

Subatomic Physics

Introduction

Panos Christakoglou

Nikhef and Utrecht University

Nikhef

Briefly about me...

- Working at CERN from 2003 until 2010
- Senior scientist at Nikhef, Amsterdam,
- Assistant professor at UU, Institute of gravitational and subatomic physics (GRASP)

Where can you find me?

 S. Ornsteinlaboratorium
 Princetonplein 1, Office 259, 3584 CC Utrecht

Briefly about me...

Standard Model of FUNDAMENTAL PARTICLES AND INTERACTIONS

Teaching

bachelor)

(MSc)

6

6

Panos.Christakoglou@nikhef.nl

Subatomic physics (3rd year

Particle physics 2: QCD

Briefly about me...

Feel free to visit <u>my web site</u>

WELCOME RESEARCH PUBLICATIONS PRESENTATIONS TEACHING - ALUMNI - CONTACT

PANOS CHRISTAKOGLOU

Physics can be pretty simple...physicists can not

Personal details

• I was born in Athens on the 13th of November 1976.

but before going to the lecture...

let's fix the (not so) important things first...

- You pass the course if you score 5.5 (rounded to 6) and above in your final grade
- ✓ If your final grade is 5.49 and below that means you have failed
- The final grade is calculated considering the grade of the
 - Homework (HW_Grade in the next slides)
 - Exams (Exam_Grade in the next slides)
 - ☐ Mid-term exam
 - Final or retake exam

Final grade

```
if(Exam_Grade >= 5.5)
```

```
grade = max[Exam_Grade ,
(Exam_Grade*0.8 + HW_Grade*0.2)]
```


- This is a homework motivating scheme!
- No matter how many sets you handed in, the part of the grade related to homework is an average over all sets
 - 0
- You get rewarded if you hand in all your homework sets
- Homework can be handed in no later than one week from the relevant lecture i.e. today's homework set can be handed in no later than next Wednesday
 - Homework and questions about exercises can be sent to the SAP TAs
 - The TAs this semester are Iris Keizer (i.j.keizer@uu.nl), Edoardo Bellincioni (e.bellincioni@uu.nl) and Christos Pliatskas (c.pliatskasstylianidis@uu.nl)

Homework can account for 20% of the final grade

- You can get up to 2 bonus points
- This homework grade can work only in your favour!!!

- The course has a mid-term exam scheduled on the 10th week
- Friday 12.03.2021 between 14:00 and 17:00 on campus
- That Friday there is <u>neither Hoorcollege nor Werkcollege</u>
- ✓ The mid-term is compulsory and accounts for 40% of the grade of the exam

vr 12 mrt.	09:00 - 11:00	AGWF	Subatomaire fysica - Hoorcollege 01 CONCEPT	ANCELLED!!!
	14:00 - 17:00	NS - Werkcollege	Subatomaire fysica - Werkcollege 01 CONCEPT NS-369B	BBG - 219
		NS - Werkcollege	Subatomaire fysica - Werkcollege 02 CONCEPT NS-369B	BBG - 023
		NS - Werkcollege	Subatomaire fysica - Werkcollege 03 CONCEPT NS-369B	BBG - 017 BBG - 020
		NS - Werkcollege	Subatomaire fysica - Werkcollege 04 CONCEPT	MIN - 2.07 MIN - 2.08

On campus!!!

On campus!!!

week 15						
wo 14 apr.						
		_				
	15:15 - 18:15	NS - Tentamen	Subatomaire fysica - Eindresultaat	CONCEPT		
		-				
			On car	npus!!!		

- All exams contain closed and open questions
 - You <u>can not</u> bring with you
 - Your lecture notes
 - The main (see next slide) or any textbook
 - The solved exercise sheets from the Werkcollege
 - You can bring with you a calculator

- The Exam_Grade is calculated as the weighted average between the mid-term grade (40%) and the final exam (60%)
- If you fail the course you can participate in the retake
 - The grade of the retake takes the place of the grade of the final exam in the calculation and nothing else changes
- You carry over both the homework and the mid-term grades

Exam_Grade

Exam_Grade = mid-term_Grade*0.4 + final-exam_Grade*0.6

- The final grade is calculated considering the grade of the
 - Homework (HW_Grade) ==> 0 up to 20% of the total grade
 - Exams (Exam_Grade) ==> 100 down to 80% of the total grade
 - Mid-term exam ==> 40% of the exam grade
 - Final or retake exam ==> 60% of the exam grade
- Practical examples on how the grade is calculated <u>can be found here</u>
- I consider myself reasonable...a couple of hours per day
 - (Please) do not send mails about the final grade

Final grade

```
if(Exam_Grade >= 5.5)
```

```
grade = max[Exam_Grade ,
(Exam_Grade*0.8 + HW_Grade*0.2)]
```


Example A: A student hands in all or part of the exercise sheets and gets an average of 9.0 for this part. The same student scores 6.3 and 7.3 in the mid-term and final exams, respectively. The final grade is then the maximum between 0.8 · (0.4 · 6.3 + 0.6 · 7.3) + 0.2 · 9.0 = 7.32 → 7.5 (including homework) and 0.4 · 6.3 + 0.6 · 7.3 = 6.9 → 7.0. That means that in this case the final grade will be 7.5.

Example B: A student hands in all or part of the exercise sheets and gets an average of 6.0 for this part. The same student scores 8.5 and 8.1 in the mid-term and final exams, respectively. The final grade is then the maximum between 0.8 · (0.4 · 8.5 + 0.6 · 8.1) + 0.2 · 6.0 = 7.8 → 8.0 (including homework) and 0.4 · 8.5 + 0.6 · 8.1 = 8.26 → 8.5. That means that in this case the final grade will be 8.5.

 Example C: A student hands in all or part of the exercise sheets and gets an average of 8.0 for this part. The same student scores 4.5 and 6.0 in the mid-term and final exams, respectively. The weighted average of the two exams is 0.4 · 4.5 + 0.6 · 6.0 = 5.4 → 5.0, which is the final grade i.e. the student did not pass the course. In this case the student won't have the possibility to use the homework bonus which would have raised the grade to 0.8 · (0.4 · 4.5 + 0.6 · 6.0) + 0.2 · 8.0 = 5.92 → 6.0

Rooster

week 6						
wo 10 feb.	13:15 - 15:00	AGWF	Subatomaire fysica - Hoorcollege 01	CONCEPT	ONLINEONDERWIJS - ONLINE	
	15:15 - 17:00	NS - Werkcollege	Subatomaire fysica - Werkcollege 01 NS-369B	CONCEPT	ONLINEONDERWIJS - ONLINE	
		NS - Werkcollege	Subatomaire fysica - Werkcollege 02 NS-369B	CONCEPT	ONLINEONDERWIJS - ONLINE	
		NS - Werkcollege	Subatomaire fysica - Werkcollege 03 NS-369B	CONCEPT	ONLINEONDERWIJS - ONLINE	
		NS - Werkcollege	Subatomaire fysica - Werkcollege 04 NS-369B	CONCEPT	ONLINEONDERWIJS - ONLINE	
vr 12 feb.	09:00 - 11:00	AGWF	Subatomaire fysica - Hoorcollege 01	CONCEPT	ONLINEONDERWIJS - ONLINE	
	14:00 - 17:00	NS - Werkcollege	Subatomaire fysica - Werkcollege 01 NS-369B	CONCEPT	BBG - 219	
		NS - Werkcollege	Subatomaire fysica - Werkcollege 02 NS-369B	CONCEPT	BBG - 023	
		NS - Werkcollege	Subatomaire fysica - Werkcollege 03 NS-369B	CONCEPT	BBG - 017 BBG - 020	
		NS - Werkcollege	Subatomaire fysica - Werkcollege 04 NS-369B	CONCEPT	BBG - 083	
week 7						
wo 17 feb.	13:15 - 15:00	AGWF	Subatomaire fysica - Hoorcollege 01	CONCEPT	ONLINEONDERWIJS - ONLINE	
	15:15 - 17:00	NS - Werkcollege	Subatomaire fysica - Werkcollege 02 NS-369B	CONCEPT	ONLINEONDERWIJS - ONLINE	
		NS - Werkcollege	Subatomaire fysica - Werkcollege 03 NS-369B	CONCEPT	ONLINEONDERWIJS - ONLINE	
		NS - Werkcollege	Subatomaire fysica - Werkcollege 04 NS-369B	CONCEPT	ONLINEONDERWIJS - ONLINE	
vr 19 feb.	09:00 - 11:00	AGWF	Subatomaire fysica - Hoorcollege 01	CONCEPT	ONLINEONDERWIJS - ONLINE	

week 8					
wo 24 feb.	13:15 - 15:00	AGWF	Subatomaire fysica - Hoorcollege 01 CONCEPT	ONLINEONDERWIJS - ONLINE	
	15:15 - 17:00	NS - Werkcollege	Subatomaire fysica - Werkcollege 01 CONCEPT NS-369B	ONLINEONDERWIJS - ONLINE	
		NS - Werkcollege	Subatomaire fysica - Werkcollege 02 CONCEPT NS-369B	ONLINEONDERWIJS - ONLINE	
		NS - Werkcollege	Subatomaire fysica - Werkcollege 03 CONCEPT NS-369B	ONLINEONDERWIJS - ONLINE	
		NS - Werkcollege	Subatomaire fysica - Werkcollege 04 CONCEPT NS-369B	ONLINEONDERWIJS - ONLINE	
vr 26 feb.	09:00 - 11:00	AGWF	Subatomaire fysica - Hoorcollege 01 CONCEPT	ONLINEONDERWIJS - ONLINE	
	14:00 - 17:00	NS - Werkcollege	Subatomaire fysica - Werkcollege 01 CONCEPT NS-369B	BBG - 219	
		NS - Werkcollege	Subatomaire fysica - Werkcollege 02 CONCEPT NS-369B	BBG - 023	
		NS - Werkcollege	Subatomaire fysica - Werkcollege 03 CONCEPT NS-369B	BBG - 017 BBG - 020	
		NS - Werkcollege	Subatomaire fysica - Werkcollege 04 CONCEPT NS-369B	BBG - 083	

week 9						
wo 3 mrt.	13:15 - 15:00	AGWF	Subatomaire fysica - Hoorcollege 01	CONCEPT	ONLINEONDERWIJS - ONLINE	
	15:15 - 17:00	NS - Werkcollege	Subatomaire fysica - Werkcollege 01 NS-369B	CONCEPT	ONLINEONDERWIJS - ONLINE	
		NS - Werkcollege	Subatomaire fysica - Werkcollege 02 NS-369B	CONCEPT	ONLINEONDERWIJS - ONLINE	
		NS - Werkcollege	Subatomaire fysica - Werkcollege 03 NS-369B	CONCEPT	ONLINEONDERWIJS - ONLINE	
		NS - Werkcollege	Subatomaire fysica - Werkcollege 04 NS-369B	CONCEPT	ONLINEONDERWIJS - ONLINE	
vr 5 mrt.	09:00 - 11:00	AGWF	Subatomaire fysica - Hoorcollege 01	CONCEPT	ONLINEONDERWIJS - ONLINE	
	14:00 - 17:00	NS - Werkcollege	Subatomaire fysica - Werkcollege 01 NS-369B	CONCEPT	BBG - 219	
		NS - Werkcollege	Subatomaire fysica - Werkcollege 02 NS-369B	CONCEPT	BBG - 023	
		NS - Werkcollege	Subatomaire fysica - Werkcollege 03 NS-369B	CONCEPT	BBG - 017 BBG - 020	
		NS - Werkcollege	Subatomaire fysica - Werkcollege 04	CONCEPT	MIN - 2.07 MIN - 2.08	

week 10					
wo 10 mrt.	13:15 - 15:00	AGWF	Subatomaire fysica - Hoorcollege 01 CONCEPT	ONLINEONDERWIJS - ONLINE	
	15:15 - 17:00	NS - Werkcollege	Subatomaire fysica - Werkcollege 01 CONCEPT NS-369B	ONLINEONDERWIJS - ONLINE	
		NS - Werkcollege	Subatomaire fysica - Werkcollege 02 CONCEPT NS-369B	ONLINEONDERWIJS - ONLINE	
		NS - Werkcollege	Subatomaire fysica - Werkcollege 03 CONCEPT NS-369B	ONLINEONDERWIJS - ONLINE	
		NS - Werkcollege	Subatomaire fysica - Werkcollege 04 CONCEPT NS-369B	ONLINEONDERWIJS - ONLINE	
vr 12 mrt.	09:00 - 11:00	AGWF	Subatomaire fysica - Hoorcollege 01 CONCEPT	ONLINEONDERWIJS - ONLINE	
	14:00 - 17:00	NS - Werkcollege	Subatomaire fysica - Werkcollege 01 CONCEPT NS-369B	BBG - 219	
		NS - Werkcollege	Subatomaire fysica - Werkcollege 02 CONCEPT NS-369B	BBG - 023	
		NS - Werkcollege	Subatomaire fysica - Werkcollege 03 CONCEPT NS-369B	BBG - 017 BBG - 020	
		NS - Werkcollege	Subatomaire fysica - Werkcollege 04 CONCEPT	MIN - 2.07 MIN - 2.08	

week 11					
wo 17 mrt.	13:15 - 15:00	AGWF	Subatomaire fysica - Hoorcollege 01 CONCEPT	ONLINEONDERWIJS - ONLINE	
	15:15 - 17:00	NS - Werkcollege	Subatomaire fysica - Werkcollege 01 CONCEPT NS-369B	ONLINEONDERWIJS - ONLINE	
		NS - Werkcollege	Subatomaire fysica - Werkcollege 02 CONCEPT NS-369B	ONLINEONDERWIJS - ONLINE	
		NS - Werkcollege	Subatomaire fysica - Werkcollege 03 CONCEPT NS-369B	ONLINEONDERWIJS - ONLINE	
		NS - Werkcollege	Subatomaire fysica - Werkcollege 04 CONCEPT NS-369B	ONLINEONDERWIJS - ONLINE	
vr 19 mrt.	09:00 - 11:00	AGWF	Subatomaire fysica - Hoorcollege 01 CONCEPT	ONLINEONDERWIJS - ONLINE	
	14:00 - 17:00	NS - Werkcollege	Subatomaire fysica - Werkcollege 01 CONCEPT NS-369B	BBG - 219	
		NS - Werkcollege	Subatomaire fysica - Werkcollege 02 CONCEPT NS-369B	BBG - 023	
		NS - Werkcollege	Subatomaire fysica - Werkcollege 03 CONCEPT NS-369B	BBG - 017 BBG - 020	
		NS - Werkcollege	Subatomaire fysica - Werkcollege 04 CONCEPT	MIN - 2.07 MIN - 2.08	

Nikhef

Rooster

week 12						
wo 24 mrt.	13:15 - 15:00	AGWF	Subatomaire fysica - Hoorcollege 01	CONCEPT	ONLINEONDERWIJS - ONLINE	
	15:15 - 17:00	NS - Werkcollege	Subatomaire fysica - Werkcollege 01 NS-369B	CONCEPT	ONLINEONDERWIJS - ONLINE	
		NS - Werkcollege	Subatomaire fysica - Werkcollege 02 NS-369B	CONCEPT	ONLINEONDERWIJS - ONLINE	
		NS - Werkcollege	Subatomaire fysica - Werkcollege 03 NS-369B	CONCEPT	ONLINEONDERWIJS - ONLINE	
		NS - Werkcollege	Subatomaire fysica - Werkcollege 04 NS-369B	CONCEPT	ONLINEONDERWIJS - ONLINE	
vr 26 mrt.	09:00 - 11:00	AGWF	Subatomaire fysica - Hoorcollege 01	CONCEPT	ONLINEONDERWIJS - ONLINE	
	14:00 - 17:00	NS - Werkcollege	Subatomaire fysica - Werkcollege 01 NS-369B	CONCEPT	BBG - 219	
		NS - Werkcollege	Subatomaire fysica - Werkcollege 02 NS-369B	CONCEPT	BBG - 023	
		NS - Werkcollege	Subatomaire fysica - Werkcollege 03 NS-369B	CONCEPT	BBG - 017 BBG - 020	
		NS - Werkcollege	Subatomaire fysica - Werkcollege 04 NS-369B	CONCEPT	BBG - 083	
week 13						
wo 31 mrt.	13:15 - 15:00	AGWF	Subatomaire fysica - Hoorcollege 01	CONCEPT	ONLINEONDERWIJS - ONLINE	
	15:15 - 17:00	NS - Werkcollege	Subatomaire fysica - Werkcollege 02 NS-369B	CONCEPT	ONLINEONDERWIJS - ONLINE	
		NS - Werkcollege	Subatomaire fysica - Werkcollege 03 NS-369B	CONCEPT	ONLINEONDERWIJS - ONLINE	
		NS - Werkcollege	Subatomaire fysica - Werkcollege 04 NS-369B	CONCEPT	ONLINEONDERWIJS - ONLINE	
vr 2 apr.	09:00 - 11:00	AGWF	Subatomaire fysica - Hoorcollege 01	CONCEPT	ONLINEONDERWIJS - ONLINE	

Nikhef

Rooster

week 14						
wo 7 apr.	13:15 - 15:00	AGWF	Subatomaire fysica - Hoorcollege 01	CONCEPT	ONLINEONDERWIJS - ONLINE	
	15:15 - 17:00	NS - Werkcollege	Subatomaire fysica - Werkcollege 01 C	CONCEPT	ONLINEONDERWIJS - ONLINE	
		NS - Werkcollege	Subatomaire fysica - Werkcollege 02	CONCEPT	ONLINEONDERWIJS - ONLINE	
		NS - Werkcollege	Subatomaire fysica - Werkcollege 03 C NS-369B	CONCEPT	ONLINEONDERWIJS - ONLINE	
		NS - Werkcollege	Subatomaire fysica - Werkcollege 04 C	CONCEPT	ONLINEONDERWIJS - ONLINE	
vr 9 apr.	09:00 - 11:00	AGWF	Subatomaire fysica - Hoorcollege 01	CONCEPT	ONLINEONDERWIJS - ONLINE	
	14:00 - 17:00	NS - Werkcollege	Subatomaire fysica - Werkcollege 01	CONCEPT	BBG - 219	
		NS - Werkcollege	Subatomaire fysica - Werkcollege 02 C NS-369B	CONCEPT	BBG - 023	
		NS - Werkcollege	Subatomaire fysica - Werkcollege 03 C NS-369B	CONCEPT	BBG - 017 BBG - 020	
		NS - Werkcollege	Subatomaire fysica - Werkcollege 04 C	CONCEPT	BBG - 083	

week 15					
wo 14 apr.	13:15 - 15:00	AGWF	Subatomaire fysica - Hoorcollege 01 CONCEPT	ONLINEONDERWIJS - ONLINE	
	15:15 - 18:15	NS - Tentamen	Subatomaire fysica - Eindresultaat CONCEPT		

- You have questions or comments about the lectures?
 - I reserved two hours every Thursday, between 11:00 and 13:00 for those of you who have questions.

- Address: Leonard S. Ornsteinlaboratorium, Princetonplein 1, Room 259
- This way might be readjusted if we see that it's not practical e.g. everybody shows up in my office at the same time

You could also send a mail

- I promise to try to answer as fast as possible
 - Note my heavy teaching duties of this semester (i.e. teaching also the QCD course for the MSc program but in Amsterdam every Monday and Wednesday)
 - Also other responsibilities e.g. research (ALICE @ LHC), committees, PhD supervision,..., and maybe a life
- I will be more than glad to receive your comments, suggestions, criticism and ideas on how to improve the course!

Literature

In my lectures I also use some, limited material from these sources

Introduction to Special Relativity

SECOND EDITION

WOLFGANG RINDLER

Panos.Christakoglou@nikhef.nl

Reading material

- Distributed via blackboard (e.g. a couple of days) before each lecture
- Meant to give you time to skim through if you want and get familiar with the topic

Lectures

- As self contained as possible
 - Even if you should have been familiar with a given topic, you won't feel it
- Quite some time on the board (working out things...), but also lectures with slides
- I try to trigger your interest...so please don't hesitate to ask/participate/answer
- Expect some overlap with other courses...this is not to be considered negative

Tutorials

- 0
 - The follow the topic discussed during the lecture
- Homework should be handed in not later than one week from the assignment
- Communication: I send a summary of what is discussed after each lecture and give an indication of what the next lecture will be about + reading material

Material also posted on my web page

WELCOME RESEARCH PUBLICATIONS PRESENTATIONS TEACHING - ALUMNI - CONTACT

PANOS CHRISTAKOGLOU

Physics can be pretty simple...physicists can not

Subatomic Physics

Basic information

 The course is part of the curriculum of the physics department of UU

 It is given in the second semester to 3rd year bachelor students at UU

 The lectures are given in Utrecht every Wednesday from 13:00 to 19:00 and Friday from 11:00 to 17:00, including the exercise sessions.
 Prerequisites: Course on quantum mechanics

Textbook: "Introduction to Elementary Particles", D. Griffiths

Introduction to Elementary Particles

Grading scheme

- $\,\circ\,$ There is a mid-term exam usually scheduled on the 5th week.
- $\circ\,$ In addition, the course has significant homework that allows you to get max 2 bonus points
- The grade from the exams is calculated as the weighted average of the mid-term and the final exam with 40%-60% weight, respectively.
- The final grade is estimated as the maximum between the grade from the exams and the weighted average of the grade from the exams and the homework with 80%-20% weight, respectively.
- The grading scheme together with some basic examples on how this works practically can be found **here**.

• Reading material

Introduction

- Special relativity and 4-vectors
- Symmetries and conservation laws slides
- $\circ\,$ The particle zoo: types of particles and their properties slides
- Interaction of particles with matter slides
- Fermi's golden rule slides
- Introduction to gauge theories
- QED and the E/M interactions slides
- Elastic scattering, form factors, charge distributions
- $\,\circ\,$ QCD and the strong interactions slides
- GWS and the weak interactions
- The Higgs mechanism
- $\circ\,$ Nuclear and particle astrophysics slides

Bachelor level courses

Introduction to special relativity

- The lectures were given at Utrecht University
- During this series of lectures, students are introduced to the following:
 - Concepts of special relativity
 - $\circ\,$ Time dilation
 - Space contraction
 - Causality
 - Velocity transformations
 - Four-vector notation
 - $\circ\,$ Covariant and contravariant notations
 - Invariant quantities
 - Proper time
 - Energy-momentum four-vectors
 - Relativistic collisions
- Lectures on special relativity

Office hours - Every Tuesday between 11:00 and 13:00 @ Nikhef (Office N327)

- Every Thursday between 11:00 and 13:00 @UU (Leonard S. Orsteinlaboratorium - Office 259)

- ✓ Very important for all courses so please take some time and participate
- Criticism is always welcome but it's effective if it is constructive
 - Textbook is good enough?
 - Improvements in the way lectures are given?
 - Ideas for modifications in the tutorial sessions?
 - Exam questions can be adjusted?
- I can assure you that all comments are considered quite seriously

 The exam should have been somewhat different than last year. All old exams can be found on A-Eskwdraat, so it will be more challenging if different questions are asked.

Action from my side

Exam questions and in general its nature was changed significantly (you can blame the students of previous years)

Panos' lectures are very relaxed and they're just very nice to attend. I think Panos would make a great uncle.

Be aware of my sense of humour (or whatever that is) Action from my side

Be present at the lectures!!!

Standard Model of FUNDAMENTAL PARTICLES AND INTERACTIONS

The Standard Model summarizes the current knowledge in Particle Physics. It is the quantum theory that includes the theory of strong interactions (quantum chromodynamics or QCD) and the unified theory of weak and electromagnetic interactions (electroweak). Gravity is included on this chart because it is one of the fundamental interactions even though not part of the "Standard Model."

F	ERMI	ONS	spin = $1/2$, 3/2, 5/2	,
Leptor	15 spin	= 1/2	Quar	ks spin	= 1/2
Flavor	Mass GeV/c ²	Electric charge	Flavor	Approx. Mass GeV/c ²	Electri charge
$\nu_{e} \stackrel{\text{electron}}{}_{\text{neutrino}}$	<1×10 ⁻⁸	0	U up	0.003	2/3
e electron	0.000511	-1	d down	0.006	-1/3
$ u_{\mu}^{ ext{muon}}_{ ext{neutrino}}$	<0.0002	0	C charm	1.3	2/3
$oldsymbol{\mu}$ muon	0.106	-1	S strange	0.1	-1/3
$ u_{ au}^{ ext{ tau}}_{ ext{neutrino}}$	<0.02	0	t top	175	2/3
au tau	1.7771	-1	b bottom	4.3	-1/3

Spin is the intrinsic angular momentum of particles. Spin is given in units of \hbar , which is the quantum unit of angular momentum, where $\hbar = h/2\pi = 6.58 \times 10^{-25}$ GeV s = 1.05×10^{-34} J s.

Electric charges are given in units of the proton's charge. In SI units the electric charge of the proton is 1.60×10^{-19} coulombs.

The **energy** unit of particle physics is the electronvolt (eV), the energy gained by one electron in crossing a potential difference of one volt. **Masses** are given in GeV/c^2 (remember $E = mc^2$), where 1 GeV = $10^9 \text{ eV} = 1.60 \times 10^{-10}$ joule. The mass of the proton is $0.938 \text{ GeV}/c^2$ = 1.67×10⁻²⁷ kg

or th

 $n \rightarrow p e^- \overline{\nu}_o$

A neutron decays to a proton, an electron and an antineutrino via a virtual (mediating) W boson. This is neutron β decay.

e- 1

v_e

Baryons qqq and Antibaryons qqq Baryons are fermionic hadrons. There are about 120 types of baryons.									
Symbol Name Quark Content Electric Charge GeV/c ² Spin									
р	proton	uud	1	0.938	1/2				
p	anti- proton	ūūd	-1	0.938	1/2				
n	neutron	udd	0	0.940	1/2				
Λ	lambda	uds	0	1.116	1/2				
Ω-	omega	SSS	-1	1.672	3/2				

Matter and Antimatter

For every particle type there is a corresponding antiparticle type, denoted by a bar over the particle symbol (unless + or - charge is shown). Particle and antiparticle have identical mass and spin but opposite charges. Some electrically neutral bosons (e.g., Z^0 , γ , and $\eta_c = c\bar{c}$, but not $K^0 = d\bar{s}$) are their own antiparticles.

Figures

These diagrams are an artist's conception of physical processes. They are not exact and have no meaningful scale. Green shaded areas represent the cloud of gluons or the gluon field, and red lines the quark paths.

PROPERTIES OF THE INTERACTIONS

Interaction		Gravitational	Weak	Electromagnetic	Str	ong
			(Electroweak)		Fundamental	Residual
Acts on:		Mass – Energy	Flavor	Electric Charge	Color Charge	See Residual Strong Interaction Note
Particles experiencing:		All	Quarks, Leptons	Electrically charged	Quarks, Gluons	Hadrons
Particles mediating:		Graviton (not yet observed)	W+ W- Z ⁰	γ	Gluons	Mesons
th relative to electromag	10 ⁻¹⁸ m	10 ⁻⁴¹	0.8	1	25	Not applicable
o u quarks at:	3×10 ^{−17} m	10 ⁻⁴¹	10 ⁻⁴	1	60	to quarks
o protons in nucleus		10 ⁻³⁶	10 ⁻⁷	1	Not applicable to hadrons	20

An electron and positron antielectron) colliding at high energy can annihilate to produce B⁰ and B⁰ mesons a a virtual Z boson or a virtual photor

$p p \rightarrow Z^0 Z^0 + assorted hadrons$ 1111 Z⁰ hadrons

Two protons colliding at high energy can produce various hadrons plus very high mass particles such as Z bosons. Events such as this one are rare but can yield vital clues to the structure of matte

BOSONS

Unified Electroweak spin = 1			Strong (color)		
Name	Mass GeV/c ²	Electric charge	Name	Ma GeV	
γ photon	0	0	g gluon	0	
W-	80.4	-1	Color Charge		
W+	W+ 80.4 +		Each quark carries one o "strong charge," also cal		
Z ⁰	91,187	0	These charges have not		

force carriers spin = 0, 1, 2, ...

= 1	Strong (Strong (color) spin = 1			
ctric arge	Name	Mass GeV/c ²	Electric charge		
0	g gluon	0	0		
-1	Color Charge				

"color charge. a to do with the colors of visible light. There are eight possible types of color charge for gluons. Just as electri-

cally-charged particles interact by exchanging photons, in strong interactions color-charged par-ticles interact by exchanging gluons. Leptons, photons, and **W** and **Z** bosons have no strong interactions and hence no color charge.

Quarks Confined in Mesons and Baryons

One cannot isolate quarks and gluons; they are confined in color-neutral particles called **hadrons**. This confinement (binding) results from multiple exchanges of gluons among the color-charged constituents. As color-charged particles (quarks and gluons) move apart, the energy in the color-force field between them increases. This energy eventually is converted into addi-tional quark-antiquark pairs (see figure below). The quarks and antiquarks then combine into hadrons; these are the particles seen to emerge. Two types of hadrons have been observed in nature: mesons $q\bar{q}$ and baryons qqq.

Residual Strong Interaction

The strong binding of color-neutral protons and neutrons to form nuclei is due to residual strong interactions between their color-charged constituents. It is similar to the residual electrical interaction that binds electrically neutral atoms to form molecules. It can also be viewed as the exchange of mesons between the hadrons

Mesons qq̈́ Mesons are bosonic hadrons. There are about 140 types of mesons.					
Symbol	Name	Quark content	Electric charge	Mass GeV/c ²	Spin
π^+	pion	ud	+1	0.140	0
К-	kaon	sū	-1	0.494	0
ρ^+	rho	ud	+1	0.770	1
B ⁰	B-zero	db	0	5.279	0
η_{c}	eta-c	cī	0	2 .980	0

The Particle Adventure Visit the award-winning web feature The Particle Adventure at http://ParticleAdventure.org

This chart has been made possible by the generous support of: U.S. Department of Energy U.S. National Science Foundation Lawrence Berkeley National Laboratory Stanford Linear Accelerator Center American Physical Society, Division of Particles and Fields **ELE** INDUSTRIES, INC.

©2000 Contemporary Physics Education Project. CPEP is a non-profit organiza-tion of teachers, physicists, and educators. Send mail to: CPEP, MS 50-308, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720. For information on charts, text ©2000 materials, hands-on classroom activities, and workshops, see:

http://CPEPweb.org

ikhef	Dist	tance scales		
	~10fm = 10 ⁻¹⁴ r	n ~12742 Km	~2.5x10 ⁶ light	t years
10 ⁻³⁵ m		1.7m ~149.6	Sx10 ⁶ Km	
DISTANCES		Eart	h-Sun Androm	neda
Planck	Atom	s Human Earth	Light vear	
		size		
10-40	10-20	10 [°]	1020	m
	~20-250pm = 2	20-250x10 ⁻¹² m	~9.46x10 ¹² Km	
		~12742 Kr	n	

Fig. 1.1: A Galilean transformation between the two reference systems S and S'.

To Lorentz transformations...

And causality...

4-momentum

$$p^{\mu} = \begin{pmatrix} E/c \\ \mathbf{0} \end{pmatrix} = \begin{pmatrix} mc \\ \mathbf{0} \end{pmatrix}$$

$$p^{\mu} = \begin{pmatrix} E/c \\ \mathbf{P} \end{pmatrix}$$

Calculations for relativistic collisions...

$$(k+P_{0})^{\mu} = P_{1}^{\mu} \Leftrightarrow (k+P_{0})_{\mu} (k+P_{0})^{\mu} = P_{1\mu}P_{1}^{\mu}$$
$$\Leftrightarrow P_{0\mu}P_{0}^{\mu} + k_{\mu}k^{\mu} + 2k_{\mu}P_{0}^{\mu} = m'^{2}c^{2}$$
$$\Leftrightarrow m^{2}c^{2} + 0 + 2\frac{\omega}{c}m = m'^{2}c^{2}$$
$$\Leftrightarrow m'^{2} = m^{2} + 2\frac{kc}{c^{2}}m = m^{2}\left(1 + 2\frac{k}{mc}\right)$$
$$\Leftrightarrow m' = m\sqrt{1 + \frac{2k}{mc}}$$

- Symmetries and invariances are important notions in physics
 - They describe how a system remains unaltered under a given transformation
- We will focus on dynamical symmetries of motion and not on static symmetries e.g. as in crystals
- ✓ Noether's theorem connects symmetries with conservation laws
 - "Every symmetry in nature yields a conservation law and inversely every conservation law reveals an underlying symmetry
 - 0
- Momentum conservation: invariance under a translation in space
- Angular momentum conservation: invariance under rotation in space

Emmy Noether (1882 - 1935)

Groups

SO(3): rotations in 3D space	U(1): transformations in hypercharge space \rightarrow QED	SU(2): rotations in weak isospin space \rightarrow weak
	$(1)^{n} = q'$	$egin{aligned} \sigma_1 &= \sigma_x = egin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix} \ \sigma_2 &= \sigma_y = egin{pmatrix} 0 & -i \ i & 0 \end{pmatrix} \ \sigma_3 &= \sigma_z = egin{pmatrix} 1 & 0 \ 0 & -1 \end{pmatrix}. \end{aligned}$
	SU(3): rotations in colour space \rightarrow QCD	
$\lambda_1 =$	$= \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \lambda_2 = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \lambda_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \\ 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0\\0\\0 \end{pmatrix}$
λ_4 =	$egin{array}{cccccccccccccccccccccccccccccccccccc$	
λ_6 =	$= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \lambda_7 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix} \lambda_8 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0\\ 0\\ -2 \end{pmatrix}.$

Chapter 4: Particle zoo

Panos.Christakoglou@nikhef.nl

Periodic table of particle physics

Forces and mediators

Particle accelerators

Nik hef Particle detectors (pp collisions = small number of particles)

(transition rate) =
$$\frac{2\pi}{\hbar} |M_{if}|^2 \times (\text{phase space factor})$$

Chapter 7: Introduction to gauge theories

Spin-1 field $\mathscr{L}_{Proca} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \frac{1}{2}M^2A_{\mu}A^{\mu}$

 $(\Box + M^2) A^{\mu} - \partial^{\mu} (\partial_{\nu} A^{\nu}) = 0$

Symmetries and gauge transformations (strong)

Nikhef

Quantum ChromoDynamics (QCD)

Nikhef

Symmetries and gauge tranformations (Weak)

Weak interactions (Glashow-Weinberg-Salam theory)

Neutral current

Charged current

Quantum ElectroDynamics (QED)

The Nobel Prize in Physics 1965 Sin-Itiro Tomonaga, Julian Schwinger, Richard P. Feynman

Share this: 🕇 📴 😏 🕂 🔤 🛛 29

The Nobel Prize in Physics 1965

Sin-Itiro Tomonaga Prize share: 1/3

Julian Schwinger Prize share: 1/3

Richard P. Feynman Prize share: 1/3

The Nobel Prize in Physics 1965 was awarded jointly to Sin-Itiro Tomonaga, Julian Schwinger and Richard P. Feynman "for their fundamental work in quantum electrodynamics, with deep-ploughing consequences for the physics of elementary particles".

Photos: Copyright © The Nobel Foundation

Electroweak Unification (GSW)

The Nobel Prize in Physics 1979 Sheldon Glashow, Abdus Salam, Steven Weinberg

Share this: f 📴 😏 🛨 🔤 🛛 35

The Nobel Prize in Physics 1979

Sheldon Lee Glashow Prize share: 1/3

Abdus Salam Prize share: 1/3

The Nobel Prize in Physics 1979 was awarded jointly to Sheldon Lee Glashow, Abdus Salam and Steven Weinberg "for their contributions to the theory of the unified weak and electromagnetic interaction between elementary particles, including, inter alia, the prediction of the weak neutral current".

Prize share: 1/3

Photos: Copyright © The Nobel Foundation

Quantum ChromoDynamics (QCD)

The Nobel Prize in Physics 2004 David J. Gross, H. David Politzer, Frank Wilczek

Share this: f 📴 😏 🕂 🖂 26

The Nobel Prize in Physics 2004

David J. Gross Prize share: 1/3

H. David Politzer Prize share: 1/3

Frank Wilczek Prize share: 1/3

The Nobel Prize in Physics 2004 was awarded jointly to David J. Gross, H. David Politzer and Frank Wilczek "for the discovery of asymptotic freedom in the theory of the strong interaction".

Photos: Copyright © The Nobel Foundation

The Higgs mechanism

The Nobel Prize in Physics 2013 François Englert, Peter Higgs

Share this: f 📴 🗾 🛨 🖂 2K

The Nobel Prize in Physics 2013

Photo: A. Mahmoud Peter W. Higgs Prize share: 1/2

The Nobel Prize in Physics 2013 was awarded jointly to François Englert and Peter W. Higgs *"for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at CERN's Large Hadron Collider"*

Photos: Copyright © The Nobel Foundation

The Standard Model Lagrangian (simplified...)

Field description F_{µv} Photons, gluons Maxwell equations, Eand B-fields, self interactions

<u>Particles ψ</u> normal matter, particles and antiparticles, quarks, leptons

Interactions D interactions between particles and fields

The Higgs discovery

Dates	Wednesday	Friday	
Week 6	Special relativity & 4-vectors	Special relativity & 4-vectors	
Week 7	Lagrangian formalism, transformations, conserved quantities	Lagrangian formalism, transformations, conserved quantities	
Week 8	Continuous/discrete transformations, global/local gauge, C, P transformations	Elementary particles, mass. charge, magnetic dipole moment, angular momentum, CG	
Week 9	Quark model, colour, conservation laws	accelerators, particles interaction with matter, detectors	
Week 10 (mid-term)	Golden rule	Mid-term	
Week 11	Gauge theories	QED	
Week 12 QED, elastic scattering, form fact charge distributions		QCD	
Week 13	QCD, inelastic scattering, DIS, quark	Weak	
Week 14	Weak & Higgs	BONUS	
Week 15 (Final exam)	Final exam		

Be there!!!

- Last lecture will be about career prospects beyond the bachelor level
 - Master programs offered in UU
 - So Focus on the "Experimental Physics" curriculum
- Research opportunities e.g. @ Nikhef
- Q&A about the life of a PhD student
- Q&A about the life in academia
 - Statistics from alumni

Backup

