Static Inter-Component Dependency Analysis for
Safe and Automated Stateful Recovery in a Distributed System

Koustubha Bhat, Dirk Vogt, Cristiano Giuffrida, Herbert J. Bos
Vrije Universiteit, Amsterdam.

Abstract

Inter-component communication in a distributed system
may lead to vicious state dependencies between the col-
laborating components. This could pose as a prohibitive
hurdle for stateful recovery as it makes it hard to (1) es-
tablish when recovery to a consistent state is possible
and to (2) identify which components have to be recov-
ered. In our work we introduce a new static analysis
approach,which works by fusing components together
for analysis purposes, that allows automated detection
of component collaboration graphs and inter-component
state tainting. Further, we propose a distributed recov-
ery model, which allows us to categorize IPC-calls in
recovery classes, where the recovery class describes (1)
whether recovery is possible and (2) which components’
state have been tainted. We demonstrate our analysis on
a multi-server system, and show that the analysis enables
the automated categorization of system calls in different
recoverability classes.

1 Introduction

Checkpointing is a useful recovery technique to improve
reliability of software systems [1][2][7]. For a distributed
system that comprises of numerous components spread
across various nodes, opting for a global checkpointing
scheme may turn out to be far from the ideal. Scal-
ing up the system to include large number of nodes or
components, or for cases where frequent checkpointing
is required, the load on inter-component communication
could become significant and hamper the performance
and usability of the system. In order to avoid such com-
munication overloads or the need for maintaining syn-
chrony among components of a distributed system for
checkpointing purposes, individual components may be
designed to take checkpoints locally. Recovery as well
could be localized to only the components affected by a
failure.

Inter-component dependencies arising due to inter-
component communications during normal execution
of a system could make the recovery process in local
checkpointing scenarios difficult. Recovering one
component by rolling back to a checkpointed state,
without considering the states of any existing dependent
components can put global consistency of the distributed
system in jeopardy. There has been prior research done
in the field of multi-tier application reliability and also
operating system reliability using checkpoint-restart
mechanisms where, inter-component dependencies are
tracked at runtime along with managing recovery[1][2].
The recovery procedure, would involve communicating
to all the dependent components to in turn perform
rollback, thus triggering a cascading effect during
recovery of the system to a consistent state[8]. Unlike
the recovery runtime, the dependency tracking or inter-
component co-ordination for checkpointing, adds to the
runtime cost even during normal execution of the system.

State changes that affect global state may make it
extremely difficult to recover back the system into
consistent state. For instance, some operations are
inherently irreversible, like an operating system send-
ing out a network packet, or writing to a disk. One
may notice that opting for local checkpointing is a
trade-off against, flexibility and robustness that a global
checkpointing scheme could offer. Local checkpoints
in such situations are simply incapable of rolling back
the system to a consistent state. Hence, in the context
of local checkpointing, it is also important to know
whether an attempt for recovery, could eventually lead
to a successful recovery. Towards this direction, along
with inter-component dependencies, knowledge of the
nature of state changes involved would be necessary to
determine the recoverability of the system.

In this paper, we describe a technique to extract inter-
component dependency information from a distributed

system, as well as identify those communication paths
that lead up to changing global state, by performing
static analysis. We enable static analysis on a distributed
system by fusing all individual programs that make up
the system.

Further, by analyzing the various modified global
values, we can classify the resulting state changes
into : (1) request-local, (2) process-local and (3)
global changes. We go on to apply the dependency
relations obtained through static analysis, to extend
recovery window of individual components by classi-
fying the inter-component interactions into idempotent
and non-idempotent operations. The checkpointing
and recovery runtime can utilize this information
to opt for suitable strategies to either recover (as in
case of the first two classes) or make a fail-and-stop
decision when global state is known to have been tainted.

2 Overview

Inter-component communication can be modeled as a
request/response style of component interaction in a
multi-component system. Request oriented recovery,
as the name suggests focuses on performing recovery
at the granularity of an incoming request. Recovery
Domains[5] describes an organizing principle applied to
Linux kernel to localize impact of failures to only the
requests that cause them. Giuffrida, et. al. [3] take a
similar approach, where the constituent components of
the distributed system are modeled in a pure event-driven
single-threaded fashion to orient their service imple-
mentation towards processing an incoming message, in
an infinite “task loop”. Receiving a message at a com-
ponent represents the request and checkpoint is taken
at the top of the task loop. Any outgoing requests from
this task loop are designed to lie at the end of the loop
so that the task loop forms the recovery window. Our
work builds on top of this scheme, although our model
doesn’t put any constraint on where outgoing requests
may happen in the loop. We try to extend the recovery
window by tracking the inter-task-loop communications
across different components to classify the resulting
operations into ones that are idempotent and those that
cause non-idempotent effects to the system.

We apply a novel technique to enable static analysis
on a distributed system by combining the constituent
individual programs into a single blob and applying
compiler based code transformation methods to convert
message passing communications into simple inter-
component function calls. Applying function call-graph
guided static analysis, we gather information about the

User Processes

virtual
mem.
manager

process
manager

user space

audio
driver

Microkernel]

Figure 1: Architecture of the target distributed system

kernel
(‘ ‘)
)

global values that get modified at different dependent
components. Effect on system state thus inferred helps in
selecting appropriate recovery techniques for respective
code paths.

3 Background

3.1 Target System

Our work targets a microkernel based Operating System.
The kernel is minimalistic which only supports hardware
interactions and Inter-Process-Communication (IPC)
facilities. The core Operating System functionalities
including process management, memory management,
drivers, storage and network stack are implemented as
a distributed system of collaborating hardware isolated
processes.

The OS processes are organized as servers and
drivers: servers implement policies related to resource
allocation and management and the drivers help in
interacting with most hardware peripherals.

The system processes follow a single threaded event
driven model of execution. Each system process is de-
signed to initializes itself during boot-time to eventually
start waiting infinitely for a message to arrive. Upon
receiving a message, it handles the associated request
based on type of the message and source process. This
“receive-loop” or the “task loop” as we discussed in sec-
tion 2 is ensured to have minimal execution complexities
in order to avoid affecting the component’s throughput.
Hence asynchronous message passing forms the primary
method of Inter-Process-Communication (IPC). In short,
the operating system works as a distributed system of
interacting / collaborating system processes.

User processes interact with the Operating System
through POSIX system calls, which are designed to call
into appropriate OS subsystem processes. System-calls
form the entry points for the user processes to interact
with the operating system processes. For example, a
fork() system call initiated by a user process, would
call into the “pm” process which in turn interacts with
the “vm” process for necessary memory allocations and
performs necessary actions like initializing process table
entry for the new process.

The “Reincarnation Server (rs)” is a special process,
which periodically checks the health of various sub-
system processes. As it is also the parent of all system
processes, upon detecting a crash, it is responsible for
automatically spawning a copy of the failed process and
perform necessary arrangements in the system in order
to induct the new process as the replacement for the
failed process. The “reincarnation” of a crashed system
server is ideally transparent to user space applications.

3.2 System Event Framework

The System Event Framework (SEF) is a component of
the system library which spans across all the constituent
OS processes in the system. Each system process (server
and driver processes) calls a sef_startup() method
that performs initialization. This involves providing
callback handlers to override default behaviours for
different system events.

System processes call sef_receive() to receive
messages. Message passing based IPC facilitated by
the microkernel provides the necessary underlying com-
munication medium. A message sent from a source
system process is obtained by the receiving process
through the sef _receive () blocking call. The function
sef_receive() in fact, is a wrapper over the micro-
kernel’s receive () which filters messages to the SEF
framework.

3.3 LLVM Compiler Passes

LLVM (Low Level Virtual Machine) is a compiler
framework that supports program analysis and transfor-
mations of arbitrary programs by providing high-level
information to compiler transformations at various
stages of a program’s life cycle.

We configure the build system of our multi-server
microkernel based operating system to emit LLVM
bitcode files for all the constituent programs. Using the

C++ APIs that it exposes, we design custom passes to
device static analysis aimed towards gathering necessary
inter-component dependency information for check-
pointing based fault recovery.

3.4 Data Structure Analysis

Data Structure Analysis (DSA) is a set of LLVM passes
that apart from supporting other facilities, they can per-
form static call-graph analysis to retrieve inter-function
dependencies based on analyzing arguments, local vari-
ables, global variables and the callees . One can perform
either top-down analysis or bottom-up analysis where
former gives a view of the callers of a particular func-
tion and the latter follows the local data dependencies
among the callees of the target function. These help us
to perform static dependency analysis that we intend to
perform on our target distributed system.

4 Design Overview

In order to achieve stateful recovery, we require to
figure out precisely how the system-state at various
circumstances, spread across the different components
of the distributed system. Primarily we require two
kinds of information: (1) Code paths that lead from
one component to another in the system and (2) State
changes that may happen on global values, especially
along these paths. They can then be utilized to improve
strategies for checkpointing and recovery.

As our target system is a distributed system that
comprises of various collaborating components, the
compile-time state of the system includes a bunch of
separate individual programs. If we are to apply existing
static analysis tools to analyze inter-component depen-
dencies, either we could go with (1) modifying the tools
to work with multiple sets of programs, or, (2) make the
tools work on our system by “fusing” the entire set of
programs our target system is made up of. We chose
the latter. As we have LLVM bitcode files for every
constituent component of the target operating system,
we combine them together to form one single LLVM
bitcode file. Specifically, we focus on the “server” mod-
ules of the system. While extending our methodology
to other parts of the system, like the drivers should be
possible. Unlike servers, other components require an
additional step of figuring out the component identities
at run-time (due to the reincarnation scheme built-in
to the system) we may need an additional analysis and
translation layer to make this possible. It is a case
of choosing simplicity over completeness, but yet be

A B

while (true) while (true)

{
lreceive(src, message);]

send(B, message); ?witch (message->type)

case 1 :handlerl();

break;
. case 2 :handler2();
} break;

default:
default_handler();
}

struct
int type;

) r’néésage; notify(src);

Figure 2: Examples of two components performing IPC.

A

while (true)

B_receive(src, message);
{

switch (message->type)

i ,

case 1:
handleri();
break;

case 2:
handler2();

break;

} default:

default_handler();

}

notify(src);

[B_receive(A, message);

Figure 3: Turning IPC into function-call after fusing.

capable of showcasing the effectiveness of our approach.

As mentioned earlier we design our static analysis
operations as an LLVM Compiler pass that acts upon
the fused LLVM bitcode file. As we are interested
in analyzing the inter-component dependencies, our
focus throughout this paper, remains on the IPCs that
happen between various system processes (specifically
the servers) of the system.

Lets consider an example of two components perform-
ing IPC. Figure 4 shows component A sending a mes-
sage to component B. Let us assume that the underlying
system supports IPC through the blocking send () and
receive () functions. At component B, based on which
component the message is received from, and the fype
of the message, corresponding handler function is in-
voked. Since the two components are separate programs
(and different processes at run-time), one has to resort to
run-time data flow tracking to figure out the dependency

among these components here. However, if the receive
side code is somehow fused into component A’s program
itself, then, instead of sending a message, a simple func-
tion call into the B_receive () function would have suf-
ficed. Dependency analysis between the two interacting
functions could be done by using simple call-graph anal-
ysis.

Our target hence is the fused LLVM bitcode file,
where programs of all the constituent modules are avail-
able. We start by identifying the source and destination
(or sink) components of IPC calls in the system and the
corresponding call-sites. As mentioned in section 3.2, in
our system, destination for the message-passing based
IPC is the blocking sef_receive() calls, which are
found in the receive-loops of each of the constituent
modules. For every IPC call we statically determine
all the potential destinations and fuse the source of the
IPC to thier potential destination sef _receive () loop
functions. So in the intermediate representation thus
modified, we would see that calls leading to the kernel’s
IPC facility, are replaced with direct function calls to
sef_receive loops of potential destination components
in the system.

Task of gathering inter-component dependency re-
lations now reduces to simple call-graph analysis. For
every IPC call found in the system, we can retrieve
the set of components involved in responding to the
request, the set of the global values that get modified in
the corresponding processes, etc. With this, the check-
pointing and recovery mechanism that we incorporate
into our target system, can know beforehand, the state
dependencies among constituent components per every
IPC call that happens in the system.

The precision of state dependency information can
be improved by improving on the analysis on argument
values of the IPC calls which lead upto specific branches
in the destination sef_receive() loops. In the exam-
ples depicted by Figure 4 and 4, if the message type
had a value of 1, then this corresponds to retaining just
the branch containing the handler1() function at the
B_receive() function and pruning away rest of the
code.

Data Structure Analysis passes allow us to perform
callgraph analysis on our transformed LLVM bitcode file
to retrieve various useful information. Sets of global val-
ues modified can be gathered at various components per
IPC call in the system to clearly categorize the inter-
component interactions into three types: (1) idempotent,
(2) calls that lead upto process local global state modifi-
cation or (3) calls that affect more than just the state of
the requesting process. This paves the way to implement

the various checkpointing and recovery strategies as dis-
cussed in Section 1.

S Implementation

We make use of LLVM Compiler infrastructure to per-
form necessary program analysis on the target Operating
System.

The preparation phase involved making necessary
changes to the NetBSD based build system of the
Operating System. Goal was to enable producing LLVM
bitcode files for the numerous constituent modules and
to be able to run custom LLVM compiler passes on them
during compilation of the operating system source code.

5.1 Merging LLVM bitcode files

Very first step in our effort to enable static analysis on
the whole operating system, is to unify the binaries of the
system into one single blob. The individual bitcode files
generated during compilation of the operating system
needs to be combined together into one single bitcode
file. However at the same time, we must also ensure
that association between component and its program in
the merged bitcode file is not lost. Prefixing them with
module identifiers is the way we chose.

We developed a simple LLVM compiler pass to prefix
each of the functions and global variables found in
component specific bitcode files with the corresponding
component identifiers. For instance, a do_fork()
function found in the Process Manager (“pm’) mod-
ule, is prefixed with “mx_pm” and hence becomes
mx_pm_do_fork(). These “prefix-ified” bitcode files
generated are then linked together to create a single
unified bitcode blob which represents the entirity of our
target system.

5.2 Pre-Fusing

In section 4 we mentioned that our focus remains on
analyzing the inter-process-communications. The signif-
icant part of IPC calls happen through ipc_sendrec()
function that the microkernel supports. Although
there are other primitives like ipc_send() and
ipc_sendnb(), they are mostly used to send back
responses or acknowledgements rather than initiating
collaboration requests between the OS subsystem
processes. We also include IPC calls involving
asynsend3 () functions in our analysis.

We have developed an LLVM pass named “FusePass”
to perform necessary transformations and analysis on
the merged LLVM bitcode file. This LLVM pass is
designed to perform the following three tasks:

1 Process IPC source: callers of ipc_sendrec () and
asynsend3()

2 Process IPC destinations: callers of

sef_receive_status()

3 Creating “fuser” functions that tie IPC call-sites to
their potential destinations.

5.2.1 IPC Source Points

Argument values to the IPC calls play a vital role in esti-
mating the set of their potential destinations.

int _ipc_sendrec(endpoint_t src_dest,
message *m_ptr);

ipc_sendrec() function takes these parameters :
an endpoint variable src_dest which in this text, we
would like to refer to as the “endpoint” and a pointer to
the message that is to be sent. The endpoint argument
value can help us determine the potential destination
process(es). Further, the message structure has a field
named m_type which dictates the kind of operations the
receiver does, using which we can essentially determine
the exact code branch this IPC call leads to.

It is possible that some of the source to destination
mapping may get decided during runtime of the system.
However, as we know that these are operating system
processes that perform resource management, a large set
of these interactions can have a predetermined flow, i.e.,
we could be able to statically determine the control flow
for a subset of these IPC function calls. Further, if not
the exact destination process, we can try to get to know
the possible subset of the processes this IPC call can
connect to.

In order to do this, we have to figure out the values
for the endpoint argument. One way is to follow the
endpoint argument variable by going through the in-
structions backwards towards its initialization or assign-
ment instruction, to retrieve the constant value that indi-
cates the destination process. However, we note that the
initialization may have happened before a series of func-
tion calls that lead up to the IPC call that is of interest to
us. To simplify the problem at hand, we chose to inline
the callers of the IPC function(s), up until a point where
these arguments are found not to be part of the arguments
of the caller function. In other words, starting at the

IPC call site, we simply fold the call-graph upwards to-
wards the first caller function where the endpoint}and
messagel}values originate from.

5.2.2 IPC Destination Points

According to the SEF model that all the target compo-
nents of our system follow, sef_receive_status()
function is called in a “sef_receive” wait loop.
Initiating appropriate response is part of the loop. In
effect, once a component’s process gets initialized and
starts running, it is the code that is part of the sef_receive
loop that defines the component’s behavior during the
runtime.

Identifying sef_receive loops is straightforward. These
belong to the callers of sef_receive_status() func-
tions.

int sef_receive_status(endpoint_t src,
message *m_ptr,
int *status_ptr);

We clone each of the functions that call
sef_receive_status() and are processed as fol-
lows:

1. Pruning the cloned functions As was mentioned
earlier, the contents of the function which is not in-
side the sef_receive loop are not relevant to our anal-
ysis. We prune the cloned function to keep just the
contents of the loop. The loop hence shall have two
segments:

e call to sef_receive_status()

e actions to perform based on the message re-
ceived from the sender.

2. NOOP away non-relevant SEF function calls
There are certain other SEF functions that are used
but only the sef _receive_status() calls are rel-
evant for analyzing the inter-component communi-
cations. So we replace those function calls with
calls to empty functions to basically NOOP them
away.

5.3 Fusing

At this point, we are almost done preparing the ground
towards transforming asynchronous message passing
based inter process communication to simple function
call semantics. @ We proceed towards replacing the
calls at all the IPC caller functions with call instruc-
tions that lead to the clone functions that contain the
sef_receive loops.

We implement an interface that gives the potential des-
tination functions, given endpoint value. endpoint
points at the destination process while m_type field of
the message parameter of the IPC function(s), hints at
the particular action that the receiver performs (ie., the
code branch that the receiver executes for this message).

class IPCInfo
{
public:
int srcEndpoint;
int m_type;
std::vector<int> destEndpoints;

};

int getPotentialSendrecDestinations(
IPCInfo *ipcInfo,
std: :vector<Function*> &destinations);

Note that all functions in our target LLVM bitcode file
have been prefixed with their respective module identi-
fiers. Mapping between functions to endpoint values or
vice versa is a straightforward table lookup operation.
The operation of fusing the source of an IPC call to its
potential destinations involves the following procedure:

1. Fetch the set of potential destination modules

At each IPC call site, we have figured out the
constant endpoint argument value that is passed
as the destination indicator. For a few number
of cases in our target system, where a constant
value cannot be determined at compile-time,
we include all possible destination module
identifiers, thus the result set obtained from
getPotentialSendrecDestinations could
contain IPC destination functions which may
belong to more than one OS processes. Note that
the functions returned by the above mentioned
interface are the cloned and pruned sef_receive
loop functions.

2. Pruning destination functions based on m_type
values In order to make our later analysis, espe-
cially global state modification analysis more pre-
cise, we choose to shape the IPC destination func-
tions such that it contains only those basic blocks,
that are potentially executed for that particular IPC
call taking the argument values into consideration.
As was mentioned in Section 4 the sef_receive loops
are by design modeled to initiate action based on in-
put message type and the m_type field in the mes-
sage tells us that. Fortunately, the m_type values
are compile time values and a simple trace back
from call site to its initialization provides us the in-
formation.

A clone of each of the destination functions are cre-
ated and are pruned to retain only the relevant pieces
of code for that set of argument values.

3. Create a new “fuser’” function

Now, at the source side of an IPC call, instead of
replacing the IPC call instruction, with (potentially)
multiple function calls to the IPC sink points, we
create a new function, prefixed with a “fuser” term.
This function forms as the static rendezvous point
between the two or more communicating modules
involved. A set of call instructions, to the corre-
sponding pruned clone functions obtained in Step
1. form the body of this new function.

4. Replace IPC call at IPC source points As one may
have guessed by now, the original IPC call at each
of the IPC callers are then replaced with a call to
their corresponding “fuser” functions.

Thus, what we now have in our LLVM bitcode file is
a bunch of functions, each of them having been grouped
and marked by the subsystem they belong to in the tar-
get distributed system, which communicate with one an-
other through simple function calls through the artifi-
cial “compile-time only” bridges we have created among
them!

5.4 Post-Fusing : Call-graph Analysis

Let us consider one of the modules in our system, say
the Process Manager (“pm”). Several system calls have
entry points starting at this system process, like fork (),
getpid (), etc. The implementation of POSIX system
call, fork () calls the do_fork() function that is part of
the pm module. Figure 6 shows the call graph depict-
ing the interactions among different modules (and hence
processes) for an execution of do_fork() function of
the pm module. This picture generation itself has been
one of the useful byproducts of the static analysis oppor-
tunity that our work enables.

Data Structure Analysis (DSA) LLVM pass run on the
transformed LLVM bitcode file gives a very clear picture
about potential data modifications that different inter-
component interactions may cause, thereby giving us an
opportunity to categorize the interactions based on their
properties. We implemented a separate LLVM compile-
time analysis pass that performs DSA based Bottom-
Up Call-graph analysis on our transformed LLVM bit-
code file. This pass obtains information such as direct
dependency among constituent components, per system
call component dependency, per IPC call global variable
modification information, etc.

5.5 Current limitations

In our current state of the implementation, at some
places, we have chosen to fall-back on using program-
mer annotations as well as utilize useful hints from man-
ual source code based program analysis at certain other
parts. These decisions are attributed mainly to our choice
of retaining our focus on the core of our thought process
towards proving the concept rather than implement a full
fledged static analysis tool for a generic distributed sys-
tem. Here below, we make note of such cases:

1. Only “servers” : We have constricted our analy-
sis to only the “servers” category of components of
the operating system. We chose to take this route
to avoid complexities that could turn non relevant
for our goal. For example, endpoint values for
drivers are a dynamically assigned values, owing to
the fault tolerance feature that Reincarnation Server
and Data Servers together provide, although we
can introduce ways to identify them statically to get
inter-component relations. Extending our work to
the remainder of the operating system components
like drivers wouldn’t be a herculean task although.

2. Endpoint mapping: endpoint values used to iden-
tify different “servers” in our system are directly
pulled out of the operating system’s source code,
which is used as an input for our compile time trans-
formation pass.

3. Process entry points: The entry point for static anal-
ysis is the “server” modules interface, rather than
POSIX system calls. We do have a mapping be-
tween POSIX system calls and their corresponding
server entry points. This information comes straight
out of scripts that perform specialized search on the
operating system’s source code.

4. Non-generic m_type based IPC sink pruning: Al-
though we wished to provide a generic method to
perform m_type value based pruning (to remove
all irrelevant basic blocks based on how the par-
ticular m_type value affects the execution), some
server s required more attention to detail than the
others. Instead of delving into programming intrica-
cies of coming up with completely generic process-
ing ways that works for all servers, we chose to keep
it simple by utilizing C++’s polymorphism feature
to provide separate class implementations that per-
form specialized processing especially for a few of
the intricate server implementations. Making this
generic is just a matter of using programming wits.

Send side of IPC (ipc_sendrec()/asynsend3())
callers of send primitives 52
callers of send primitives after inlining 191
Target send primitives’ call-sites 196
Target call-sites with const. endpoints 179
Target call-sites with non-const. endpoints | 17

Table 1: Callers and call-sites of IPC source points.

Receive side

Number of servers 10

Number of callers of sef_receive() 12

Number of clones created of sef_receive() | 12
callers

Number of call-sites of sef_receive() | 17

callers after inlining

Table 2: Callers and call-sites of IPC destination points.

Fusing

Number of target callers of send primitives | 171

Number of fused IPCs with exact destina- | 154
tions found

Number of IPC fuse with multiple poten- | 17

tial destinations

Table 3: Fusing details of IPC

6 Evaluation

Table 1, 2 and 3 provide information about the ef-
fectiveness of fusing message-passing IPCs into
inter-component function calls in the static fused blob.
Static analysis that we performed, provided enough
information to fuse 90% of the IPCs to their exact
run-time destinations. For the rest, i.e., 17 of the 171
target call-sites, endpoint values were found to be
runtime assigned values. Further, the values for m_type
field of the message, are extracted during static analysis
for 98% of the IPC sender side calls, which is used for
pruning the receive-loop of destination function(s) of
IPCs to retain only relevant code flow with respect to
particular instance of the function call.

Critical annotations that were used for static analysis
involved only the following:

1. Identities of source side functions of IPC
ipc_sendrec() and asynsend3()

2. Identity of the receive side function of IPC :
sef_receive_status()

3. Identities of those IPCs which were kept out
of scope of the analysis due to their non-
request like nature : ipc_send(), ipc_sendnb(),
ipc_senda(), ipc_notify ()

This, we note to be one of the successes of the static
analysis and the structure of the underlying system itself
as otherwise, it would have been necessary to manually
tag every IPC and find out its source and destinations
through manual code review and analysis. 52 IPC send
primitives found in our system were fused with different
variations of 12 IPC receive primitives through 171
possibilities - all of this through automatic procedures.

Results of our work are twofold: (1) Ability to
generate inter-component call-graphs for any entry point
of any constituent component and (2) per function,
global state modification details at various dependent
sets of components (callees) in the system. Following
we furnish the results.

Our work enables generating detailed function call-
graphs for every entry point of each of the servers
in the system. The figures 6 and 6 are a few exam-
ples of the generated call-graphs that are merged to
show component-wise dependencies. Former shows
dependencies among the Process Manager (pm), Virtual
Memory Manager (vim) and Virtual File System (vfs)
servers for do_fork call at pm. The latter shows the
dependencies among components involved during a
do_reboot() call at pm . Similarly, our LLVM pass and

mx_pm

mx_vm

Callgraph:mx_pm_do_fork [merged]

Figure 4: Component-wise dependencies during a
do_fork() at Process Manager server.

mx_pm

mx_vm

Callgraph:mx_pm_do_reboot [merged]

Figure 5: Component-wise dependencies during a
do_reboot() at Process Manager server.

the associated tool-sets that we implemented provide
facility to generate such and more detailed function
call-graphs for each of the functions found in the static
fused form of the distributed system. Due to the large
nature of the call-graphs and the paper space constraints,
we are unable to include any of the detailed call-graphs
generated.

Using LLVM based Data Structure Analysis pass,
as a separate round of static analysis pass on the call-
graphs, we retrieve per call information about which
of the global variables are modified and where. Table
summarizes the global values modified for a sample set
of functions found in our target system. It is this infor-
mation that helps us to elongate the recovery window
into the dependent component’s task loops depending on
the kind of inter-component interaction involved. This
means, there would be lesser cases in principle, where
the recovery runtime will have to decide to crash the

system for the greater good.

Using annotations we classify the global variables
into those that cause (1) only specific state change, (2)
requester-process only state change and (3) global state
change. Table includes the obtained results. As we
can see, the getter functions like getpid(), getrusage()
and gettime() perform none or negligible global state
changes (changes when found, are writes that happen on
print buffers).

To reflect on the various results that we saw above,
we note that majority of the interactions among the
constituent server components in our target system are
known during compilation time. This we attribute to
the fact that a distributed system built with division of
functionality, or “separation of concern” as a design
goal is bound to have compile-time associations among
components or subsets of components. Our work shows
that not only, tracking such dependencies at run-time is
not a necessity, but even having an automated system
in place to do so, with very minimal annotations in
place. Moreover, static dependency analysis can avoid
run-time costs as decisions can safely be hard-wired into
the checkpointing run-time for specific code-paths in the
system at different constituent components.

7 Related Work

Checkpoint-restart techniques have been studied in vari-
ous contexts. In the domain of standalone application re-
liability, ASSURE and REASSURE use existing pieces
of error handling code found in the application to re-
purpose them to act as recovery code. While their aim
is towards improving application software’s availability
in the face of unknown faults, our goal is towards re-
covering an underlying distributed system and maintain
its integrity and consistency even in the event of recov-
erable crashes. Cascading Rescue Points bring in a co-
ordination mechanism among dependent rescue points,
specifically them being part of different tiers of the tar-
get multi-tier application, to notify dependent compo-
nents to rollback as well. While the multi-tier architec-
ture targeted, resembles closely with the architecture of
our target distributed system, our approach differs in that
we enable the recovery runtime to have pre-loaded com-
ponent dependency information. Often, dependence as-
sociation among the tiers of such systems are known at
compile-time. In addition, the recovery runtime in our
work, would have prior-information about whether a cer-
tain failure is recoverable or not.

Kadav et al [4] discuss stateful recovery from driver
faults with even preserving device-side state. The ap-

User Process System server No. of modified global variables

System call Entry Point Entry Depends Request| Process | Global
module on local local change

change | change

getmcontext mx_pm_do_getmcontext() pm - 2 0 0

getrusage mx_pm_do_getrusage() pm - 2 0 2

getrusage mx_vm_do_getrusage() vm - 1 0 0

getpid

getgid, getuid | mx_pm_do_get() pm - 2 1 0

getepinfo mx_pm_do_getepinfo() pm - 1 1

exec mx_pm_do_exec() pm vis 3 1 10

fork mx_pm_do_fork() pm vm, vfs 4 1 45

Table 4: Result of DSA analysis showing number of global values modified for a few example pm and vm functions.

proach is request-based like in ours, where it works at the
granularity of a single entry point of driver code. How-
ever, the dependent elements involved at the point of fault
is known: the faulty driver code and the device. Hence
varying dependencies across different parts of the sys-
tem, found in our target system, is not observable in the
problem space addressed in this work.

Akeso or “Recovery Domains” [5] as discussed in
the earlier section, applies an organizing style on Linux
kernel, to orient recovery in per-request based fash-
ion. Nooks [6]takes a similar approach to isolate device
driver failures from the kernel of the operating system.
Both methods try to isolate the faults to certain region,
whereas this is already in place in our target system.
Also, our problem space spans across multiple isolated
components whereas Akeso and Nooks targets a mono-
lithic entity.

8 Conclusion

In this paper, we described a technique to obtain inter-
component dependencies in a distributed system through
static analysis. Our approach enabled applying existing
static analysis tools on a distributed system. In the con-
text of recovering from faults, we obtained global state
modification details to categorize the entry points of indi-
vidual components into recoverable and non-recoverable
ones.

Results show that the fusing technique that we ap-
plied was very effective on our target system in providing
pretty precise call-graphs that resemble the runtime com-
munications very much.

9 Future Work

The static analysis results help in determining almost
precise inter-component dependencies that arise during
runtime of the system as we have seen. Our future work

10

involves integrating the information with a memory
checkpointing introduced by Vogt et al. [7] based
run-time that we inject into the system through LLVM
based code transformations. The recovery strategies
and also checkpointing decisions can be aware of the
dependencies involved and either prepare for a possible
recovery or for a fail-and-stop outcome. It would be
move towards improving robustness and effectiveness of
local checkpointing scheme in a distributed system.

References

[1] BARGA, R., LOMET, D., PAPARIZOS, S., YU, H., AND CHAN-
DRASEKARAN, S. Persistent applications via automatic recovery.
In Database Engineering and Applications Symposium, 2003. Pro-
ceedings. Seventh International (2003), IEEE, pp. 258-267.

BRESsouD, T. C., AND SCHNEIDER, F. B. Hypervisor-based
fault tolerance. ACM Transactions on Computer Systems (TOCS)
14, 1 (1996), 80-107.

GIUFFRIDA, C., CAVALLARO, L., AND TANENBAUM, A. S. We
crashed, now what. In Proceedings of the 6th Workshop on Hot
Topics in System Dependability (Hot-Dep10) (2010).

KADAV, A., RENZELMANN, M. J., AND SWIFT, M. M. Fine-
grained fault tolerance using device checkpoints. In ACM
SIGARCH Computer Architecture News (2013), vol. 41, ACM,
pp. 473-484.

LENHARTH, A., ADVE, V. S., AND KING, S. T. Recovery do-
mains: an organizing principle for recoverable operating systems.
In ACM SIGARCH Computer Architecture News (2009), vol. 37,
ACM, pp. 49-60.

SWIFT, M. M., BERSHAD, B. N., AND LEVY, H. M. Improving
the reliability of commodity operating systems. In ACM SIGOPS
Operating Systems Review (2003), vol. 37, ACM, pp. 207-222.

VOGT, D., GIUFFRIDA, C., Bos, H., AND TANENBAUM, A. S.
Techniques for efficient in-memory checkpointing. In Proceedings
of the 9th Workshop on Hot Topics in Dependable Systems (2013),
ACM, p. 12.

ZAVOU, A., PORTOKALIDIS, G., AND KEROMYTIS, A. D. Self-
healing multitier architectures using cascading rescue points. In
Proceedings of the 28th Annual Computer Security Applications
Conference (2012), ACM, pp. 379-388.

[2]

[3]

[7]

[8]

