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How to make AVs that can successfully coexist with humans?
- By developing high-fidelity models of human road user behaviour

What kinds of models?
- Combination of data-driven and neurocognitive models



To what extent are these situations examples of
meaningful human control of automation?

e A road user effectively interacting with an AV,
transparently affecting the behaviour of the
AV with their own behaviour

* An engineer studying and adjusting how an
AV will interact with humans, using computer
simulations across wide ranges of scenarios



AV deployment: two main risks UNIVERSITP SELEEDS

« Human frustration subtleties of local interactions  near-crashes
* Human injury crashes

™ Waymo self-driving cars face ha: X ‘\L:/ an Uber's Self-Driving Car Didn't Kr X
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A slashed tire, a pointed gun, bullies on o .
the road: Why do Waymo self-driving Uber’s Self-Drlvmg Car Didn’t Know

vans get so much hate? Pedestrians Could Jaywalk

The National Transportation Safety Board releases hundreds of pages related to the
2018 crash in Tempe, Arizona, that killed Elaine Herzberg.

Ryan Randazzo | Arizona Republic
Published 4:05 PM EST Dec 14, 2018
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Data-driven models Vi
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 Achieve realistic-looking routine traffic
- - memain i et (g VoSl processing
» Challenges in relation to "main risks": Bad By B
« Human behaviour in (near-)crashes
Very rare in any real-traffic dataset

« Human behaviour in local interactions
How do we know models are capturing -
the important subtleties?

- Complement with Insight into how mechanisms generalise
white-box neurocognitive odet Controlled
models experiment
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Framework for routine and (near-)crash driving umvms.wou

EEDS

Evidence accumulation (Cook and Maunsell, 2002)

MT VIP

I

a2 T 700 'Y A

Motor prep. = OO' Motor prep. = A

| /
Output of / ff 694 264 ms o 196ms A
leaky [~~~ F P ol === === Monkey ,30 qgk
r

35

&

int Ji, bA.ﬁwV"'“‘Aqﬁ RT (mS)
oy || T S f !A‘ 2
» S N S r?=096 r<=0.98 o _ere
e Falss alarm . Motor primitives
0 3007 @ ‘A
0 Time (ms) 600 300 700 300 700
.. Predicted RT from population response (ms)
Perceptual heuristics
(Land and e
Horwood, 1995; TRE
Wann and Wilkie, T .
2004; Salvucciand .~ N
Gray, 2004) A
; SO RN O | (Flash and
= 7 N /T ' Henis, 1991)

o = kO + k0, + k0,

2020-06-17




Framework for routine and (near-)crash driving . .versvor.

EEDS

Routine driving
Closed-loop

Short delays

Well-adjusted control

Near-crash driving

Open-loop

Long, random delays

Under- and overreactions
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... Explains routine and (near-)crash braking BNIERSTIG SE TR
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... Explains routine and (near-)crash braking BNIERSTIG SE TR
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Using EEG to peek into the decision process

(unpublished data removed)

ﬁ
i o]

2020-06-17 Gustav Markkula, AiTech Agora UNIVERSITY OF LEEDS



Generalising to road crossing interactions

(Giles et al., 2019) Constant speed Decel to a stop
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Generalising to road crossing interactions

. Sensory Perceptual Action
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Generalising to road crossing interactions

ifi

(Giles et al., 2019) Constant speed Decel to a stop
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Using models to optimise AV behaviour

Braking as if to stop exactly at crossing Braking just slightly harder
(1.7 m/s?) (2.2 m/s?)
t=00s 50 simulations t=00s 50 simulations
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Model code released:
https://osf.io/49awh/
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https://osf.io/49awh/

But there is lots more to interactions in traffic...

@) HJ Space-sharing conflict: An observable situation from which it can be reasonably inferred
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(Markkula et al., 2020)
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(CHP) trajectory to yield to HAV
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Fig. 7: Pedestrian behaviour preference

« Complication: human behaviour is
often not game-theoretically optimal

« And humans value strange things
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Other important areas for X R O A
further model development IR =~ o~ ot 00 WO

Human...

e ... recognition of actions/
. . (Pezzulo et al., 2013) | &
Intentions o=

* ... COmMmunication
e ... attention/gaze allocation

Overall: contemporary

computational cognitive R
(neuro)science sort of provides Vi
the needed components... (Friston et al., 2012)
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Towards a neurocognitive modelling framework

Locomotor Conflict
goals expectations
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Own
affordances

Perceptual decisions
(working memory / situational awareness)
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intentions
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Action decisions

Sensory input Overt actions
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COMMOTIONS
Computational Models of Traffic Interactions
for Testing of Automated Vehicles

« 2019-2023, £1.4M UK project £

« More complete
neurocognitive models of
interactions

* Investigate complementarity

with data-driven models "Green paper” inviting input:

https://osf.io/vbcaz
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https://osf.io/vbcaz

Safe and acceptable AVs require complementing data-driven
models of human behaviour with neurocognitive models

We (and others) are working on this challenge
- input and discussion more than welcome!
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Thanks!

g.markkula@leeds.ac.uk
@markkula

"Green paper” inviting input:
https://osf.io/vbcaz
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