesis is a highly solitary job and having people to discuss the

subtleties of your work with helps you to move forward.

I would also like to thank Dirk Jonker, my employer, for giving me space and time

to finish this project. Working on my thesis in the office helps against the feeling of

isolation I experienced after working at home for a few days. Many of my colleagues

know what thesis writing is like and I thank them for their support.

Last but not least, I would like to thank Koen Koning, Cristiano Giuffrida and Herbert

Bos for their patience and guidance while I was ploughing through all the challenges that

I encountered. I often had unreasonable expectations of myself, because I was aiming

for near-perfect solutions and finishing the project as soon as possible. Not being able to

live up to such high standards had negative effects on my confidence about the project.

Fortunately, my supervisors were understanding and made me feel better about my

achievements. Besides that, being part of the world of systems security research whilst

writing my thesis has taught me a lot.

iii

Contents

Declaration of Authorship i

Abstract ii

Acknowledgements iii

List of Figures vii

List of Tables ix

1 Introduction 1

2 Design 5

2.1 Discriminators . 5

2.1.1 Infection . 7

2.1.2 Safety . 7

2.1.3 Propagation . 9

2.1.4 Examples . 10

2.2 Discriminator testing . 11

2.2.1 Delta execution . 12

2.2.2 Confidentiality . 13

2.3 Discriminator discovery . 14

2.3.1 Symbolic Execution . 15

2.3.2 Concolic Execution . 15

2.3.3 Fuzzing . 16

2.3.4 Hybrid approaches . 17

3 Implementation 19

3.1 Deltafy Compiler Pass . 19

3.2 Libdelta runtime library . 21

3.2.1 Splitting . 21

3.2.2 Merging . 22

3.2.3 Instrumenting I/O functions . 24

3.2.4 Whitelisting . 24

3.2.5 Deltastub . 25

3.3 Sanitizer integration . 25

iv

Contents v

3.3.1 Compilation . 26

3.3.2 Initialization . 26

3.3.3 Thread-local-storage . 26

3.3.4 Controlling the heap . 26

3.3.5 Interposing functions . 28

3.4 Fuzzing . 29

4 Vulnerability Class Analysis 31

4.1 Null-pointer dereferencing . 31

4.2 Integer overflows . 32

4.3 Use-after-free . 33

4.4 Buffer overflows . 34

4.5 Buffer over-reads . 35

4.6 Conclusions . 35

5 Results 36

5.1 Heartbleed . 36

5.1.1 Propagation in heartbleed . 38

5.1.2 Safety in heartbleed . 39

5.1.3 Infected state in heartbleed . 40

5.1.4 Fuzzing . 40

5.2 Experiments . 41

5.2.1 Echo server 1 . 41

5.2.2 Echo server 2 . 42

5.2.3 Replace server . 42

5.2.4 Quote server . 44

6 Related work 46

6.1 Fingerprinting in network reconnaissance 46

6.2 Web vulnerability scanners . 47

6.3 Mutation testing . 48

7 Discussion 52

7.1 Discriminator testing . 53

7.1.1 Limitations . 53

7.1.2 Accuracy of splitting and merging 53

7.1.3 Inspecting Diverged State . 55

7.1.4 Retaining Diverged State . 56

7.1.5 Confidentiality . 57

7.2 Discriminator Discovery . 58

7.3 Alternative applications . 59

7.4 Future work . 60

8 Conclusion 62

Contents vi

Bibliography 64

List of Figures

1.1 This figure shows a patched and an unpatched server processing the same
request. The request is a discriminator because it causes both versions to
respond differently as indicated by the colors 2

2.1 Overview of the patch fingerprinting framework. The boxes indicate the
two subsystems and the arrows show their interactions and their inputs
and outputs . 6

2.2 Echo server 1 contains a buffer overread vulnerability, allowing attackers
to leak memory contents. 10

2.3 Echo server 2 contains a buffer overflow vulnerability. It can be safely
detected using a small overflow that only overwrites padding bytes 11

3.1 The deltafy pass merges the patched and unpatched version. It replaces
modified functions with proxies, which forward the call to either the orig-
inal or patched version of the function . 20

3.2 Shows all LLVM compiler passes used to generate instrumented binaries
that work with libdelta . 21

3.3 Shows how an instrumented program splits and merges when a patched
function F is called . 22

3.4 The VUzzer uses a session script to fuzz the instrumented server 30

4.1 Shows a venn-diagram of the RIPS model. The blue-ish parts are all
safe (S) but only with respect to the vulnerability being analyzed. This
picture may be different per vulnerability as some sets may be empty or
may not overlap with others. 32

4.2 The original and patched code of CVE-2017-7308 33

5.1 The patch for heartbleed (CVE-2014-0160) 38

5.2 Replace server replaces characters in a string and sends the result back.
It contains a buffer overflow. 43

5.3 The quote server escapes quotes (and backslashes) and returns the es-
caped string. A buffer is overflowed when a string contains too many
characters that need to be escaped. 44

6.1 Shows a mutation on the < operator. The state (variable c) is only
infected when a == b . 50

vii

List of Figures viii

7.1 Left side shows write-before-merge resulting in a lot of manual work to
analyze/whitelist all diverged state. Right side shows merge-before-write.
When the merge is successful, the patched process exists and all infected
state is lost even though whitelisted infections may still exist. Any prop-
agation that may happen due to the subsequent write() call will not be
detected by our delta framework . 54

7.2 This is what could happen if we retain diverged state. The first merge
checks the integrity of the process but retains the diverged state. As a
result, the execution splits again when this diverged state is accessed and
used by a write() call . 56

List of Tables

5.1 Patched test programs for which we know that discriminators exist 41

5.2 Shows number of discriminators, safe (S) and propagating (P) inputs
found for each toy program. 45

ix

Chapter 1

Introduction

Reconnaissance is the first step (ethical) hackers take to see whether a system can be

penetrated. Their end goal is to prove a system is vulnerable without doing any damage.

By selecting a number of target hosts and gathering information about them, hackers

can explore increasingly specific attack vectors. They use techniques such as port-

scanning, DNS lookups, banner grabbing, OS fingerprinting and vulnerability scanning.

All of these, except vulnerability scanning, do not directly indicate that the system is

vulnerable but rather allow an attacker to focus his search.

Banners are strings describing a service and the host, which can be easily fetched after

connecting to the said host. They are intended for use by system administrators, but

since hackers can access them, they are now often hidden.

OS fingerprinting allows attackers to learn the host operating system by analyzing the

response to particular TCP/IP packets. The technique exploits ambiguities in the pro-

tocol specifications which were interpreted or at least implemented differently across

networking stacks. OS fingerprinting is still effective, but does not give detailed infor-

mation such as the kernel version. Therefore it is only useful in the very early stage of

reconnaissance.

The concept of OS fingerprinting can also be applied to server applications. [1] shows

that it is possible to fingerprint many Apache 1.3.x versions based on server responses.

Fingerprinting application versions is interesting to attackers as some versions are known

to be vulnerable. Yet, security patches are often backported, so we cannot use a version

number to get a conclusive answer. Also, servers can be configured in a wide variety of

ways, complicating creation of fingerprints for specific versions.

Vulnerability scanning identifies hosts in a network that susceptible to a particular at-

tack. The process is highly automated, while also providing actionable output that

1

Introduction 2

increases the security of scanned hosts. However, vulnerability scanners often report

false positives, thus manual validation is necessary. Various scanners exist, such as

Nessus[2], Secubat[3] and Acunetix[4] which can scan for vulnerabilities remotely.

Figure 1.1: This figure shows a patched and an unpatched server processing the same
request. The request is a discriminator because it causes both versions to respond

differently as indicated by the colors

Most of the research on vulnerability scanners is focused on scanning web applications.

These are much easier to scan than compiled server applications because the vulnerability

classes such as cross-site-scripting (XSS) and SQL injection are well understood and can

be detected remotely without exploitation. This is discussed in section 6.2. Vulnerability

scanning of compiled server applications is more complicated because the vulnerabilities

are more application and architecture specific. Also, since many of these vulnerabilities

are memory errors, scanning can very well result in corruption or crashes. Therefore,

it takes manual effort from security experts to develop plugins that can scan hosts in a

safe manner. Development of such plugins requires discovery of a particular request to

send to a server that reveals the presence of the vulnerability in a non-disruptive way.

In this thesis, we investigate a novel method we call safe patch fingerprinting, which

aims to fingerprint behavioral changes of a server as a result of applying a security

patch. More specifically, we want to discover specific inputs which provoke a response

that allows us to remotely discriminate between patched and unpatched versions. We

shall call such inputs discriminators. The concept is visualized in figure 1.1. With an

input to a server, we refer to the stream of bytes delivered after establishing a new

Introduction 3

connection. Such a stream may be different every time, due to interaction between the

client and the server, timestamps, crypto etc.

Automating the fingerprinting process will aid the rapid development of vulnerability

scanner plugins. When new security vulnerabilities are discovered, it is essential to

distribute a plugin as soon as possible. Yet, we must ensure that such plugins do

not harm production servers during a scan. This can be quite challenging since many

different versions of a vulnerable server may be in production and manually testing a

vulnerability scanner plugin against all versions may be prohibitively time consuming.

Because this method is patch-based, its detection capabilities may generalize across many

versions of the vulnerable server. Open-source projects may be forked and modified

many times, yet all variations of the software could allow detection using the same

discriminator.

Note that exploitation of the vulnerability trivially allows detection of vulnerable servers,

but may also do damage or leak sensitive information. We aim to find non-malicious

discriminators. What ’malicious’ exactly means depends on the vulnerability that is

being analyzed. Ideally, we want to be stealthy by sending the least number of packets

possible and also have the ability to prove we did not do any harm, based on the packet

trace.

Not all vulnerabilities or patches may be fingerprintable. When the vulnerable code is

buried deep inside the application, it may not affect any data that is send back to the

attacker.

Our main research question is whether safe patch fingerprinting is practical and whether

it can be automated. We mainly focus on discriminator testing, which involves testing

whether a given input has the discussed discriminative property. We use a technique

called delta execution, which allows analyze how both the unpatched and patch server

respond under exactly the same circumstances. Although the technique works in our

experiments, we were limited by the lack of known discriminators.

Furthermore, we made a first attempt to automate discovery of new discriminators.

We leveraged our discriminator tested and used a fuzzer to generate candidate inputs.

This seems to work well for very small programs, but more work is needed to make the

technique scale to larger pieces of software. Our contributions are:

• A useful formalization of the safe patch fingerprinting problem, which we call the

RIPS model. It was inspired by existing work on mutation testing, discussed in

section 6.3.

Design 4

• A delta-execution framework that confirmed a safe discriminator for the heart-

bleed vulnerability(CVE-2014-0160). and helped us to detect discriminators for a

number of simple test servers.

• An adaptation of an evolutionary coverage-guided fuzzer that helped us find dis-

criminators automatically for simple test servers.

• Recommendations on how to design more powerful discriminator testing and dis-

covery instrumentation based on our findings.

In chapter 2, we will discuss the design of both our discriminator testing and discovery

tools and in chapter 3 we will discuss their implementation. We give a qualitative analysis

on the applicability of safe patch fingerprinting on various types of vulnerabilities in

chapter 4. In chapter 5, we will discuss the results of both discriminator testing and

discovery for heartbleed and a selection of test programs, followed by the related work

and discussion in chapters 6 and 7 respectively. We conclude this thesis with chapter 8.

Chapter 2

Design

Fingerprinting a patch is about finding a discriminator. Doing this automatically is

challenging, because of the sheer number of constraints that must be satisfied. For that

reason, we first focused on discriminator testing, which is a method to decide whether

an input safely discriminates the patch and unpatched version. Next, we attempted

discriminator discovery, where we aim to find discriminators automatically. Our dis-

covery approach uses our earlier developed discriminator testing system and generates

candidates to be tested. The whole system is shown in figure 2.1.

Given a vulnerability and its patch, we compile both the original and the patched version

of the server. A fuzzer is then used to generate a set of inputs that may be discriminators.

We bootstrap the fuzzing process using a number of seed inputs, which we need to create

manually using the exploit script. Once candidate inputs are generated, we can test

whether any of them is a discriminator. We do this by passing them into an instrumented

server, which uses delta execution to analyze how both versions of the server behave.

When the input didn’t cause problems, but provoked a different response, we have found

a discriminator.

In the next section, we will explain in depth what a discriminator is and give some

examples. We then describe how we test whether an input is a discriminator, using

delta execution. Finally, we discuss ways to discover potential discriminators.

2.1 Discriminators

A patch typically changes one or multiple sets of lines, which can be in distinct functions.

These are referred to as hunks by diffing an patching tools. After compilation, this results

in a one or more groups of modified instructions, which we refer to as patch-sites.

5

Design 6

Figure 2.1: Overview of the patch fingerprinting framework. The boxes indicate the
two subsystems and the arrows show their interactions and their inputs and outputs

Discriminators must have the following properties:

• The program must reach a patch-site. In other words, the input must cause

added or modified instructions to be executed. In case the patch has removed

instructions, they should be executed when sending the same input to the original

unpatched server.

• The input must infect the program state resulting in different states for the

patched and the unpatched server after executing one or more patched instruc-

tions.

• The infected program state must propagate to the output, such that the difference

between the patched and unpatched server can be observed. Inputs that have this

property are said to be propagating.

• It must be safe, meaning that input does not exploit the vulnerability in a harm-

ful way. What this means depends on the vulnerability. Therefore, the safety

requirements must be established by an analyst.

Design 7

To summarize, we need to test whether an input exercises the vulnerable code, resulting

in a state divergence causing an observable effect, discriminating the two versions, with-

out exploiting the vulnerability. This input is said to reach the patch, infect the program

state and propagate the infected state to the output in a safe manner. Since propagation

implies infection and reachability, we can say that discriminators are safe propagating

inputs. The reachability, infection, propagation and safety properties together consti-

tute to the RIPS model, which is derived from the RIP model, used in mutation testing

[5][6][7].

Besides testing whether an input is a discriminator, we will also attempt to find dis-

criminators ourselves. We start our search using an exploit for the vulnerability which

is assumed to be known. The inputs generated by an exploit script will always have

the reachability and infection property, because they exercise the vulnerable code that

is patched. However, these inputs will not be safe as the exploit has a malicious effect.

Moreover, it is not known which input(s) will propagate and allow us to discern the

patched from the unpatched version. Automatically finding discriminators, however, is

not the main focus of this thesis.

2.1.1 Infection

Infection can only happen when the input reaches a patched instruction. We speak of

infection when execution of such instruction causes either the memory state or the control

flow to diverge between the patched and unpatched servers. Control flow divergence will

subsequently cause divergence in memory state. We use the terms diverged state and

infected state interchangeably to describe this phenomenon.

The infected state will then propagate either affecting memory writes or conditional

jumps. Infections are removed when functions return (infected local variables), heap

memory is freed or when memory is overwritten by constant values or non-infected

state.

2.1.2 Safety

For a discriminator to be usable in real-world scenarios, it must be safe to use on both

the patched and unpatched version of the server. Only well-tested safe inputs can be

used for vulnerability scanning. What it means to be safe depends on the nature of the

vulnerability and the server that is attacked and therefore needs to be decided by an

analyst.

We define two broad types of safety to be used for two types of vulnerabilities:

Design 8

Integrity The program state or control flow was not corrupted by the input. By cor-

ruption, we refer to state changes that should not be permitted and may cause

the program to malfunction or act on behalf of an attacker. This type of safety is

used to analyze all vulnerabilities based on memory errors and insufficient input

sanitization.

Confidentiality No internal information is leaked to the attacker. Used for all infor-

mation disclosure vulnerabilities.

This distinction is important as both require different methods of ensuring safety. Note

that Availability is missing in the list, which would provide safety against denial-of-

service (DoS) attacks. We consider it to fall under integrity as an attacker typically

needs to corrupts program state with the goal of making the program hang, crash or

otherwise become unavailable.

Besides the type of vulnerability, safety also depends on characteristics of the server.

For example: Crashing a process is normally considered unsafe. However, some servers

such as nginx[8] and apache[9] will automatically fork off new worker processes once

this happens, undoing the damage that was done. One can argue that process crashes

are safe in this scenario. Alternatively, a buffer-overflow vulnerability might only be

detectable remotely if we attempt an overflow, forcing us to overflow at least a single

byte. Depending on the memory layout, this could be harmless or very damaging.

In case of overflows, multiple levels of safety may exist because safety depends on the

size of the overflow and the data that is corrupted by it. Because modern compilers add

padding between datastructures, small overflows may not even corrupt the neighboring

datastructure. When the overflow is larger, it could overwrite variables. The effect of

this depends on how the variables are used and could be completely safe. However,

automatically proving that such overflows are safe is a difficult task. Tools that do

bounds checking such as[10] and [11] are often conservative and do not allow any overflow

at all.

We consider safety only in the context of the vulnerability being analyzed. Safety only

guarantees that the vulnerability of interest is not (fully) exploited. We assume that no

exploitation or corruption is possible in the patched version, so we are only concerned

with the impact of an input on unpatched servers. Even when the vulnerable code was

successfully executed, we must ensure that there are no side-effects that could cause

problems later. We do not consider the case that an input triggers other unknown bugs

or vulnerabilities.

Design 9

2.1.3 Propagation

We want our inputs to propagate infected state, allowing us to discriminate the patched

from the unpatched version. Besides local I/O and network traffic, other channels may

exist through which the running version can be determined, such as timing side-channels.

In this work, we only consider network-based propagation which allows discrimination

between versions over the network.

As opposed to the reachability and infection properties, it is not known whether propa-

gating inputs exist for a vulnerability. Given a patch, inputs that both have the reacha-

bility and infection properties always exist. We know this because security patches must

change the behaviour of a program in certain scenarios, meaning that it must modify

executable statements that cause changes in state or control flow. However, after in-

fecting the state, it may very well happen that these changes are never exposed. In our

work, we focus on determining whether a given input propagates, rather than inventing

a method to establish whether a propagating input exists, for an arbitrary vulnerability.

In this work, we only consider propagation of infected state towards the write() system

call. Obviously, it is easy to consider other system calls as well such as sendmsg().

Patches do not normally introduce new write()’s. Instead, the infected state should

cause an existing write() call to write different data in both versions or should cause the

write() call to be executed for only one of the two versions

This leads to two forms of propagation:

1. Propagation through difference. Both versions of the server respond with data, but

some bytes are different or one response is larger than the other.

2. Propagation through absence. One of the versions responds while the other closes

the connection.

In the first case, infected state is written back to the client, while in the second case

infected state determines whether a response is sent at all. In propagation through

absence, it is often the case that the patch detects a malicious request and drops the

connection after it fails the check. It is important to note that other system calls could

also have effects that are observable by an attacker. In other cases, no writing of data

is needed at all (e.g when using a timing side-channel).

Propagation through difference is ideal, because we reliably receive the information we

need. In case of propagation through absence, we should also verify that the server is

Design 10

1 typedef struct {

2 short type;

3 short size;

4 char buf [32];

5 } echo_t;

6
7 void handle_request(int clientfd) {

8 echo_t e;

9
10
11 read(clientfd , &e, sizeof(echo_t));

12 write(clientfd , &e, e.size + 4);

13 }

14
15
16

Original echo server

typedef struct {

short type;

short size;

char buf [32];

} echo_t;

void handle_request(int clientfd) {

echo_t e;

ssize_t real_size;

read(clientfd , &e, sizeof(echo_t));

if (e.size > 0 && e.size <= 32) {

write(clientfd , &e,

e.size + 2* sizeof(short));

}

}

Patched echo server

Figure 2.2: Echo server 1 contains a buffer overread vulnerability, allowing attackers
to leak memory contents.

still up and that the packet was not dropped. This can be done by repeating the input

and also send another request for which a response is expected, regardless of version.

2.1.4 Examples

Figure 2.2 shows a trivial example of a vulnerable and patched server program. After

accepting a new connection, a client provides a simple struct, of which size bytes are

echo’ed back. Obviously, the value of size can be larger than 32 bytes, resulting in

extra memory being written back to the client. This memory may contain memory

addresses and other information useful to an attacker. If this example was embedded

in a larger server application, it could lead to disclosure of sensitive information such as

cryptographic material.

The server was later patched by ensuring that the size does not exceed 32 bytes. More-

over, using a negative or zero size is now also prevented.

We can remotely test whether the server is vulnerable by providing a large size value,

because patched servers will make themselves known by closing the connection without

responding. This test would essentially exploit the vulnerability by leaking information,

which is not safe. Instead, we could also provide zero or a very small negative value,

which would not cause information to be leaked. However, it would still lead to a write()

in the vulnerable server only. This is an example of propagation by absence.

Design 11

1 typedef struct {

2 int size;

3 char buf [99];

4 } echo_t;

5
6 void handle_request(int clientfd) {

7 echo_t *e = malloc(sizeof(echo_t));

8 read(clientfd , &e->size ,

9 sizeof(int));

10 read(clientfd , e->buf , e->size);

11 write(clientfd , e->buf , e->size);

12 free(e);

13 }

14
15
16

Original echo server 2

typedef struct {

int size;

char buf [99];

} echo_t;

void handle_request(int clientfd) {

echo_t *e = malloc(sizeof(echo_t));

read(clientfd , &e->size ,

sizeof(int));

if (e->size > 0 && e->size <= 99) {

read(clientfd , echo ->buf , e->size);

write(clientfd , echo ->buf ,

e->size);

}

free(echo);

}

Patched echo server 2

Figure 2.3: Echo server 2 contains a buffer overflow vulnerability. It can be safely
detected using a small overflow that only overwrites padding bytes

In figure 2.3, we demonstrate a second echo server, which has a simple buffer overflow

vulnerability. By providing a size that is larger than 99, we can overflow the buffer on

the heap.

This time, we cannot use a size of zero to discern the two versions. Passing zero to read()

or write() will have no effect and nothing will be written to the network. Thus, we are

forced to overflow the buffer and see how the server responds. Fortunately, compilers

align structures in memory to at least 4-byte boundaries. This means that echo t has a

size of 104 bytes. The very last byte is padding and we can safely overwrite it. Thus, a

size of 100 followed by 100 bytes of data constitute to an input that propagates but is

also safe.

2.2 Discriminator testing

Finding out whether a given input is a discriminator could be done by running a patched

and an unpatched server and see if a particular input leads to different observable out-

comes. However, due to non-determinism, timing and other factors, it can be difficult

to compare how the servers respond and isolate observable effects that are caused by

diverged state. This is especially true for bigger more complex servers. Also, unsafe

inputs could still corrupt the state of a server, which would lead to problems later on,

for example, by corrupting a variable that is used much later. In order to ensure that

no harm is done, we would need to compare the program state of the two executions to

see if nothing bad has happened. When both versions converge to the same program

state, we know that the effect of the input was temporary. All infected state is gone and

integrity is preserved.

Design 12

However, comparing the state of two servers is quite difficult because two separate exe-

cutions result in many spurious differences. First of all, the binaries are subtly different

because one of them is patched, resulting in different return addresses and code pointers.

Also, differences and interactions with the environment can cause significant changes in

the memory layout and memory contents of the application as well as it’s libraries. Fi-

nally, any non-determinism such as thread or process interleaving, timing and crypto

functions quickly introduce differences between otherwise equivalent executions. These

spurious differences make it hard to find the actual infected state.

2.2.1 Delta execution

To mitigate these problems, we have implemented delta execution [12], which allows

us to only run a patch-site of the program (delta code) in parallel. By default, the

common code is running as a single execution (merged execution). When we reach delta

code, we split off into two different executions. We are now running a split execution.

These executions will continue to run and state differences introduced by delta code can

be easily extracted. At specific moments, we attempt to merge, which means that we

compare the state of the two executions. When there are no differences, we drop one of

the executions and let the other continue as a merged execution.

Delta execution has a number of advantages. First of all, the application will run as a

single merged execution most of the time. Therefore, all state differences found after

splitting must result from execution of a patch-site or code executed directly after it.

Because the delta-executed server is running as a single binary in a single environment,

spurious differences will be eliminated, making it easier to manually inspect and reason

about the remaining differences.

Secondly, we merge when all state differences are gone, which is a strong indication that

the input is safe. Our assumption is that the patched execution can not be corrupted.

When the non-patched execution converges with this clean patched execution, we can

claim that the input is safe. When the merge attempt fails, we shall continue and retry

merging a number of times, hoping that state differences will dissolve. Because some

popular protocols are stateless such as HTTP and DNS, we hypothesize that servers will

clean up their state after a request is handled. Even when a server keeps connection

state, we hope to find inputs that have a minimal and benign impact on such state.

For example, a server may track the number of bytes written to the network, update

pointers into I/O buffers, update timeout information or simply fail to reset any data

that will be overwritten anyway when a new request arrives. For these cases, we support

Design 13

whitelisting, which allows us to skip comparing particular data during a merge. This

allows for a successful merge despite a few benign modifications to program state.

Finally, delta execution helps us to detect propagating inputs. To make delta exe-

cution work at all, we need to instrument I/O calls that are done during split state,

to ensure that both executions perceive the same version of the environment and to

hide the fact that two executions are running. We leverage this mechanism to detect

differences between the executions that are observable by an attacker. More specif-

ically, we intercept write() system calls to detect both propagation-through-difference

and propagation-through-absence, discussed earlier in section 2.1.3.

One notable difference between our delta execution framework and the original one is

that we do handle delta data differently. Delta data is what we call diverged state or

infected state.

In the original paper[12], a merge can happen as soon as both executions are running

the same (non-patched) code again. A merge results in one execution copying its delta

data to the other and exiting. The other execution will now continue being the merged

execution. All pages containing delta-data will be mprotect’ed, taking away all permis-

sions, allowing the framework to intercept accesses to delta-data. When delta-data is

being accessed, the execution will split such that each execution can operate on it’s own

version of the delta-data.

In our implementation, we do not merge as long as delta-data exists. We keep trying

to merge a number of times, after which we decide that the executions have diverged

permanently. We did this because our goals are substantially different: we do not care

about performance and resource consumption as is the case in the original paper. We

assume a small amount of delta-data because the security patches are typically quite

small[12]. Furthermore, we assume that the when a request is handled, data-structures

will be re-initialized, causing the executions to converge.

2.2.2 Confidentiality

Although checking for state differences will give us strong safety guarantees, we also

need some protection against information leakage. However, it is difficult to distinguish

sensitive from non-sensitive data without exhaustive annotation of the program and non-

trivial instrumentation. Therefore, we assume that information leaks violate memory

boundaries or read from uninitialized memory. This should work well when the size

argument to a copy operation is attacker-controlled, because everything between the

source pointer and the sensitive data must be read.

Design 14

The address sanitizer (ASan)[10] can be used to catch out-of-bounds memory accesses

to the stack, heap and globals, while also detecting a number of other memory errors.

It instruments all loads and stores and uses shadow memory and redzones to check if

a memory access is safe. Malloc and free are replaced in order to provide a special

heap implementation which adds red-zones around allocations and detects use-after-free

errors.

The memory sanitizer (MSan)[13] is used to detect uninitialized memory reads (UMR).

It is implemented using bit-precise shadow memory which tracks whether a bit is prop-

erly defined. The memory sanitizer propagates shadow bits when data is copied or when

a safe operation is performed. As soon as uninitialized memory is used in a conditional

branch, system call or pointer dereference, an error is reported.

We have designed our delta framework for use with the Memory Sanitizer or Address

Sanitizer. The sanitizers themselves were not designed to be used simultaneously, so we

will need to compile and run our server for both separately.

2.3 Discriminator discovery

Discriminator discovery is concerned with automating the process of finding discrimina-

tors based on some existing knowledge or inputs. Since we will develop a discriminator

testing tool, we will need candidate inputs which we can test. In this section, we will

discuss some techniques that could help discover discriminators and we motivate our

choice for a fuzzer based approach.

We assume that an exploit for the patched vulnerability is available. The reason is

that we need to know how to execute the patch-site, which may be in difficult-to-reach

portion of the server. The task of automatically finding an input that exercises the

vulnerability is a difficult one, that has been studied in depth [14][15][16] and is outside

the scope of our research.

As said before, we cannot use the exploit directly because it has malicious effects. In-

stead, we use it just to be able to generate new reaching and infecting inputs. Therefore,

the inputs should only be slightly different from the exploit. It is up to the analyst to

identify portions of the input that need to be manipulated automatically, as opposed to

the parts that are boilerplate.

Design 15

2.3.1 Symbolic Execution

Symbolic execution would be a promising technique to help us generate candidate inputs.

The idea behind symbolic execution is to let an interpreter explore many executions at

the same time by using symbolic expressions rather than concrete values. Instead of

using concrete input values, we express each value as a symbolic expression which is a

function of the program inputs and constants. These symbolic expressions grow more

complex as more program statements are executed.

At branches, the interpreter forks off two interpreters, each exploring a different branch.

Each of these adds the true condition (or the false condition respectively) to its path

constraints. The path constraints of an interpreter describe which constraints must be

satisfied to follow the exact same code path. Each time an interpreter follows a new

branch, it checks whether it’s path constraint is satisfiable and only continues when this

is the case.

As more branches are executed, the number of interpreters increases exponentially, lead-

ing to the scalability problem known as the path explosion problem. However, because

security patches are small, we can focus our efforts on a small piece of the code. Thus,

depending on how we apply symbolic execution, we may not run into such scalability

problems.

If the symbolic execution engine is made aware of both versions of the server, it could be

used to generate an infection constraint, by comparing the diverged symbolic expressions

caused by the patched statements. We could also see how such infected expressions

propagate towards write() calls or control whether these are executed.

Even though this may be possible, it requires us to modify the symbolic execution engine

to be aware of both the patched and unpatched version of the server and be able to mark

expressions as infected. For example, when executing the first patched statement, the

interpreter could fork and continue executing the two different statements, generating

infected symbolic expressions. The executable must be represented in such a way that

the symbolic execution engine knows which instructions are part of a patch-site so it

can act accordingly when it executes them. It is not yet clear how this type of symbolic

execution would work, but will probably require substantial engineering effort.

2.3.2 Concolic Execution

Concolic execution [17] is a popular derivative of symbolic execution. In concolic execu-

tion the binary is executed normally, but instrumentation accumulates all the conditional

Design 16

branches that are encountered and builds a symbolic path constraint. A path constraint

is a set of constraints on the inputs that, when satisfied, causes the program to take the

same execution path. This path constraint can be used to generate new inputs that will

exercise the same path. Also, it can be modified which allows us to generate inputs for

new execution paths, given that the modified constraints together are still satisfiable.

Concolic execution does not suffer from the path explosion problem, because only one

path is executed at a time. However, not all paths are explored and it is the responsibility

of the test driver (component that repeatedly runs instrumented program) to generate

new satisfiable path constraints that can be used to execute new paths.

Concolic execution would allow us to generate reachability constraints. Using these

constraints, we can easily generate inputs reaching the patch. If we could make concolic

execution aware of both versions of a server, we could let it continue and possibly let it

generate infection or propagation constraints as well.

However, concolic execution is an advanced technique and we did not have the time to

run experiments with it.

2.3.3 Fuzzing

Fuzzing is the act of generating inputs hoping that they will satisfy particular constraints

and thus lead to some desired behaviour. Fuzzers are often used to automatically discover

unknown bugs. They do this by either randomly generating inputs (possibly using a

specification) or mutating known inputs for a program. Also, fuzzers may instrument

the program to observe the effects of particular inputs and generate or mutate inputs

based on these observations.

Because we are dealing with many complex constraints, simple random fuzzing will not

be adequate. Our search is highly focused on a particular vulnerability, so it makes sense

to mutate inputs generated by a known exploit because these will exercise the vulnerable

code.

Evolutionary fuzzers generate a population of inputs and measure the fitness of each

input through run-time instrumentation. Based on the results, a new population is

generated. This feedback loop makes evolutionary fuzzers very efficient.

In our experiments, we employ VUzzer[15], which is an evolutionary fuzzer which aims

to maximize basic-block coverage. Each time it discovers a basic block, the used input

will be written to a file. We run the VUzzer on the original and patched server separately

Design 17

resulting in two sets of input files, each of which will be fed to our discriminator testing

framework, in the hope that discriminators are found.

VUzzer uses PIN[18] which is a dynamic program analysis framework, to record which

basic blocks are executed and selects good inputs for the next generation. It also uses

libdft [19] to see how individual bits in the single input buffer affect different cmp in-

structions. It will mutate these bits in an attempt to execute both sides of a conditional

branch (the if-block and the else block).

There are a few reasons why we chose the VUzzer. First of all, we can easily seed the

fuzzer using a few inputs generated by an exploit script. This is a rudimentary way of

teaching the fuzzer how to reach a patch-site and infect program state. Since security

patches almost always modify or introduce conditional branches, it is likely that the

fuzzer finds additional infecting inputs.

Secondly, we can make the fuzzer focus on basic blocks inside the patched function.

We do this by providing the start and end address of the patched function, which we

manually extract using a tool such as objdump. The VUzzer will then focus mutations

on bits in the input string that correspond to cmp instructions who lie in this address

range. As such, we can focus on interesting basic blocks, rather than simply maximizing

coverage.

Finally, because the main focus of this work is implementing and testing the discrimi-

nator testing framework, we preferred a simple method that generates candidate inputs.

Fuzzing is definitely one of the simplest methods to test first.

We realize that the VUzzer has no way of generating inputs that are more likely to have

the desired propagation and safety properties. As such, methods based on symbolic,

concolic execution or constraint solving may be more efficient at satisfying all properties.

However, implementing such a system would be too much work for this thesis.

2.3.4 Hybrid approaches

An important observation is that symbolic execution and fuzzing are opposites. Fuzzing

is very scalable but often has problems penetrating deep parts of the program logic.

Symbolic execution is very precise and offers more guarantees at the cost of scalability.

When trying to solve a problem like finding discriminators, it may pay off to combine

these approaches and have the best of both worlds.

Driller[14] is a good example of such a hybrid tool. Its goal is to find vulnerabilities in

deeper regions of the program. It uses fuzzing to explore the shallow code paths. When

Implementation 18

no new paths are found for some time, it resorts to concolic execution to drill through

more difficult constraints, reaching deeper parts of the program, where it can go back

to using the fuzzer with a few additional constraints. A similar hybrid approach may

be useful to find discriminators since the constraint-solving effort is clearly focused on

a single patched function.

Chapter 3

Implementation

In this chapter we will describe how we have implemented our discriminator testing

framework. We have implemented delta execution using a number of LLVM compiler

passes shown in figure 3.2 and a runtime library called libdelta. We will also explain

how we integrated the address sanitizer (ASan) and the memory sanitizer (MSan) into

this framework. Finally, we will explain how we used a fuzzer to generate candidates for

discrimination testing.

3.1 Deltafy Compiler Pass

We have designed an LLVM compiler pass to support delta execution. It takes two almost

identical LLVM bitcode files, one being the original version and the other being the

patched version. It merges them into a single output file, without duplicating unchanged

code or globals. Code that has changed between input files is kept and split hooks are

inserted right before these changes, allowing the delta library to split the execution into

two.

The deltafy pass operates at function granularity. All functions with identical names in

both input files are compared. We keep both versions of all modified functions and we

rename these. Then, we introduce a new proxy function, which will call the split hook.

Based on the return value of the split hook, either the original or the patched version

of the function will be called. All calls to modified functions will be replaced by calls

to their respective proxies to make sure that the split hook is executed before running

delta code.

The transformation is described in figure 3.1. We start with two programs, where the

function foo was modified by the patch. The deltafy pass will copy all the unmodified

19

Implementation 20

1 int foo(int a) {

2 return a;

3 }

4
5 int bar(int a) {

6 return foo(a) + foo(a);

7 }

8

Without patch

1 int foo(int a) {

2 return a + 1;

3 }

4
5 int bar(int a) {

6 return foo(a) + foo(a);

7 }

With patch

1 int foo(int a) {

2 if (split_hook ()) {

3 return foo_original(a);

4 } else {

5 return foo_patched(a);

6 }

7 }

8
9 int foo_original(int a) {

10 return a;

11 }

12
13 int foo_patched(int a) {

14 return a + 1;

15 }

16
17 int bar(int a) {

18 return foo(a) + foo(a);

19 }

After deltafy pass

Figure 3.1: The deltafy pass merges the patched and unpatched version. It replaces
modified functions with proxies, which forward the call to either the original or patched

version of the function

functions to the output program. In our case this is just bar. It will then copy and

rename both versions of foo and will introduce a new foo function, which we call the

proxy function. The task of the proxy function is to call split_hook, to decide which

version of foo will be executed. split_hook is implemented in libdelta which is discussed

later.

Deltafying at function granularity is much simpler than doing it at basic block granu-

larity since we don’t need to manipulate the control-flow-graph and references to local

variables. The downside of the approach is that a small patch affecting a big function,

causes all code in that function to be treated as delta code. The fact that this func-

tion is executed does not imply that an input satisfies the reachability property, as the

patch-site could have been skipped altogether. This is discussed in more depth in 7.1.2.

The deltafy pass does not support global data changes such as changing structs or

introducing new global variables. This does not matter since security patches typically

do not affect globals or structs [12].

Figure 3.2 shows the deltafy pass together with all other compiler passes that are used

to instrument binaries for use with libdelta. The other passes will be explained in later

sections.

Implementation 21

Figure 3.2: Shows all LLVM compiler passes used to generate instrumented binaries
that work with libdelta

3.2 Libdelta runtime library

Libdelta is the beating heart of the delta execution framework. It takes care of splitting

and merging, relying on hooks installed by various compiler passes into the analyzed

program.

3.2.1 Splitting

How splitting is implemented is shown in figure 3.3. The executions we talked about

so far are implemented as processes. In merged execution, a single process is running.

Suppose our program contains a function F that has been patched. When we call it (step

Implementation 22

1), the proxy function F will invoke the split hook implemented by libdelta. Libdelta

will call fork() to create a child process. Both processes will return from the split

hook with different values causing the proxy function F to run both the original and the

patched version, each in it’s own process. This child process will run the patched code,

while the parent runs the original code.

When the execution splits, libdelta will take note of all writeable memory maps (step

4) that need to be compared when merging. Some writeable maps are not taken into

account, such as the ones used by libdelta itself.

Libdelta uses soft-dirty bits[20] to efficiently find out which memory the process has

written to and thus needs to be compared during a merge attempt. After establishing

which memory maps are relevant, libdelta will reset the soft-dirty bits to start recording

dirty pages (step 5). Whitelist calibration (step 6) will be explained later.

Note that split-execution is re-entrant. If we take the code in figure 3.1, a first call to

foo will result in a fork. Now when the original execution calls foo again, it will not

fork, but continue to execute foo_original.

Figure 3.3: Shows how an instrumented program splits and merges when a patched
function F is called

3.2.2 Merging

Once in split execution, merge attempts should be done to detect whether both processes

have already converged. We inject merge hooks (step 6 of figure 3.2) at every function

Implementation 23

return as is done in [12]. These do nothing during merged execution.

When a merge is attempted, the merge hook is called on a function return (step 1 of the

merge in figure 3.3). We employ soft-dirty bits (since kernel version 3.11) to see which

pages have been modified ever since we split (step 2). All dirty pages that are not within

the previously saved memory maps will not be taken into account.

Libdelta will then wait until the other process also calls its merge hook (step 3) and we

will block the child process. The parent process will then compare it’s the state with

the blocked child process.

When both are ready, the parent process proceeds comparing all mapped memory. For

each of the dirty pages found (in either process), we do a byte-by-byte comparison

(step 4.2). The parent process will access the memory of the child process through the

/proc/pid/mem interface. Registers do not need to be compared because both processes

are blocked inside libdelta and thus the registers do not contain application data.

When all compared memory matches, we go back to merged execution (step 5). This

means that the child process that executed the patched code will exit. When diverged

state was found between the processes, the respective pages will be dumped to files and

a summary of all diverged state will be written to a file.

Libdelta will perform a limited number of merge attempts and will abort the program

when all attempts have failed. We restart counting our attempts after a successful merge.

To prevent unnecessary merge attempts, we use the depth of the call stack to decide

whether an attempt is warranted. Merges will only be attempted when the call stack is

of equal or shorter depth than at the previous attempt (or using the stack depth at the

split when there is no previous attempt). That’s because it is very likely that attempts

performed at deeper levels will fail because of some diverged state higher up the stack.

The stack requires some special attention, because it both contains application stack

frames (at higher addresses) and instrumentation stack frames (at lower addresses).

The merge hook records the address that separates these. When comparing pages byte-

by-byte, we whitelist all stack bytes below this address to ensure that the libdelta stack

is not compared.

Finally, the return value of a function may also have diverged, so it requires special

handling. The merge hook copies the return value and sends it to libdelta where it is

compared along with the dirty pages.

Implementation 24

3.2.3 Instrumenting I/O functions

When in split execution, we cannot let both processes do I/O themselves, because we

want to hide the fact that two processes are running. We want external effects to happen

once, while duplicating the effect a call has on process memory. For example, when both

processes call write(), only one should be actually performed. However, both processes

should see the same return value. Similarly, when both processes read(), only one call is

executed and the contents of the buffer will be copied over to the other process, keeping

them synchronized.

We automatically instrument a large number of I/O calls, all of which happen to be

system calls. We have a compiler pass that marks these calls (step 4 of figure 3.2.

Another pass is used to instruments all these function calls (step 5). It places pre-call

and post-call hooks around them, which allows libdelta to intercept function arguments,

skip the call and provide a return value or another result e.g by writing to buffer(s).

When in merged execution, libdelta will not affect I/O calls in any way.

When in split execution, libdelta will process I/O calls in pairs. When one process calls

the pre-call hook, libdelta will block it and wait for the other process to also arrive at

a pre-call hook. When both processes appear to call the same function, the arguments

to both I/O calls are copied and compared. For some I/O calls, referenced buffers will

also be copied and compared.

Libdelta will then report on any differences between the calls. Differences in write()

buffers are of special interest to us, since these show that infected state is propagating

to the attacker. It can happen that both processes do calls to different I/O functions,

when they have diverged. libdelta makes no effort to pair up I/O calls, to synchronize

the executions, so manual analysis is required when this happens.

When one process wants to attempt a merge and is waiting for the other process to

catch up, all I/O calls in the other process will run as normal. These I/O calls are

executed because the other process is executing a different code path and may allow us

to remotely discriminate between the two versions.

3.2.4 Whitelisting

It is unlikely that the memory contents of both processes end up being the same, when

a merge is attempted. Applications often modify global or heap datastructures, which

may never return to the same state. Libraries may have their own state as well. Also

failure to clean up garbage data may result in memory differences between the processes.

In order to ignore certain memory areas, libdelta keeps track of a whitelist.

Implementation 25

First of all, particular symbols can be added to the whitelisted section. This causes

them to be placed into one contiguous piece of memory, which is ignored during a

merge. Secondly, address ranges can be provided using a file. This is of limited use

because the exact addresses to whitelist may change between runs of the program. To

work around this, Libdelta also exposes an API that allows us to build and maintain a

whitelist at run-time.

Finally, as shown in step 6 of splitting in figure 3.3, we calibrate the whitelist after

calling fork. This is needed because the runtime environment keeps retains process

specific information such as PID’s in memory. These must be added to the whitelist

automatically.

3.2.5 Deltastub

Libdelta is implemented as a shared library. It relies on a shared library called libtaskctl,

which offers various services such as a custom heap in shared memory, allowing all delta

processes to communicate. It also allows us to interpose fork(), exit(), exec() and

others, allowing us to track different processes, any of which may transition between

split and merged execution independently. Interposing fork() is done by loading both

libtaskctl and libdelta using LD_PRELOAD.

Because it is a shared library, loaded with LD_PRELOAD, we cannot directly call into our

library from the binary. Hence, we need to introduce the deltastub static library, which

contains trampolines that call into libdelta.

3.3 Sanitizer integration

Integration of the memory sanitizer and address sanitizer is very important to test that

inputs are safe. However, integrating these into the delta framework proved to be a

challenge. ASan and MSan are very invasive as they both instrument the code, replace

the heap and interpose many libc calls. Similarly, the delta-framework constrains what

the sanitizers can do during split state, because operating on non-whitelisted memory

results in spurious differences that are difficult to track down. In this section, we discuss

various problems we encountered and how we worked around them.

Implementation 26

3.3.1 Compilation

We are not aware of a way to use the sanitizer as a separate LLVM pass. Therefore, we

must first compile both versions of the code with the sanitizer before we run deltafy.

As a result, deltafy will see symbols introduced by the sanitizer’s compiler pass, which

are generated based on the code structure. Deltafy may therefore not be able to match

all symbols to equally named counterparts and aborts. To solve this, we moved these

symbols into the whitelist section using a extra compiler pass (step 2 in figure 3.2).

3.3.2 Initialization

The sanitizers call mmap regularly during their initialization. These areas need to be

whitelisted as well. However, a sanitizer may initializes before libdelta can (ASan uses

.preinit_array which executes before any other constructor does) and the whitelist is

not created yet. To work around this, we introduced a temporary whitelist in deltastub,

which is later copied into the whitelist in libdelta. Deltastub is available before libdelta

is, because it is statically linked.

3.3.3 Thread-local-storage

The memory sanitizer also uses thread-local storage (TLS) to pass shadow values for

function parameters and the return value. However, these variables turned out to di-

verge. Also, failure of a system call in one execution could also cause errno to diverge,

which is a TLS variable. Unfortunately, it is not possible to selectively whitelist indi-

vidual TLS variables. This is because our whitelisting mechanism assumes that each

variable can be moved into the whitelist section. This is not true for TLS variables,

which reside in special thread-local data sections managed by the thread library. We

decided to whitelist the entire virtual memory area that contains TLS data. We believe

this is relatively safe, since the amount of data in thread local storage is very limited,

given that we do not support threaded software.

3.3.4 Controlling the heap

Both libdelta and the sanitizers impose some requirements on how the heap should

work. This is the reason why both ASan and MSan interpose malloc and free. As a

result, libdelta can not intercept heap allocations, making it difficult to integrate them

properly. These are the requirements imposed on the heap:

Implementation 27

1. Detect heap overflows: In order to detect unsafe inputs, we need a heap-

implementation that help us detect out-of-bounds reads and writes using guards

or red-zones. Detecting these also requires compatible instrumentation of load and

store operations.

2. Control heap base-address: Both ASan and MSan use shadow memory where

mapping addresses to shadow addresses must be very fast. Controlling the base-

address of the heap allows one to make mapping addresses extremely fast using

offsets or bitwise operators.

3. Whitelisted heap for instrumentation: Instrumentation also needs memory

to run. ASan and MSan default to use their own heap, thus mixing instrumenta-

tion and application allocations. This becomes problematic when state divergence

causes a sanitizer to perform allocations, leading to differences in heap layout. We

must ensure that allocations done by the instrumentation are done on a secondary

heap that is completely whitelisted.

4. Synchronize allocations between executions: When both executions perform

different allocations, their heap layouts will be desynchronized, causing many spu-

rious differences. [12] fixed this by replicating each malloc call to both executions.

This wastes memory, but ensures that the heap layout stays synchronized. Unfor-

tunately, this solution requires us to interpose malloc, which is not possible. This

is discussed in section 3.3.5.

5. Control mmap’s: Heaps will resort to mmap for larger allocations. It is impor-

tant that we whitelist such mmap’ed memory when it is used by instrumentation.

6. Keep allocation metadata: Finally, when differences are reported, it is very

time-consuming to see where they come from. GDB can be used to identify changes

to global and stack data, but the heap poses a challenge. Being able to store

additional metadata such as source line of the allocation or the datatype can help

to create new whitelisting policies and reduces the manual work that is currently

needed to interpret the reported diverged state.

Because the heap is controlled by a sanitizer, we could only partially meet the last three

requirements using cumbersome tricks. Therefore, the delta framework is less robust

than we like it to be and sometimes difficult to work with. In order to meet the 3rd

requirement, we had to subvert all allocations done by MSan into libdelta’s heap, which

is located in shared memory that is whitelisted.

Intercepting the mmap calls required us to modify the sanitizers. Both MSan and ASan

perform lots of mmap calls to allocate or protect memory (using PROT_NONE). Also, some

Implementation 28

calls to mmap use MAP_NORESERVE, which allows the sanitizer to claim enormous chunks of

virtual memory not backed by physical memory. We need to whitelist these regions be-

cause libdelta will hang and eventually crash as it tries to compare terabytes of memory

not backed by physical RAM.

In order make it easier to see where reported differences originate, we used the origins

tracking feature of the memory sanitizer. Origins tracking keeps track which allocation

and copy operations are involved before uninitialized memory is being used in a system

call, branch or pointer dereference. These are reported as a series of stack traces and

make it easy to track down the uninitialized bytes. We modified MSan such that libdelta

can extract these origin traces for memory addresses that have diverged. Unfortunately,

MSan only keeps these traces when uninitialized data is involved, so this is not a complete

solution to the problem.

3.3.5 Interposing functions

Instrumentation tends to interpose functions to see what the application is doing and

possibly provide an alternative implementation. Functions can be interposed at compile-

time by replacing or instrumenting them, but also at run-time, by providing a symbol

with the same name that is linked first.

ASan and MSan both provide a static library that interposes a large number of functions

by providing a symbol with the same name. As such, equally-named functions defined

in LD_PRELOAD’ed shared objects or libc will not be called, because functions defined in

the binary are considered first.

A nasty side-effect is that sanitizers will also interpose calls performed by libdelta.

Libdelta requires calls such as memcmp to compare arbitrary pages, which causes sanitizers

to report uninitialized or out-of-bounds reads. We solved this by grabbing libc function

pointers and calling those directly, thus bypassing the sanitizer. Unfortunately, this

only works for code we compile ourselves. When libdelta calls into libc, libc may very

well call an interposed function, resulting in an error. We faced interesting challenges

as dlerror, which was required for funcion pointer loading, could call malloc or free,

denying libdelta access to non-interposed functions.

Since libdelta is an LD_PRELOAD library, it can only interpose application calls that are

not already interposed by a sanitizer. Fortunately, it can still intercept fork, exit and

exec in order to track application processes, which can individually split and merge.

Implementation 29

3.4 Fuzzing

We are using VUzzer[15] to discover potential discriminators. However, a few modifica-

tions were required to make it work for our use-case.

First of all, We made it target basic blocks of the patched function, by providing it’s

start/end address. The fuzzer will focus it’s mutations on bits in the input that are used

in conditional branches within this address range.

Secondly, the VUzzer was designed to provide input files that would be sent to the

program over STDIN. The program is expected to read all data at once, allowing the

VUzzer to monitor, using taint tracking, how bytes at different offsets in the read-buffer

propagate to different cmp instructions. Since servers do not receive data via STDIN and

often require interaction, this design did not fit our use-case.

Recall that we defined an input as a concatenation of all data sent to the server, which

will cause the patched code to be executed. However, this input may consist of sep-

arate messages that must be delivered in succession. Many of these messages may be

boilerplate, which means that they have little or no influence over how patched code is

executed. Also, there may be interaction where the contents of the messages depend on

preceeding messages. It is therefore unpractical to fuzz the entire input string.

Hence, we decided to add a session script to the design which transforms fuzzed inputs

from the server into a series of messages that exercise the patched code on the server

side. This session script opens a network connection to the server via the loopback

interface and performs any required setup such as handshakes, authentication or other

interactions. The session script can be derived from the exploit script, by replacing the

hardcoded payload by a payload provided by the fuzzer.

When the setup is done, the session script will inform the server’s runtime instrumen-

tation that the payload is coming and that taint tracking must be enabled. It will then

send the fuzzed input to the server and will wait for a response. The instrumented server

will call a single read and taint (with buffer offsets) will start to propagate. It will send

a response, or hang, in which case the session script times out. When the session script

exits, the VUzzer will kill the server and restart it for the next input to test.

The design is shown in figure 3.4. The VUzzer uses the seed inputs to create the first

generation of inputs. For each input, the server is started (step 1) and the session script

is launched (step 2), providing it with a fuzzed input to test. The setup script will

send and receive messages as is required to prepare the server for the payload (step 3)

and after enabling taint tracking, will deliver the payload (step 4). The setup script

terminates after receiving a response or after a timeout occurred. After all, we must

Vulnerability Class Analysis 30

ensure that the server has enough time to run the patched code and provide feedback

(step 5) in the form of executed basic blocks and executed cmp instructions and offsets

used by them.

Figure 3.4: The VUzzer uses a session script to fuzz the instrumented server

One major problem with this design is performance. The server must be restarted to

ensure inputs are tested in isolation. This is because fuzzed inputs can bring the server

into an erroneous state, resulting in failures for succeeding inputs. Also, simply not

providing a large enough payload can keep a server hanging. Fuzzers can typically test

hundreds of inputs per second, making them much more effective.

Unfortunately, we did not end up fuzzing real-world exploits, so we could not benefit from

the flexibility offered by the session script. The vulnerable toy programs we experimented

with could all be tested by sending a single buffer.

Chapter 4

Vulnerability Class Analysis

In this section, we will give a qualitative analysis of the effectiveness of patch finger-

printing for different classes of vulnerabilities. We do this by relating vulnerability- and

patch characteristics to the properties in the RIPS model to see if and how they might

be satisfied.

Given the properties defined by the RIPS model, we can subdivide the input space of

a server in context of a patched vulnerability. Let R, I, P and S be the sets of inputs

that have the reach, infect, propagate and safety properties respectively.

We know that P ⊂ I ⊂ R, because an input can only infect state after reaching a

patch-site and can only propagate infected state after it has infected the state.

In this analysis, we define safety solely within the scope of the vulnerability being an-

alyzed. As a result, all inputs that do not exercise the vulnerable code are considered

safe, regardless of any other bugs that may exist. Also, we assume the patch completely

remedies the problem, such that no malicious effects are possible in the patched version.

Therefore, all inputs s /∈ I are safe because no harm can be done when no state is

infected.

Figure 4.1 shows the sets as defined here in a venn diagram. We will now analyse some

general vulnerability classes to see what is needed to find a discriminator for them.

4.1 Null-pointer dereferencing

The simplest class of vulnerabilities are null-pointer dereferences. Programmers can

easily miss the fact that in some condition, a pointer can be null, resulting in at least a

31

Vulnerability Class Analysis 32

Figure 4.1: Shows a venn-diagram of the RIPS model. The blue-ish parts are all safe
(S) but only with respect to the vulnerability being analyzed. This picture may be
different per vulnerability as some sets may be empty or may not overlap with others.

denial-of-service (DoS) vulnerability. A patch will typically add a check which prevents

execution of code that dereferences the pointer. When this is the case, all infected

inputs are malicious (I ∩ S = ∅), because all infecting inputs will cause the pointer to

be dereferenced. Therefore, safe discriminators will not exist, making it impossible to

fingerprint these patches. The same goes for reachable assertions which can also be used

for DoS attacks.

4.2 Integer overflows

Integer overflows or underflows are a result of arithmetic on extreme values which were

not anticipated by the programmer. Depending on how the operands or the result is

used, it could open security vulnerabilities. This type of vulnerability puts constraints on

the attacker controlled values, forcing them to be very different from what the program

expects. It is very likely that such extreme values can cause the program to crash before

an attacker can actually do something interesting. For example, extreme values could

lead to extremely large memory allocations, segmentation faults or failing library or

system calls. In other words, values causing the integer overflow are often unsafe and

need to be carefully crafted to pass all safety constraints.

Although not found in a server, one interesting example is CVE-2017-7308 which was

recently found in the linux packet socket interface. An integer underflow followed by a

Vulnerability Class Analysis 33

4207 if (po ->tp_version >= TPACKET_V3 &&

4208 (int)(req ->tp_block_size -

4209 BLK_PLUS_PRIV(req_u ->req3.tp_sizeof_priv)) <= 0)

4210 goto out;

Vulnerable code of CVE-2017-7308

4207 if (po ->tp_version >= TPACKET_V3 &&

4208 req ->tp_block_size <=

4209 BLK_PLUS_PRIV ((u64)req_u ->req3.tp_sizeof_priv))

4210 goto out;

Patched code

Figure 4.2: The original and patched code of CVE-2017-7308

typecast allows an attacker to bypass a check, resulting in an exploitable heap-out-of-

bounds write. The vulnerable code is shown in figure 4.2.

We control req->tp_block_size (int) and req_u->req3.tp_sizeof_priv (unsigned

int). BLK_PLUS_PRIV simply adds 48 to it’s input. By setting the high bit of

req_u->req3.tp_sizeof_priv, we can underflow the result of the subtraction, such

that the it becomes a high positive number (e.g 0x7fffffd0) causing us to pass the

check. This bug leads to a kernel heap-out-of-bounds write where the size and offset are

under the attackers control.

The values of req->tp_block_size and req_u->req3.tp_sizeof_priv propagate to

other datastructures and are used in various places. Additional checks are performed

on them, further constraining the possible values they can have.

The patch of CVE-2017-7308 rewrites the vulnerable expression to eliminate the sub-

traction that caused the underflow. It also casts req_u->req3.tp_sizeof_priv to 64

bits to ensure that the BLK_PLUS_PRIV macro can safely add 40 without overflowing.

Integer overflows can often fixed by properly validating input values before they are used,

or by fixing sanitization code itself as is the case for CVE-2017-7308. When an attacker

can learn that this check failed for her input, because of error-handling by the server,

all infecting inputs will also be propagating inputs (I = P). However, automatically

finding safe inputs within this set remains difficult.

4.3 Use-after-free

Use-after-free vulnerabilities allow an attacker to control memory reads or writes by

reallocating the memory pointed to by a dangling pointer. When this pointer is later

dereferenced, it will read data provided by the attacker, allowing him to manipulate the

Vulnerability Class Analysis 34

execution, possibly resulting in execution of arbitrary code. Exploitation of a use-after-

free vulnerability requires three things:

• A pointer to an object that has been deallocated, also known as a dangling pointer.

• An attacker-controlled object that reuses the memory pointed to by the dangling

pointer.

• A use-after-free instruction, which causes the dangling pointer to be dereferenced,

thus using attacker controlled object.

Dereferencing the pointer can have various consequences. An attacker can cause the pro-

gram to read un-sanitized data, write to a chosen memory location or execute arbitrary

code when case a function pointer is called.

Patching a use-after-free vulnerability is done by either preventing dangling pointers to

appear or by refactoring the program to ensure that the use always happens before the

free. Either way, these patches typically do not change how the program behaves and

rather prevent specific exploitable scenarios. This results in few (if any) infected values.

Also, since use-after-free bugs are often patched in the teardown part of the code, it

does not make sense to let any values propagate to the attacker, even for locally running

software. We believe that, in general, use-after-free vulnerabilities will be impossible to

fingerprint.

4.4 Buffer overflows

Buffer overflows are caused by the absence of a bounds check on the destination before

copying data, resulting in adjacent bytes being overwritten. Patches can either add a

check that causes malicious inputs to be rejected. Sometimes, the input can be truncated

such that it fits into the destination.

Finding completely safe inputs is often not possible, because the patch may only infect

inputs that cause at least a one-byte overflow. Whether such one-byte overflows are

safe depends on the memory layout and probably requires some manual inspection. In

other words, we require the program to work correctly even though a small overflow has

occurred. Fortunately, compilers always align datastructures as well as elements inside

them, so there might be room for a small overflow. Also non-critical or unused variables

may be overwritten, but manual inspection is required.

As for propagation, the input check will usually cause the vulnerable code to abort, and

this event may very well propagate to the attacker.

Results 35

4.5 Buffer over-reads

Buffer over-reads bugs are a powerful class of information disclosure vulnerabilities.

Buffer over-reads arise when no bounds-checking is performed on the source before copy-

ing data, leading to disclosure of additional data to the attacker. An over-read can be

easily prevented by checking the length parameter before copying the data.

Buffer over-read vulnerabilities have attractive properties making them relatively easy

to fingerprint. First of all, we know that they expose information to an attacker, so the

propagation property is given. Also, leaking a single byte a single time is harmless, but

allows an attacker to learn that the host is vulnerable. Therefore, these vulnerabilities

are the easiest to fingerprint.

4.6 Conclusions

Vulnerabilities in C source code manifest themselves in a wide variety of ways. Despite

our attempts, it remains difficult to draw conclusions on how patch fingerprinting will

work on various classes of vulnerabilities. However, there are a few general observations:

Patches that perform some kind of validation or sanitization are often good candidates

for fingerprinting. Such patches meet two conditions: They enforce a constraint on the

input that was initially missed by the developer and jump to error handling code when

an illegal input was provided. The larger the set of handled illegal inputs, the more

likely it is that a harmless discriminator exists among them. Buffer overflows where a

length field is attacker-controlled, force a developer to handle the error-case. It is this

error handling that enables propagation and allows us to fingerprint the patch.

On the other hand, for many low-level errors, patching involves preventing execution

of vulnerable code without the need for error handling. For such vulnerabilities it is

possible to craft seamless patches, which do not change application behaviour in any

way. Null-pointer dereferences and use-after-free vulnerabilities can often be patched in

such fashion, making fingerprinting difficult if not impossible.

Chapter 5

Results

We have done a number of experiments with our system. Heartbleed was an important

driver behind this research so we will discuss our findings in depth.

Unfortunately, we could not test our system on other real-world vulnerabilities because

we had trouble finding server vulnerabilities in open source software for which both a

patch and a working exploit is available.

Even if we had these, they would still not provide a ground-truth for our experiments

because we do not know the discriminators for these patches. Therefore, we cannot

effectively measure the performance of our approach. So, instead of analyzing real-

world vulnerabilities, we resort to a few hand crafted vulnerable programs to see if our

method can find discriminators for these.

5.1 Heartbleed

Heartbleed (CVE-2014-0160) is a critical information disclosure vulnerability, which

enables hackers to leak memory of an OpenSSL server, which may lead to disclosure of

cryptographic keys. The vulnerability was found in OpenSSL’s implementation of the

heartbeat extension (RFC6520) which is part of the TLS/DTLS protocol.

Hearbeats are necessary to keep existing TLS/DTLS sessions alive. Also, because DTLS

is implemented on top of an unreliable transport protocol (UDP), discovering the Max-

imum Transmission Unit (MTU) becomes the responsibility of OpenSSL. By allowing

heartbeats to have a variable size payload, we can discover the Path MTU or PMTU

for short.

36

Results 37

Apart from 16 bytes of random padding, the payload of a heartbeat is echo’ed back.

Unfortunately, the 2-byte length field of the heartbeat request is not validated and can be

used to retrieve a large heartbeat response containing 64kb worth of arbitrary memory

contents, possibly containing sensitive keying material. The patch for heartbleed is

shown in figure 5.1.

Heartbleed serves as an example to motivate this research, because it is possible to

detect vulnerable OpenSSL servers in a safe way. As such, it provides us with a

ground-truth to test our method. It works as follows: The first if-statement will cause

tls1_process_heartbeat to return when the required 16 bytes of padding are not

present, which results in closing the connection. The vulnerable version would send

a heartbeat response in that scenario. Thus, sending heartbeats without this padding

provides us with a safe avenue to scan for vulnerable OpenSSL servers.

Results 38

diff --git a/ssl/t1_lib.c b/ssl/t1_lib.c

index a2e2475 .. bcb99b8 100644

--- a/ssl/t1_lib.c

+++ b/ssl/t1_lib.c

@@ -3969,16 +3969 ,20 @@ tls1_process_heartbeat(SSL *s)

unsigned int payload;

unsigned int padding = 16; /* Use minimum padding */

- /* Read type and payload length first */

- hbtype = *p++;

- n2s(p, payload);

- pl = p;

-

if (s->msg_callback)

s->msg_callback (0, s->version , TLS1_RT_HEARTBEAT ,

&s->s3->rrec.data[0], s->s3->rrec.length ,

s, s->msg_callback_arg);

+ /* Read type and payload length first */

+ if (1 + 2 + 16 > s->s3 ->rrec.length)

+ return 0; /* silently discard */

+ hbtype = *p++;

+ n2s(p, payload);

+ if (1 + 2 + payload + 16 > s->s3->rrec.length)

+ return 0; /* silently discard per RFC 6520 sec. 4 */

+ pl = p;

+

if (hbtype == TLS1_HB_REQUEST)

{

unsigned char *buffer , *bp;

Figure 5.1: The patch for heartbleed (CVE-2014-0160)

5.1.1 Propagation in heartbleed

Finding a discriminator proved to be more difficult than initially thought. The reason lies

in the fact that heartbeats can be sent at any moment, even before the TLS handshake

is completed. Heartbeats sent during the handshake are unencrypted and are handled

differently from the encrypted ones sent after the handshake is completed.

For unencrypted heartbeats, the heartbeat response is buffered in write_buffer() in

crypto/bio/buff.c, which inhibits propagation. The only way to get a response is to

ensure that the heartbeat response has a payload of at least 4073 bytes. Furthermore,

since the server did not expect a heartbeat at this point, it aborts the handshake. There

is no way we can flush the buffer to get the heartbeat response.

Exploit scripts can simply send these unencrypted heartbeats because they do not care

that the TLS handshake is aborted, as long as they can fetch the heartbeat response

that contains the desired cryptographic material. Creating the exploit using encrypted

heartbeats is substantially more difficult because it requires you to duplicate parts of

OpenSSL in order to complete the handshake and craft a malicious encrypted heartbeat.

ZGrab, which is part of ZMap[21] contains a heartbleed scanner that uses encrypted

heartbeats, which we modified to carry out our experiments. Encrypted heartbeats

Results 39

were not buffered like the unencrypted ones, allowing us to detect vulnerable OpenSSL

servers without leaking a single byte of information.

Although this is a single example, heartbleed proves to us that vulnerability exploitation

can be substantially different from vulnerability detection.

5.1.2 Safety in heartbleed

In case of heartbleed, safety is defined in terms of information leakage. Leaking 64kb of

memory would be considered full exploitation and leaking no information is completely

safe. Modifications to program state are not of interest because they do not serve a

purpose in the exploit.

In order to catch information leakage, the delta framework supports the address sanitizer

(ASan) which reports out-of-bounds reads and the memory sanitizer (MSan) which

reports uninitialized reads. Because heartbleed memcpy’s the memory contents into the

response buffer, the use of a large size argument may result in one of these sanitizers

to report a violation. The following experiments were done with a heartbeat request

having no payload.

The address sanitizer (ASan) allowed us to to leak up to 17725 bytes, before reporting

a heap-out-of-bounds read. This is probably because the heartbeat request is stored in

a heap-allocation that can accommodate the largest possible TLS record, which encap-

sulates 16 kilobytes of encrypted application data.

The memory sanitizer (MSan) did much better. It reported an uninitialized read when

trying to leak 114 bytes or more. This number may differ between executions since heap

allocations may be re-used while already initialized.

It turned out that OpenSSL contains quite a few uninitialized reads that are unrelated to

heartbleed exploitation. We had to blacklist quite a few functions to allow the memory

sanitizer to initialize and reach the heartbleed patch. Using existing tools to catch unsafe

inputs, requires the instrumented code to be of high quality. Fixing or blacklisting all

uninitialized reads may require significant effort.

We can conclude that the accuracy of MSan and ASan highly depends on the memory

layout of the application. Since OpenSSL is highly optimized, it works with fewer and

larger memory allocations, making it hard for us to accurately detect information leak-

age. As such, automated discovery of discriminators may result in many false positives.

Results 40

5.1.3 Infected state in heartbleed

Our delta framework allows us to determine the infected state after running the vulner-

able function. This infected state must be inspected to rule out the case that heartbleed

detection has undesirable side-effects on the OpenSSL. When both executions merge,

we know that OpenSSL’s integrity was preserved.

Unfortunately, sending a discriminator to our instrumented OpenSSL server results in

numerous infections that do not dissolve. The main problem is that only the vulnerable

execution will call ssl3_write_bytes to send a response. This call will encrypt the

given buffer and will wrap the result into a TLS record. These operations modify a lot

of state, such as I/O buffers and fields in the SSL3 struct that keeps track of our session.

Also, the lh_new function creates a hashmap that keeps various counters that track calls

to the hashmap. New allocations modify the heap and the random-number-generator

also updates its internal state.

Libdelta supports whitelisting, which allows us to tell the framework that some infections

can be considered safe and are ignored when attempting to merge. This can be done by

providing hardcoded memory ranges upfront. Because heap allocations may differ every

execution, we need to add calls to OpenSSL’s sourcecode, which will instruct libdelta to

whitelist some heap memory. However, it is very time consuming to track down all the

infections and investigate whether they can be safely whitelisted. Since for heartbleed,

safety is mainly enforced using the sanitizers described earlier, it might be better to

disable the merge check. This is unfortunately not supported by our delta execution

framework.

5.1.4 Fuzzing

In order to generate a set of candidate inputs to test, we selected VUzzer. Recall that

VUzzer focuses its mutations on parts of the input that are used in CMP instructions,

allowing it to discover new basic blocks more easily. Taint tracking is used to relate

input bytes (offsets) to particular CMP instructions. The read buffer of a single read call

will act as a taint-source. The offset of each byte in this output buffer will propagate

along with the taint, allowing the fuzzer to learn how each byte is used.

Unfortunately, only encrypted heartbeats support propagation towards an attacker. This

means that we have to use ZGrab to generate encrypted heartbeat requests, which will

be read and used as taint-source. This results in taint-tracking on ciphertext instead of

plain-text, which cripples the VUzzer, as it is now fuzzing the decryption logic instead.

An in-memory fuzzer that starts with the plain-text buffer could be used to bypass the

Results 41

Table 5.1: Patched test programs for which we know that discriminators exist

Vulnerability type Safety Policy Known discriminator

echo server 1 Buffer over-read
Merge +
ASan + MSan

Size = 0

echo server 2
Heap-based
buffer overflow

Merge
Size = 100 (overflow
into padding)

replace server
Stack-based
buffer overflow

Merge
Size >100 (overflow
into padding or
from/to chars)

quote server
Stack-based
Buffer overflow

Merge +
ASan + MSan

99 character inputs
without ’/’ or quotes

encryption logic. We did not explore this further as it again requires extra manual work,

specific to heartbleed.

5.2 Experiments

We have crafted a four simple toy programs for which discriminators exist. These pro-

grams are created to test whether our system is able to find the discriminators automat-

ically, but also to determine if handcrafted discriminators are indeed confirmed by our

delta framework.

Table 5.1 lists the programs, the type of vulnerability they have and the safety policy,

which describes how we test that an input is safe. By default, an input is considered

safe when the delta framework successfully merges the two executions. In other cases,

the analyst may opt to include the memory- or address-sanitizer as well.

The results are shown in table 5.2. It shows the number of candidate inputs generated

by the fuzzer and the number of discriminators found. Also, it shows the number of

propagating (P) and safe (S) inputs. The latter number is established using the safety

policy from table 5.1. The framework can not reliably detect whether an input is reaching

or infecting, so all non-propagating unsafe inputs are listed under other.

5.2.1 Echo server 1

Echo server 1 is shown in 2.2. It contains a buffer over-read vulnerability that may allow

disclosure of sensitive information. This code mimics heartbleed, which we could not

fully analyze as we explained earlier.

Results 42

Sending a request having size=0 is a discriminator, because the patch causes such

requests to be ignored, resulting in propagation through absence. Other less-safe dis-

criminators exist, where size is slightly larger than 32. These will leak a few bytes, but

the impact of this is probably quite limited.

Our system was able to find the size=0 discriminator automatically, as seen in table

5.2. We started the process using three seed inputs, which all had a length larger than

32. The VUzzer managed to set the size to zero, because size is compared with the zero

constant, which was extracted from the program. The discriminator testing framework

intercepted the write() that only takes place in the original version. Also, it detected

that program state converged.

The 9 safe inputs are inputs that have a length field below 32. High length values

(> 1000) will likely access unmapped memory, which is detected and reported by the

framework (11 inputs). The remaining 10 inputs have shorter lengths, but 9 of them

were marked as unsafe by the memory sanitizer, leaving just a single discriminator. We

used both the memory sanitizer and address sanitizer, because merges will never detect

information leakage.

5.2.2 Echo server 2

Echo server 2 shown in listing 2.3 contains a classic heap-based buffer overflow. Over-

flowing the buffer is required to discriminate. Fortunately, compilers align datastructures

at 4 byte boundaries, allowing us to safely overflow at least one byte, as the buffer size

is 99 bytes. Depending on the compiler and architecture, more padding bytes may be

available.

None of the 138 generated candidate inputs was a discriminator. Again, finding a

discriminator revolves around finding the correct size value, which is 100 in this case.

The VUzzer is not aware of memory layout, buffer sizes and data types in the input

buffer. Since it is not aware that the first four bytes are an integer, it can not gradually

increment them to arrive at the desired value. When looking at the set of candidate

inputs, most of them had random size values, which result in extremely large reads

that reach into unmapped memory.

5.2.3 Replace server

The replace server will take a buffer containing a string and will replace all occurrences

of a character by another one, as specified by from and to in the hdr struct. However,

the string length is bounded to 100 bytes and the second read call on line 14 can be

Results 43

1 struct header {

2 char from;

3 char to;

4 unsigned short len;

5 };

6
7 void handle_request(int clientfd) {

8 struct header hdr;

9 char string [100];

10 int i;

11
12 read(clientfd , &hdr ,

13 sizeof(struct header));

14 read(clientfd , (char*)string ,

15 hdr.len);

16
17 for (i=0; i<hdr.len; i++) {

18 if (string[i] == hdr.from)

19 string[i] = hdr.to;

20 }

21
22 write(clientfd , (char*)string ,

23 (size_t)hdr.len);

24 }

25
26
27
28

struct header {

char from;

char to;

unsigned short len;

};

void handle_request(int clientfd) {

struct header hdr;

char string [100];

int i;

read(clientfd , &hdr ,

sizeof(struct header));

if (hdr.len > 100) {

hdr.len = 100;

}

read(clientfd , string , hdr.len);

for (i=0; i<hdr.len; i++) {

if (string[i] == hdr.from)

string[i] = hdr.to;

}

write(clientfd , (char*)string ,

(size_t)hdr.len);

}

Figure 5.2: Replace server replaces characters in a string and sends the result back.
It contains a buffer overflow.

overflown by specifying a larger length. Because the overflow is stack-based, it can lead

to control-flow hijacking when handle_request returns.

However, we can do a small overflow of string, which only causes , from and to to be

overwritten, modifying how the application behaves. Therefore, if we can send a buffer

with the appropriate length where the last two bytes are the same, we can disable the

character replacement logic. In the patched version, the string will be truncated and

characters will be replaced.

We were surprised to find that 79 out of 265 candidates were discriminators. Again, the

fuzzer needs to find a length that results in a small overflow. We think the large number

of discriminators is due to the fact that our seed inputs contain readable ASCII bytes.

The entire lower-case alphabet spans from decimal byte 97 until 122. These characters

may end up in the length field as a result of cross-over and mutations done by the fuzzer.

These values will result in small overflows. We have repeated the experiment again but

now with a fully randomized inputs where only the header was fixed. The results were

the same.

There is another reason that explains the large number of discriminators. The compiler

passes used by the delta framework add local variables and thus create extra stack space

which can be overflown. Many of such overflows may not result in crashes, thus resulting

Results 44

1 void handle_request(int clientfd) {

2 char out [100] , in[100] , *i, *o;

3 memset(in, 0, 100);

4 memset(out , 0, 100);

5
6 read(clientfd , in, 99);

7
8 for (i = in , o = out;

9 *i != 0;

10 i++, o++) {

11 if (*i == ’"’ || *i == ’\\’) {

12 *o = ’\\’;

13 ++o;

14 }

15 *o = *i;

16 }

17
18 write(clientfd , (char*)out ,

19 strlen(out) + 1);

20 }

void handle_request(int clientfd) {

char out [100] , in[100], *i, *o;

memset(in, 0, 100);

memset(out , 0, 100);

read(clientfd , in, 99);

for (i = in , o = out;

*i != 0 && o < &out [98];

i++, o++) {

if (*i == ’"’ || *i == ’\\’) {

*o = ’\\’;

++o;

}

*o = *i;

}

write(clientfd , (char*)out ,

strlen(out) + 1);

}

Figure 5.3: The quote server escapes quotes (and backslashes) and returns the escaped
string. A buffer is overflowed when a string contains too many characters that need to

be escaped.

in more discriminators. However, using the same inputs on an un-instrumented version

of the server may indeed result in a crash. Therefore, the use of compile passes may

cause our framework to give false positives. There is only 4 bytes of space between the

end of string and the start of hdr, but in the instrumented version, this can be an

order of magnitude more.

5.2.4 Quote server

The quote server reads up to 99 characters from the network connection and escapes all

quotes using backslashes. The escaped string is sent back to the client. Input strings

which have lots of quotes and backslashes in the first 99 characters may cause an overflow

on the out buffer.

The vulnerability was patched by ensuring that the output pointer (o) never moves past

the 98th character. The patch is slightly too conservative and stops after the 98’th

character to ensure that there is room in the buffer in case the 98’th character needs

to be escaped. The patch would be more seamless if it allowed the 99’th character to

be processed as well, given that it doesn’t need escaping. However, this character is

now dropped, which makes all 99+ character strings infect the state. More generally, all

strings for which N +E ≥ 99 will infect the state, where N is the number of characters

and E is the number of characters that need to be escaped. All these infections will

propagate to the attacker.

Related work 45

Table 5.2: Shows number of discriminators, safe (S) and propagating (P) inputs found
for each toy program.

Candidates Discriminators P S Other
echo server 1 30 1 9 9 11
echo server 2 138 0 8 1 129
replace server 265 79 0 90 96
quote server 278 1 210 67 0

In this example, overflowing and non-overflowing discriminators exist. When N+E = 99,

the infection relies on the patch being too conservative about the last character and no

overflow will occur. When N + E > 99, an overflow will happen in the unpatched

version. This may be problematic, depending on the stack layout. A discriminator for

which N + E = 99 is obviously more desirable.

It turns out that our framework finds one non-overflowing discriminator. This input is

longer than 99 characters and has no characters that need to be escaped. Apart from

that, there are 53 overflowing discriminators, but these are marked as unsafe by the

address sanitizer and are therefore classified as propagating (P) in table 5.2. It turns

out that a couple of these cause very small overflows and are actually usable on the

un-instrumented un-patched version of the server. 67 inputs did not propagate. The

main reason was that they contain a zero-byte in the first 99 characters, causing the

output string to be less than 99 characters.

As shown in 5.2, Discriminator discovery resulted in discriminators for 3 out of 4 toy

programs. However, the toy programs are designed to be simple and it will be more

difficult to find discriminators for real-world vulnerabilities.

Chapter 6

Related work

6.1 Fingerprinting in network reconnaissance

Patch fingerprinting is a reconnaissance technique that directly addresses the question

whether a server is vulnerable to an attack. Existing reconnaissance techniques typically

only narrow down the search of vulnerabilities.

One of the oldest techniques to learn more about services running on a host is banner

grabbing. Banners are easy to extract and may provide valuable information to both

system administrators and malicious attackers. Hence, banners are now often hidden

to keep adversaries in the dark, making it harder to launch attacks. ZMap [21] is an

efficient internet-wide scanner that supports banner grabbing on a large scale.

OS fingerprinting [22] [23] leverages ambiguity in network protocol specifications to

distinguish different network stack implementations in order to identify the operating

system. Since the modern TCP/IP stack is complicated and always exposed to the

outside world, these different implementations expose a large accessible surface that can

be fingerprinted, akin to the surface on our fingertips. This technique is popular and

difficult to defend against. Yet, it does not give detailed information such as the kernel

version numbers. Also, countermeasures exist such as [24].

Since TCP/IP implementations change slowly over time, it is essential to keep finger-

prints up-to-date. Automating OS fingerprinting was attempted [25][23][26], but results

were mixed. It is possible to discern between OS families such as Linux, Microsoft

windows and Solaris. More fine-grained fingerprints remain a challenge.

Even though there seems to be resemblance, OS fingerprinting and patch fingerprinting

are very different. Security patches, as opposed to TCP/IP implementations only expose

46

Related work 47

a very tiny surface to fingerprint. However, OS fingerprinting has to deal with a lot of

noise generated by non-determinism, hardware differences, application behaviour and

system configuration. Also, OS fingerprinting aims to classify many OS families and

kernel versions. Hence, OS fingerprinting techniques often send hundreds of probing

packets and use database of fingerprints to generate a list of matching operating systems,

based on the probe responses. It is often up to the user to draw conclusions from a list

of matching fingerprints.

Fingerprinting of application versions was attempted in [1]. We are currently not aware

of generic remote fingerprinting methods for application versions.

6.2 Web vulnerability scanners

Web applications are often targeted by attackers and thus methods to automatically

find vulnerabilities in web applications are heavily researched. Automatically finding

SQL-injection and Cross-site-scripting (XSS) vulnerabilities is possible with black-box

scanners such as Secubat[3] and Acunetix[4]. Black-box scanners are popular because

they are easy to use and do not depend on the server-side technology that was used to

build the scanned application. They do depend on the use of HTML, Javascript and

SQL which are used in pretty much any web application.

These scanners typically employ a crawler module, an attacker module and an analysis

module. The crawler explores linked pages within a domain and finds interesting input

points such as GET parameters and forms. The attacker module will send requests

carrying particular inputs known to trigger vulnerabilities when such inputs are not

properly sanitized. The analysis module will inspect the responses to such requests and

will assign a score indicating the likelihood that a vulnerability was discovered.

For many web vulnerabilities, particular inputs exist that allow detection of vulnerabil-

ities. For example, passing <script>alert(’hello’);</script> to a GET parameter

and finding it in the response, proves that a cross-site-scripting vulnerability exists

without doing any harm. Similar prefabricated inputs exist to detect SQL-injection

vulnerabilities.

Such prefabricated inputs exist because, unlike compiled server applications, web ap-

plications are built using high level components and programming languages. These

components expose a solid well-defined interface and in case of un-sanitized inputs, a

broad attack surface. The problem of finding safe inputs is trivial, because we don’t

need to worry about memory errors at this level of abstraction. Because of the rich

Related work 48

content sent back to the client, it is often easy to remotely discriminate the vulnerable

from the secure.

6.3 Mutation testing

The field of mutation testing shows remarkable similarities with patch fingerprinting.

Therefore, we will explore the topic in this section and express the problems in terms of

patch fingerprinting.

In software testing, one tries to prove the correctness of a program for its entire input

domain, by testing whether a finite set of test inputs all result in correct output. In

practice, it is difficult to know whether a set of test inputs sufficiently exercises a program

to find all it’s programming errors.

Howden et al[27] introduced the notion of test set reliability. Given a program P that

accepts inputs in domain D, test set T ⊂ D is said to be reliable when passing all tests

t ∈ T , implies that P is correct for it’s entire domain D. In other words:

Definition 1. If P is a program to implement function F on domain D, then a test set

T ⊂ D is reliable for P and F if: ∀t ∈ T, P (t) = F (t)⇒ ∀t ∈ D,P (t) = F (t)

Although Howden[27] showed that reliable test sets exist, he also showed that there

is no efficient method to find them. Researchers found that rather than checking for

correctness, it is more practical to prove that a test set is able to identify a finite

number of bugs. Subsequently, the notion of test set relative adequacy was introduced,

also known as mutation adequacy. Adequacy is defined relative to a set Φ of incorrect

variations of program P . A test set T is said to be relatively adequate to Φ when all

programs in Φ fail to to pass the tests.

Definition 2. If P is a program to implement function F on domain D and Φ is a finite

set of programs, then a test set T ⊂ D is adequate for P relative to Φ if: ∀ programs

Q ∈ Φ, if Q(D) 6= F (D)⇒ ∃t ∈ T,Q(t) 6= F (t)⇒ ∀t ∈ D,P (t) = F (t)

Relative adequacy is of course an approximation and it’s effectiveness strongly depends

on the size of Φ as well as the faults introduced in members of Φ.

In order to construct Φ, researchers generate many variations of a program, which are

called mutants, each having a single source-level modification, which likely causes the

Related work 49

mutant to behave incorrectly. A mutation adequate test set will kill all mutants, meaning

that it will identify all of them as incorrect, because their output does not match with

the output of the correct program.

We assume that the program-under-test is correct which may seem strange. However,

note that when the program-under-test has a fault, a mutant exists that can only be

killed by a test that would also fail as a result of this fault. Thus, by introducing a large

number of faults and writing tests that identify them, we can discover real faults caused

by human error.

Some mutations will not cause the program to behave differently, even though a state-

ment of the program has changed. These are called equivalent mutants and can not be

killed. As such, they do not help us to establish the adequacy of a test set and should

not be used. A complete solution to this problem is not possible[6] so most mutation

systems require human intervention to remove equivalent mutants.

Besides mutant equivalence, another problem in mutation testing is automated mutant

killing. By generating tests for all our mutants, we can automatically enhance a test

set and possibly find existing bugs. While generating mutants is not very difficult,

automatically killing them is much more difficult and requires advanced tools [28][29][7]

or manual work.

For a test to kill a mutant, it has to satisfy three conditions:

• The test must reach the mutated statement

• Execution of the mutated statement should infect the program state, such that it

is different from the correct program. In the example shown in figure-6.1, an input

of A = 6 and B = 6, would have this result, while A = 6 and B = 5 (or vice versa)

would not.

• The infected program state must propagate to the output of the program, allowing

the test to check it.

This is also known as the RIP model [5]. The infection and propagation conditions are

also commonly referred to as the necessity condition and the sufficiency condition.

When only the first two conditions are met, the test input is said to weakly kill a mutant.

This means that the execution of the mutated statement causes a temporary infection of

program state, which ultimately converged to match the state of the original program.

Weak mutation testing is an optimization because we no longer need to execute all

mutants to completion. When we observe a state divergence after executing the mutated

Discussion 50

1 if (a < b) {

2 c = 1;

3 } else {

4 c = 0;

5 }

Original

if (a <= b) {

c = 1;

} else {

c = 0;

}

Mutated

Figure 6.1: Shows a mutation on the < operator. The state (variable c) is only
infected when a == b

statement, we assume that this divergence will be reflected in the output of the program

and the mutant is weakly killed. Weak mutation testing is more practical than strong

mutation testing, since it is difficult to stronly kill all mutants. Many infecting inputs do

not propagate and finding ones that do is difficult. This all results in many live mutants,

which falsely indicate that the test suite does not cover all code.

It could happen that a mutated statement causes a temporary divergence of state, which

converges before any output is returned. Budd et al[6] called this coincidental correct-

ness, because a temporary erroneous state is later erased causing the output of the

program to be correct. It could be that the mutated statement is not participating in

creating the output that is checked by the test. Also, protection mechanisms in programs

could erase certain state if it was found to be incorrect.

Mutation testing has a strong resemblance with our work. A security patch is often a

small, local modification and a patched program is in that respect similar to a mutant.

Our aim is to strongly kill this mutant, as to ensure an observable response discriminating

the patched from the unpatched version.

A difference is that we are trying to apply mutant killing to servers, which in principle

have an infinite execution time as opposed to stand-alone programs. This is the motiva-

tion for our safety property. In other words, we want to kill a mutant without disrupting

the server.

Although security patches are simple, they are not as simple as mutations and we know

less about how they affect the program. Mutations typically add or replace a single

operator or operand. More importantly, the mutation testing framework knows what

kind of constraint needs to be fulfilled to infect the state of each generated mutant. In

figure 6.1, < is replaced by <=, so the state will be infected if and only if A = B. Demillo

et al[7] defines such constraints as necessity constraints. For security patches, we do not

know these necessity constraints. We do know that an exploit of the vulnerability will

exercise the patch in some way. Automated extraction of such infection constraints may

be a key step towards evolving patch fingerprinting.

Discussion 51

Also notice how equivalent mutants are very much like seamless security patches. When

a patch modifies the program in such a way that this is not noticeable from the outside,

we speak of a seamless patch. Similarly, no input exists that exposes an equivalent

mutant through propagation. The only way to detect vulnerabilities that are seamlessly

patched is full exploitation. In chapter 4, we discussed some types of vulnerabilities

that are often seamlessly patched. Seamless patches are interesting from a defense point

of view since it prohibits automatic scanning. Truely malicious attrackers on the other

hand, may simply try to run the exploit, so seamless patches do not offer any real

protection.

Chapter 7

Discussion

The main research questions we had, was whether our delta execution framework is effec-

tive at recognizing discriminators for real-world vulnerabilities. We quickly discovered

that we did not have a realistic test set of vulnerable programs for which discriminators

were known. The main vulnerability that led to our question was heartbleed, for which

a discriminator is known. Unfortunately, we were unable to find other cases.

Even though thousands of vulnerabilities are documented, the vast majority affects

servers running on non-linux operating systems or closed-source servers. There were

quite a few vulnerabilities in open source software, which had a patch but lacked a

working exploit. The limitations imposed by our framework, discussed in 7.1.1 made

our search even more difficult and we eventually decided to create some toy programs

to test against.

Although it was not the main focus of our work, we also attempted to discover dis-

criminators. One major reason for doing so, was the lack of known discriminators in

real-world software to test.

In the remainder of this chapter, We will first discuss discriminator testing in 7.1. We

will go over the limitations of the current delta framework and discuss a few insights

that could lead to an improved version of such a framework. We will then discuss how

discriminator discovery 7.2 could be improved and how we could perhaps merge discrim-

inator testing and discovery to further improve the patch fingerprinting technique.

52

Discussion 53

7.1 Discriminator testing

7.1.1 Limitations

First of all, the current systems we have created only work on server programs written

in C that do not have threads. Making threads work in our delta framework takes a lot

of time and is outside the scope of this research.

Also, diverged state in thread local storage is not detected and mmap’ing memory during

split execution is not supported.

7.1.2 Accuracy of splitting and merging

Our delta execution framework is quite coarse-grained, when it comes to splitting and

merging. The deltafy pass, discussed in section 3.1, compares both programs at function-

granularity and split as soon as a patched function is called. We attempt to merge when

this patched function returns. This leads to two execution paths which should not be

ran in split execution:

• split-to-patch-site path: These are the first instructions of the patched function,

up to the first patch-site.

• patch-site-to-merge path: These are the instructions executed after the last

patch-site, until the function returns which is where we will attempt to merge.

Depending on how the program is organized, these paths may contain a lot of instruc-

tions. This is problematic for a number of reasons:

First of all, we need to take care of any I/O that happens during split execution. I/O calls

and access to hardware performance counters during split execution will introduce state

differences unrelated to the presence or absence of the patch. These spurious differences

between the processes show up as infections and increase the amount of manual work.

We can solve this by intercepting all these I/O operations to ensure both processes

perceive the same environment, but this is a lot of work. It may be more effective to

reduce the time spent in split execution, by splitting immediately before the patch-site

and merging immediately afterwards.

Besides pollution caused by I/O, a long patch-site-to-merge path has more problems. It

gives infections, a patch-site, more time to spread to other memory areas, resulting in

more analysis work. This is shown in figure 7.1 on the left. It is obviously much easier to

Discussion 54

distinguish safe and unsafe inputs by inspecting a few infected bytes immediately after

the patch than to consider many infections that all result from an initial small infection.

Heartbleed is an excellent example of why a long patch-site-to-merge path is problematic.

When processing the discriminator, the patched version returns from the vulnerable

tls1_process_heartbeat function while the original version continues. The original

version calls ssl3_write_bytes which touches a lot of state. Because we try to merge

when both executions return from tls1_process_heartbeat, we see a lot of diverged

bytes, the vast majority of which was caused by the ssl3_write_bytes call. We had to

inspect all this diverged state to ensure that the discriminator is safe.

Figure 7.1: Left side shows write-before-merge resulting in a lot of manual work to
analyze/whitelist all diverged state. Right side shows merge-before-write. When the
merge is successful, the patched process exists and all infected state is lost even though
whitelisted infections may still exist. Any propagation that may happen due to the

subsequent write() call will not be detected by our delta framework

Finally, our delta framework cannot reliably detect whether an input reaches the patch

or infects state. Knowing which properties are satisfied is an important measure for how

good an input is and could be used by future methods to incrementally solve all RIPS

constraints. One might say that splitting may indicate reachability (patched function

is called) and failure to merge may indicate infection. However, this is a very coarse

approximation. Splitting obviously does not guarantee patch-site execution. Merge

failures could also be false positives caused by pollution resulting from unhandled I/O

operations discussed earlier. Finally, successful merges can still hide the fact that there

was a temporary infection. Establishing reachability and infection for an input will be

more accurate when the mentioned paths are reduced in length or eliminated completely.

So how can we increase split/merge accuracy and shorten the undesirable code paths?

Discussion 55

It could be done by improving our current compiler instrumentation by analyzing dif-

ferences at basic block granularity. One could mark a set of basic blocks as patch BB’s

and then instrument all incoming edges with split hooks and outgoing edges with merge

hooks. Such improvements are difficult to implement, which is the reason we did not

try it.

Another interesting approach is to use dynamic binary instrumentation such as PIN[18].

A big advantage is that one can dynamically decide after which instruction to split or

merge. Since dynamic binary instrumentation is only concerned with a single execution,

it may be much easier to implement accurate delta execution for patch fingerprinting.

Tucek et al[12] actually use PIN to implement delta execution. Besides supporting

function-granularity splits and merges, they allow an analyst to place macros that signify

the start and end of a patch. They do not elaborate on how they merge two versions

of the code into a single binary, such that the execution splits when this section of the

code is executed.

7.1.3 Inspecting Diverged State

When we attempt to merge, the delta framework will always report on all diverged state

that was found. It will do so by dumping all pairs of memory pages that diverged and

also an overview of the offsets and sizes of the diverged bytes.

Unfortunately it is very difficult to interpret such reports because we do not know which

variables and datastructures are affected, let alone by which instruction. This makes

it nearly impossible for an analyst to determine whether some differences should be

whitelisted.

To partially mitigate this, we can leverage origins tracking information from the memory

sanitizer to find out when the memory is allocated from where it is copied. This tells

us where the data was first allocated, allowing us to find out which datastructure was

infected.

However, this origins tracking information is only guaranteed to be available for memory

areas that contain uninitialized bits. And even if is available, inspection with GDB is

still required to find out which part of a datastructure is infected. Apart from tracing

infections to source-level, it requires some understanding of the applications internals to

be able to judge whether it can be safely whitelisted.

Discussion 56

7.1.4 Retaining Diverged State

Our implementation of delta execution is simpler than the original implementation in

[12]. When merging, the original implementation copies all diverged pages to the parent

process and mprotect()’s them, thus retaining two versions of all the so called delta data.

As soon as the application reads or writes to these pages, the execution splits again and

each execution operates on it’s own version of the data. In the implementation, merging

has nothing to do with asserting that both processes have converged, but rather saving

resources by exiting one of the processes.

Initially, we did not think that retaining delta data like this would be helpful. After all,

we simply want to assert that all memory contents, except what is whitelisted, has fully

converged. Paradoxically, we also want infected state to propagate via an I/O call. As a

result of exit’ing one process and not retaining it’s diverged page, we essentially erase

all diverged state. Therefore, we also lose legal diverged state in whitelisted memory.

This diverged state could, in theory, still propagate via an I/O call, but because we

do not retain it, we can not detect such propagation. This results in false negatives

as shown on the right side of figure 7.1. Hence, we must retain both versions of the

diverged state to also detect propagation in a merge-before-write situation.

Figure 7.2: This is what could happen if we retain diverged state. The first merge
checks the integrity of the process but retains the diverged state. As a result, the
execution splits again when this diverged state is accessed and used by a write() call

Discussion 57

In section 7.1.2, we discussed the problems of prolonged split execution and the merits

of late splitting and early merging. If we also would like to retain diverged state, we

arrive at the original implementation of delta execution. When we merge, we check the

integrity of the unpatched process, like we currently do and abort when the input is

deemed unsafe. However, if the integrity check is successful, we retain all diverged pages

to see if the infection spreads or dissolves. Figure 7.2 shows how this works. We can

now detect propagation long after we checked the integrity of the process.

This approach to delta execution has some consequences for how we check the integrity of

the unpatched process. When retaining diverged state, splits and subsequent merges are

not only caused by execution of modified code but also by accessing diverged state. The

integrity check must only be done after executing the modified code, because that is the

only place where corruption of the unpatched process can happen. The integrity check

asserts that all diverged state (if any) is whitelisted and that it can freely propagate as

is. Therefore, no further integrity checks are needed as long as the patched code is not

executed again.

7.1.5 Confidentiality

Because merges only check integrity, we have used the address sanitizer and memory

sanitizer to find out about information disclosure. We only considered buffer over-

read vulnerabilities where controlling a size argument to a call such as memcpy leads

to reading a contiguous chunk of memory. We hope that this large read violates buffer

bounds or touches uninitialized memory, which would be detected by the address- or

memory sanitizer.

We found that the success of this method highly depends on the memory layout of an

application. For example, in heartbleed, we could leak 17 kilobytes of memory before any

boundary was crossed, allowing many leaks to go undetected. Fortunately, the memory

sanitizer performed much better, allowing only leaks of up to 114 bytes of memory.

In some cases, we found that the address sanitizer is too strict. We have shown that we

can use small legal overflows to craft discriminators (See section 2.1.4). It is important

to check that an overflow is safe, meaning that it only touches padding bytes. Unfor-

tunately, the address sanitizer does not tolerate any single byte overflow. As such, we

cannot easily verify that the overflow is indeed small and harmless.

It might be possible to modify the address sanitizer to support orange zones. An orange

zone is a portion of the red-zone, which we may overflow. The size of the orange zone

Discussion 58

could be parameter set by the analyst and must be smaller than the red-zone. This

would allow the analyst to find the minimal overflow needed to craft a discriminator.

What can also be problematic is that the sanitizers do not focus specifically on the

patch-site, but on the complete server. Therefore, the sanitizers may report a vast

number of unrelated problems. This was the case when we used the memory sanitizer

with OpenSSL. We had to blacklist 6 functions to suppress existing errors.

Finally, we had a lot of problems integrating the sanitizers into the delta execution

framework. The sanitizers produced spurious state differences, cause merge failures

and also intercepted library calls done by the delta framework, resulting in a variety of

problems.

We believe that addressing confidentiality in patch fingerprinting requires more special-

ized instrumentation that integrates better with delta execution. If it is possible to use

off-the-shelf tools such as the sanitizers, they should be ran separately as integration

may not bring significant advantages compared to the required efforts.

7.2 Discriminator Discovery

Discriminator discovery can currently not consume feedback from discriminator testing.

Since the fuzzer is currently not aware of the kind of constraints we want to solve, we

mostly rely on brute-force. We did not integrate discriminator discovery with discrim-

inator testing because the used tools required different processor architectures. Even

if they would use the same architecture, the different pieces of instrumentation would

require radical changes to make them compatible.

We believe huge improvements can be made by making the fuzzer aware of some con-

straints. Using concolic execution, one could extract the path constraints generated by

exploitation of the vulnerability. Using this path constraint for input generation, one

could guarantee that the reachability property is satisfied for all inputs. It might be

possible to introduce infection constraints as well, further narrowing down the search.

Despite the path explosion problem, symbolic execution can still be an interesting tech-

nique, as the amount of patched code to analyze is often really small. The symbolic

execution engine could be modified to fork the symbolic execution as soon as the first

patched instruction is executed. Analyzing the path constraints could result in an in-

fection constraint, which describe the set of infecting inputs. After learning these con-

straints, more lightweight methods can be used to find safe and propagating inputs that

satisfy these constraints.

Discussion 59

There are some scalability challenges with discriminator discovery using a fuzzer: First,

observe that fuzzing for discriminators is very different from using a fuzzer to excavate

bugs or vulnerabilities. When using a fuzzer to find discriminators, we fuzz a known

broken piece of code, resulting in many crashes and memory corruption. When fuzzing

for bugs, most inputs will result in a normal execution and finding a single crashing

input is the end-goal.

Also, most existing fuzzers target locally executing programs rather than servers. They

start the binary for each input and wait for it to exit. When fuzzing a server, one could

start the server and let the fuzzer launch a client script that sends inputs and collects

their responses. When trying to find bugs, a server crash would indicate that the last

input triggered a bug.

Unfortunately, when searching for discriminators in servers, crashes and corruption are

the norm and the server has to be restarted for every input. Since starting a server is

done infrequently in real-world usage, as opposed to starting local programs, developers

do not optimize for it, resulting in poor fuzzer performance due to slow restarts.

Furthermore, some number of interactions may be required before a server will be in

a state where vulnerable code will be triggered. To customize these interactions per

vulnerability, we introduced the session script into our design, which takes a fuzzed

payload and delivers it after the required setup interactions. For example, Heartbleed

required an entire SSL handshake. We modified the code offered by ZGrab[21] to perform

the handshake and to provide the desired heartbeat request. Since the session script is

launched as a new process for each input, it also incurs significant overhead.

These issues could be solved if the fuzzer could run the session setup once, freeze the

server and fork off one process for each fuzzed input. Since we are using a fuzzer to solve

highly complex constraints, optimizing for brute-force usage may substantially improve

the likelihood of finding a discriminator. AFL[30], a popular state-of-the art fuzzer,

uses this fork-server approach as well [31]. As discriminator discovery was not a core

part of this thesis, we did not attempt to implement such optimizations. However, it is

important to keep these observations in mind for future fuzzer-based implementations.

7.3 Alternative applications

An alternative application of patch fingerprinting is to run the analysis before releasing

a patch to the public. This allows software maintainers to remove discriminators, thus

defending against malicious vulnerability scans. In other words, the aim to make their

patch seamless, eliminating all network-facing behavioral differences.

Discussion 60

As discussed in section 4.6, some types of memory errors are almost always patched

seamlessly. Input validation errors on the other hand, are forced to handle the error

which can be detected remotely.

Also, safe patch fingerprinting could be integrated into the software development process,

making developers aware of how their code changes could be fingerprinted, exposing

information to the public. This is difficult though, because of our current assumption

that fingerprintable patches are small. Discriminators could also hint on subtle possibly

unintended implementation changes that are not sufficiently tested by the existing test

suites.

7.4 Future work

So far, we have discussed various aspects of discriminator testing and discovery. In this

section, We will try to consolidate these insights in order to formulate interesting future

research questions.

This research focused on patch fingerprinting for open-source software. However, a sub-

stantial number of vulnerabilities exist software for which source-code is not available.

Our research was hampered by the lack of vulnerabilities for which source-code, a patch

and a working exploit was available. Performing patch fingerprinting on compiled bina-

ries weakens these requirements and may lead to more results and use-cases. Obviously,

it will be much harder to interpret diverged state making it harder to create a good

whitelist.

Studying the effects of patches, as we do in this thesis, requires us to merge the patched

and unpatched version into a binary which we can analyze. This merging, which we

call deltafying, determines the granularity of splitting and merging which was discussed

earlier. We have done this using a compiler pass and Tucek et al[12] did the same. Yet,

it may be possible to deltafy compiled binaries, enabling patch fingerprinting without

source-code. Although this is complicated, it will probably enable accurate placement

of split hooks, addressing the problems outlined in section 7.1.2.

After we have a deltafied program, we can add instrumentation to either test or dis-

cover discriminators. Both of these problems can be approached using a wide variety of

techniques and most probably hybridizations of techniques. Also, merging discriminator

discovery with discriminator testing into a single analysis process would make it more ef-

fective, since discovery can then rely on the notion of diverged state and its propagation.

Finally, the interpretation of safety demands that we modularize our instrumentation,

to support various types of vulnerabilities.

Conclusion 61

We found that combining multiple pieces of compiler instrumentation can become very

complex. We have seen that they affect the memory layout, causing unsafe inputs to

be flagged as safe. Compiler passes have to be executed in an order, often leading to

instrumentation of instrumentation. This interference happens at runtime too, as the

runtime components of the instrumentation are not aware of each other. It is essential to

express the problems of patch fingerprinting in terms of an instrumentation framework,

which cleanly separates responsibilities.

We believe that such a framework should be built as dynamic binary instrumentation

(DBI) such as PIN[18]. It is less intrusive and allows many modules to listen to run-

time events at instruction granularity. Also, it does not require source-code, opening the

door towards patch fingerprinting on binaries. It has been shown that complex analysis

frameworks can be built with PIN, such as Triton[32]. Triton offers concolic execution,

snapshotting and taint tracking, which could be instrumental in the creation of a patch

fingerprinting framework.

The problem outlined in section 7.1.3 remains unsolved. We think that leveraging debug

information, together with instrumentation of store operations during split execution,

would be the most promising approach. We have spent considerable effort to let our

deltafy compiler pass preserve debug information, but the results were disappointing.

It remains to be seen whether debug information can be easily preserved when merging

compiled binaries. As it turns out, accurately merging two versions of the same code,

while retaining high-level debug information remains one of the core challenges that need

to be addressed.

We currently focused only on write calls, while other I/O events could also facilitate

propagation. Besides other I/O system calls, different side-channels may exist that could

be used to learn whether the server is patched. When the attacker can run code on

the server, different side-channels attacks may be feasible. Exploring these possibilities

further remains future work.

Chapter 8

Conclusion

In this thesis, we took the initial steps towards safe patch fingerprinting. It is a novel

approach that could vastly improve the effectiveness of vulnerability scanners by auto-

matically providing fingerprints for the most recent vulnerabilities. It supports detection

of vulnerable servers, without having to depend on the software version of such servers.

Delta execution turned out to be an effective technique to test whether an input is

a discriminator. Due to the unavailability of suitable vulnerabilities and patches, we

could not extensively test it. Yet, our framework confirmed the known discriminator for

heartbleed and was used to find discriminators for a number of vulnerabilities in test

servers that we created ourselves. These experiments provided many insights which can

lead to more practical and accurate implementations.

The RIPS model, derived from the RIP model used in mutation testing, breaks the

problem of finding discriminators down into better understood sub-problems, which can

be approached using existing analysis techniques. Findings in the field of mutation

testing will be instrumental in further developing safe patch fingerprinting.

Safety, which is being added to the existing RIP model, turned out to difficult to imple-

ment and work with since its definition is vulnerability dependent. Checking integrity

using merges is very conservative and whitelisting memory areas results in a lot of man-

ual work. This problem is worsened by inaccurate placement of split and merge hooks.

Existing tools that help us catch unsafe inputs, such as the address- and memory sani-

tizer work to some extent. However, they were inflexible and difficult to integrate with

delta execution.

We did a rudimentary attempt to automatically discover discriminators. The results

were good for small test servers, but much more work is needed to make automated

discovery scale to realistic software. We believe that efficiently finding discriminators

62

Conclusion 63

requires a solution based on symbolic or concolic execution, allowing one to extract

constraints and use them in a more focused search. Also, integration of discriminator

testing and discovery could make safe patch fingerprinting much more practical.

To improve automatic discovery of discriminators and address the issues with safety, a

more integrated approach is needed. We envision a framework based on dynamic binary

instrumentation that harbors many different modules, each responsible for solving a sub-

problem of patch fingerprinting. Dynamic binary instrumentation is suitable because it

is non-invasive, allowing more accurate safety checks and better supports modularization

than compiler based approaches, because analysis modules will be less coupled with the

program under analysis.

Even though many improvements can be made upon our approach, there may be fun-

damental limits to this technique. We have analyzed a number of vulnerability classes

typically found in compiled software. We argue that many of them can be seamlessly

patched, leaving no discriminators that are required for a safe vulnerability scan. Also,

we currently need the source-code, a patch and an exploit, which are often not available.

It might be possible to do fingerprinting on compiled binaries directly, but it won’t make

the problem easier to solve.

Bibliography

[1] Jason Damron. Identifiable fingerprints in network applications. USENIX; login,

28(6):16–20, 2003.

[2] R Deraison. Nessus. URL http://www.nessus.com/.

[3] Stefan Kals, Engin Kirda, Christopher Kruegel, and Nenad Jovanovic. Secubat: a

web vulnerability scanner. In Proceedings of the 15th international conference on

World Wide Web, pages 247–256. ACM, 2006.

[4] Acunetix vulnerability scanner: Web application security. URL https://www.

acunetix.com/vulnerability-scanner/.

[5] A Jefferson Offutt and Roland H Untch. Mutation 2000: Uniting the orthogonal.

In Mutation testing for the new century, pages 34–44. Springer, 2001.

[6] Timothy A Budd and Dana Angluin. Two notions of correctness and their relation

to testing. Acta Informatica, 18(1):31–45, 1982.

[7] RA DeMilli and A. Jefferson Offutt. Constraint-based automatic test data genera-

tion. IEEE Transactions on Software Engineering, 17(9):900–910, 1991.

[8] nginx. URL https://nginx.org/en/.

[9] Roy T. Fielding and Gail Kaiser. The apache http server project. IEEE Internet

Computing, 1(4):88–90, 1997.

[10] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy

Vyukov. Addresssanitizer: A fast address sanity checker. In USENIX Annual

Technical Conference, pages 309–318, 2012.

[11] Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight

dynamic binary instrumentation. In ACM Sigplan notices, volume 42, pages 89–

100. ACM, 2007.

64

http://www.nessus.com/
https://www.acunetix.com/vulnerability-scanner/
https://www.acunetix.com/vulnerability-scanner/
https://nginx.org/en/

bibliography 65

[12] Joseph Tucek, Weiwei Xiong, and Yuanyuan Zhou. Efficient online validation with

delta execution. ACM SIGARCH Computer Architecture News, 37(1):193–204,

2009.

[13] Evgeniy Stepanov and Konstantin Serebryany. Memorysanitizer: fast detector of

uninitialized memory use in c++. In Code Generation and Optimization (CGO),

2015 IEEE/ACM International Symposium on, pages 46–55. IEEE, 2015.

[14] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,

Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.

Driller: Augmenting fuzzing through selective symbolic execution. In NDSS, vol-

ume 16, pages 1–16, 2016.

[15] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida, and

Herbert Bos. Vuzzer: Application-aware evolutionary fuzzing. In Proceedings of the

Network and Distributed System Security Symposium (NDSS), 2017.

[16] Thanassis Avgerinos, Sang Kil Cha, Alexandre Rebert, Edward J Schwartz, Mav-

erick Woo, and David Brumley. Automatic exploit generation. Communications of

the ACM, 57(2):74–84, 2014.

[17] Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: directed automated

random testing. In ACM Sigplan Notices, volume 40, pages 213–223. ACM, 2005.

[18] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff

Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: building

customized program analysis tools with dynamic instrumentation. In Acm sigplan

notices, volume 40, pages 190–200. ACM, 2005.

[19] Vasileios P Kemerlis, Georgios Portokalidis, Kangkook Jee, and Angelos D

Keromytis. libdft: Practical dynamic data flow tracking for commodity systems.

In Acm Sigplan Notices, volume 47, pages 121–132. ACM, 2012.

[20] The linux kernel archives: Soft dirty pte’s. URL https://www.kernel.org/doc/

Documentation/vm/soft-dirty.txt.

[21] Zakir Durumeric, Eric Wustrow, and J Alex Halderman. Zmap: Fast internet-wide

scanning and its security applications. In USENIX Security Symposium, volume 8,

pages 47–53, 2013.

[22] Fyodor Yarochkin. Remote os detection via tcp/ip stack fingerprinting. Phrack

Magazine, 17(3):1–10, 1998.

https://www.kernel.org/doc/Documentation/vm/soft-dirty.txt
https://www.kernel.org/doc/Documentation/vm/soft-dirty.txt

bibliography 66

[23] David W Richardson, Steven D Gribble, and Tadayoshi Kohno. The limits of

automatic os fingerprint generation. In Proceedings of the 3rd ACM workshop on

Artificial intelligence and security, pages 24–34. ACM, 2010.

[24] Kathy Wang. Frustrating os fingerprinting with morph. In Talk at the fifth HOPE

conference, 2004.

[25] Juan Caballero, Shobha Venkataraman, Pongsin Poosankam, Min G Kang, Dawn

Song, and Avrim Blum. Fig: Automatic fingerprint generation. Department of

Electrical and Computing Engineering, page 27, 2007.

[26] François Gagnon, Babak Esfandiari, and Leopoldo Bertossi. A hybrid approach to

operating system discovery using answer set programming. In Integrated Network

Management, 2007. IM’07. 10th IFIP/IEEE International Symposium on, pages

391–400. IEEE, 2007.

[27] William E. Howden. Reliability of the path analysis testing strategy. IEEE Trans-

actions on Software Engineering, (3):208–215, 1976.

[28] Mike Papadakis and Nicos Malevris. Automatic mutation test case generation via

dynamic symbolic execution. In Software reliability engineering (ISSRE), 2010

IEEE 21st international symposium on, pages 121–130. IEEE, 2010.

[29] Lingming Zhang, Tao Xie, Lu Zhang, Nikolai Tillmann, Jonathan De Halleux, and

Hong Mei. Test generation via dynamic symbolic execution for mutation testing.

In Software Maintenance (ICSM), 2010 IEEE International Conference on, pages

1–10. IEEE, 2010.

[30] Michal Zalewski. American fuzzy lop, 2015.

[31] Peter Gutmann. Fuzzing code with afl.

[32] Florent Saudel and Jonathan Salwan. Triton: A dynamic symbolic execution frame-

work. In Symposium sur la sécurité des technologies de l’information et des com-

munications, SSTIC, France, Rennes, June 3-5 2015, pages 31–54. SSTIC, 2015.

	Declaration of Authorship
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	2 Design
	2.1 Discriminators
	2.1.1 Infection
	2.1.2 Safety
	2.1.3 Propagation
	2.1.4 Examples

	2.2 Discriminator testing
	2.2.1 Delta execution
	2.2.2 Confidentiality

	2.3 Discriminator discovery
	2.3.1 Symbolic Execution
	2.3.2 Concolic Execution
	2.3.3 Fuzzing
	2.3.4 Hybrid approaches

	3 Implementation
	3.1 Deltafy Compiler Pass
	3.2 Libdelta runtime library
	3.2.1 Splitting
	3.2.2 Merging
	3.2.3 Instrumenting I/O functions
	3.2.4 Whitelisting
	3.2.5 Deltastub

	3.3 Sanitizer integration
	3.3.1 Compilation
	3.3.2 Initialization
	3.3.3 Thread-local-storage
	3.3.4 Controlling the heap
	3.3.5 Interposing functions

	3.4 Fuzzing

	4 Vulnerability Class Analysis
	4.1 Null-pointer dereferencing
	4.2 Integer overflows
	4.3 Use-after-free
	4.4 Buffer overflows
	4.5 Buffer over-reads
	4.6 Conclusions

	5 Results
	5.1 Heartbleed
	5.1.1 Propagation in heartbleed
	5.1.2 Safety in heartbleed
	5.1.3 Infected state in heartbleed
	5.1.4 Fuzzing

	5.2 Experiments
	5.2.1 Echo server 1
	5.2.2 Echo server 2
	5.2.3 Replace server
	5.2.4 Quote server

	6 Related work
	6.1 Fingerprinting in network reconnaissance
	6.2 Web vulnerability scanners
	6.3 Mutation testing

	7 Discussion
	7.1 Discriminator testing
	7.1.1 Limitations
	7.1.2 Accuracy of splitting and merging
	7.1.3 Inspecting Diverged State
	7.1.4 Retaining Diverged State
	7.1.5 Confidentiality

	7.2 Discriminator Discovery
	7.3 Alternative applications
	7.4 Future work

	8 Conclusion
	Bibliography

