

Interleaved Prange: A New Generic Decoder for Interleaved Codes

PQCrypto 2022

A. Porwal, L. Holzbaur, H. Liu, J. Renner, A. Wachter-Zeh, V. Weger

Technical University of Munich

Outline

1. Introduction

2. Generic Decoding of Interleaved Codes

3. Comparison

4. Conclusion

Outline

1. Introduction

2. Generic Decoding of Interleaved Codes

3. Comparisor

4. Conclusion

- McEliece system is a very promising candidate for post-quantum cryptography
- major drawback: large key size
- question: how can we do better?

Introduction

potential solution: increase the error correction capability

key (code) size \uparrow \longrightarrow error correction capability \uparrow \longrightarrow security level \uparrow

,

Introduction

- potential solution: increase the error correction capability
 - $\text{key (code) size} \uparrow \qquad \longrightarrow \qquad \text{error correction capability} \uparrow \qquad \longrightarrow \qquad \text{security level} \uparrow$
- for example: use list decoding, **interleaving**, etc.

• an ℓ -interleaved codeword is a concatenation of ℓ codewords from a constituent code C

_			c_1			
			c_2			
•	•	•	•	•	•	•
. –			c_ℓ			

 an ℓ-interleaved codeword is a concatenation of ℓ codewords from a constituent code C

thus an ℓ-interleaved code is

$$C_{\ell} = \left\{ \begin{bmatrix} c_1 \\ \vdots \\ c_{\ell} \end{bmatrix} : c_i \in C \right\}$$

- interleaved decoders can correct up to t column errors
- here $\frac{d_{\min}-1}{2} < t < d_{\min}$ and typically t is close to d_{\min}

- interleaved decoders can correct up to t column errors
- here $\frac{d_{\min}-1}{2} < t < d_{\min}$ and typically t is close to d_{\min}
- in particular: such decoders exist for interleaved Goppa codes

Interleaved Cryptosystems¹

- Bob encodes his message matrix $\mathbf{M} \in \mathbb{F}_q^{\ell imes k}$ to get $\mathbf{M} \cdot \mathbf{G} = \mathbf{C} \in \mathbb{F}_q^{\ell imes n}$ (interleaved codeword)
- then the ciphertext is $\mathbf{R} = \mathbf{C} + \mathbf{E} \in \mathbb{F}_q^{\ell imes n}$ where \mathbf{E} has column weight t
- Alice uses an interleaved Goppa decoder to decode R

¹ Elleuch, Wachter-Zeh, and Zeh, "A Public-Key Cryptosystem from Interleaved Goppa Codes".

SL [bits]	q	m	Method	r	n	k	$t \ (\ell, t_{\sf pub}, d_{ m E})$	Rate	Key size [Bytes]
128	2	12	U.D.	70	2800	1960	70	0.70	205 800
	3	8	U.D.	100	2420	1620	75	0.67	256 763
			Int.		2130	1330	(7, 131, 84)	0.62	210 800
	4	6	U.D.	90	2150	1610	60	0.75	217 350
	4		Int.		1580	1040	(7, 105, 76)	0.66	$140 \ 400$
	5	5	U.D.	100	1800	1380	62	0.74	200 266
			Int.		1290	790	(7, 109, 84)	0.61	114 646
256	2	13	U.D.	120	6740	5180	120	0.77	1 010 100
	3	8	U.D.	180	5100	3660	135	0.72	$1\ 044\ 173$
			Int.		4300	2860	(7, 236, 156)	0.67	815 939
	4	7	U.D.	240	4880	3200	160	0.66	1 344 000
			Int.		3760	2080	(7, 280, 208)	0.55	873 600
	5	6	U.D.	200	4690	3490	125	0.74	1 215 530
			Int.	200	3200	2000	(7, 218, 171)	0.63	$696\ 578$
	_								

Table 1²

²Holzbaur et al., "On Decoding and Applications of Interleaved Goppa Codes".

SL [bits]	q	m	Method	r	n	k	$t \ (\ell, t_{\sf pub}, d_{ m E})$	Rate	Key size [Bytes]
	2	12	U.D.	70	2800	1960	70	0.70	205 800
128	3	8	U.D.	100	2420	1620	75	0.67	256 763
			Int.		2130	1330	(7, 131, 84)	0.62	$210 \ 800$
	4	6	U.D.	90	2150	1610	60	0.75	$217\ 350$
	4	U	Int.		1580	1040	(7, 105, 76)	0.66	$140 \ 400$
	5	5	U.D.	100	1800	1380	62	0.74	200 266
			Int.		1290	790	(7, 109, 84)	0.61	114 646
256	2	13	U.D.	120	6740	5180	120	0.77	1 010 100
	3	8	U.D.	180	5100	3660	135	0.72	$1\ 044\ 173$
			Int.	100	4300	2860	(7, 236, 156)	0.67	815 939
	4	7	U.D.	240	4880	3200	160	0.66	1 344 000
			Int.		3760	2080	(7, 280, 208)	0.55	873 600
	5	6	U.D.	200	4690	3490	125	0.74	$1\ 215\ 530$
			Int.		3200	2000	(7, 218, 171)	0.63	696 578

Table 1²

²Holzbaur et al., "On Decoding and Applications of Interleaved Goppa Codes".

Hard Problem

Problem (Interleaved Decoding)

Given: $\mathbf{G} \in \mathbb{F}_q^{k \times n}$, $\mathbf{R} \in \mathbb{F}_q^{\ell \times n}$, and $t \in \mathbb{N}$

Find: is there an $\mathbf{E} \in \mathbb{F}_q^{\ell \times n}$ of column weight at most t, such that each row of $\mathbf{R} - \mathbf{E}$ is in $\langle \mathbf{G} \rangle$?

• understand generic decoding of interleaved codes

³Metzner and Kapturowski, "A General Decoding Technique Applicable to Replicated File Disagreement Location and Concatenated Code Decoding".

- understand generic decoding of interleaved codes
 - ► important to assess security of interleaved cryptosystems

³Metzner and Kapturowski, "A General Decoding Technique Applicable to Replicated File Disagreement Location and Concatenated Code Decoding".

- understand generic decoding of interleaved codes
 - ► important to assess security of interleaved cryptosystems
 - ▶ important also from a coding theoretic perspective: for $\ell \geq t$ (and full rank **E**) there are efficient decoders for arbitrary linear constituent codes³, but not true when $\ell \ll t$

³Metzner and Kapturowski, "A General Decoding Technique Applicable to Replicated File Disagreement Location and Concatenated Code Decoding".

- understand generic decoding of interleaved codes (when $\ell \ll t$)
 - ► important to assess security of interleaved cryptosystems
 - important also from a coding theoretic perspective: for $\ell \geq t$ (and full rank **E**) there are efficient decoders for arbitrary linear constituent codes³, but not true when $\ell \ll t$

³Metzner and Kapturowski, "A General Decoding Technique Applicable to Replicated File Disagreement Location and Concatenated Code Decoding".

- understand generic decoding of interleaved codes (when $\ell \ll t$)
 - important to assess security of interleaved cryptosystems
 - ▶ important also from a coding theoretic perspective: for $\ell \geq t$ (and full rank **E**) there are efficient decoders for arbitrary linear constituent codes³, but not true when $\ell \ll t$
- propose a new such generic decoder: interleaved Prange

³Metzner and Kapturowski, "A General Decoding Technique Applicable to Replicated File Disagreement Location and Concatenated Code Decoding".

Outline

1. Introduction

2. Generic Decoding of Interleaved Codes

3. Comparisor

Conclusion

Generic Decoding of Interleaved Codes

Three algorithms:

- SD-based: reduce the problem to the classical syndrome decoding (SD) problem
- CF-based: reduce the problem to a low-weight codeword finding (CF) problem
- a new algorithm: Interleaved Prange

Generic Decoding of Interleaved Codes

Reminder: our set-up is

$$\mathbf{E} = \begin{bmatrix} \frac{e_1}{e_2} & \frac{e_2}{e_2} \\ \vdots & \vdots & \vdots & \vdots \\ e_\ell & \frac{e_\ell}{e_\ell} \end{bmatrix}$$
 the error matrix which has only t non-zero columns

and the received word (the ciphertext) is $\mathbf{R} = \mathbf{C} + \mathbf{E}$

Generic Decoding of Interleaved Codes

Reminder: our set-up is

$$\mathbf{E} = \begin{bmatrix} ----- & e_1 & ----- \\ ----- & e_2 & ----- \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ ----- & e_\ell & ----- \end{bmatrix}$$
 the error matrix which has only t non-zero columns

and the received word (the ciphertext) is $\mathbf{R} = \mathbf{C} + \mathbf{E}$

We will be content with finding just a subset of the original t error positions

SD-based Algorithms

- pick non-zero vector from $\langle \mathbf{R} \rangle$ at random and solve the resulting SD problem
- most straightforward approach

SD-based Algorithms

- pick non-zero vector from (R) at random and solve the resulting SD problem
- most straightforward approach
- information set decoding (ISD) attacks are one of the best known algorithms to solve the SD problem
- \bullet hence we call this approach Random (ISD) where (ISD) can be Prange, Stern, etc.

SD-based Algorithms: Random Prange

• for Random Prange, the success probability is

$$\sum_{v=0}^{t} \frac{\binom{t}{v}(q-1)^{v}}{q^{t}} \binom{n-k}{v} \binom{n}{v}^{-1}$$

• similarly, we can derive a expression for Random Stern

CF-based Algorithms

- note that the code generated by $G' \coloneqq \begin{bmatrix} G \\ R \end{bmatrix}$ is the same as the code generated by $\begin{bmatrix} G \\ E \end{bmatrix}$.
- thus the problem reduces to finding a low-weight codeword in the code $\langle \mathbf{G}' \rangle$ of dimension $k + \ell$.
- employ a CF-based algorithm (such as Stern's algorithm) to solve this problem

Interleaved Prange

is $\mathbf{G}_{\mathcal{T}}'$ rank-deficient?

Interleaved Prange

High-level description:

- 1. let $\mathbf{G}' \coloneqq \begin{bmatrix} \mathbf{G} \\ \mathbf{R} \end{bmatrix}$
- 2. pick a set of $\mathcal J$ of column positions of size $k+\ell$
- 3. check if rank of $\mathbf{G}_{\mathcal{T}}'$ is less than $k+\ell$
- 4. if yes, search for an error-free vector in $\langle {\bf R} \rangle$ in the left null space of ${\bf G}_{\mathcal J}'$

Interleaved Prange

The work factor of interleaved Prange is $\frac{C}{P}$ where

$$P = \sum_{i=0}^{\min\{t,k+\ell\}} \frac{\binom{n-t}{k+\ell-i}\binom{t}{i}}{\binom{n}{k+\ell}} \cdot \left(1 - \prod_{j=0}^{\ell-1} (1 - q^{j-i})\right)$$

is the success probability

$$C \sim (k+\ell)^3 + 16 \prod_{j=0}^{k-1} (1-q^{j-k}) \sum_{p=1}^{\ell} q^{-p^2+p} (k+\ell) (n-k-\ell)$$

is the cost of one iteration

Outline

1. Introduction

2. Generic Decoding of Interleaved Codes

3. Comparison

4. Conclusion

Comparison

- we will do an asymptotic comparison
- some considerations for interleaved cryptosytems:
 - ▶ the greater the interleaving order ℓ , the closer t can be to d_{min}
 - ${\blacktriangleright}$ but since the case $\ell \geq t$ can be efficiently decoded, we still want $\ell \ll t$

Asymptotic Cost for q = 7 and $\ell = t/20$

Asymptotic Cost for q = 7 and $\ell = t/5$

ℓ	Algorithm	e(R*, q)	R*
	Interleaved Prange (upper bound)	0.0441	0.631
t/5	CF using Stern	0.0522	0.381
t/10	Interleaved Prange (upper bound)	0.06471	0.565
1/10	CF using Stern	0.06114	0.436
t/20	Interleaved Prange (upper bound)	0.07961	0.524
	CF using Stern	0.06777	0.455

Maximum asymptotic cost $e(R^*, q = 7)$ with maximum at rate $R = R^*$

Outline

1. Introduction

2. Generic Decoding of Interleaved Codes

3. Comparisor

4. Conclusion

Conclusion

We looked at:

- how interleaved cryptosystems can be promising variant for code-based crypto
- three different algorithms for generic decoding of interleaved codes
- a new algorithm: Interleaved Prange

Interleaved Prange:

- asymptotically beats CF-based Stern in certain paramater ranges
- technique might also be applicable to decoders other than Prange