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Introduction

• McEliece system is a very promising candidate for post-quantum cryptography

• major drawback: large key size

• question: how can we do better?
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Introduction

• potential solution: increase the error correction capability

key (code) size
x −→ error correction capability

x −→ security level
x

• for example: use list decoding, interleaving, etc.
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Interleaved Codes

• an ℓ-interleaved codeword is a concatenation of ℓ codewords from

a constituent code C 

-------------- c1 --------------
-------------- c2 --------------
...
...
...
...
...
...
...

...
...
...
...
...
...
...

-------------- cℓ --------------



• thus an ℓ-interleaved code is

Cℓ =



c1
...

cℓ

 : ci ∈ C


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Interleaved Codes

n

`

• interleaved decoders can correct up to t column errors

• here dmin−1
2 < t < dmin and typically t is close to dmin

• in particular: such decoders exist for interleaved Goppa codes
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Interleaved Cryptosystems1

• Bob encodes his message matrix M ∈ Fℓ×k
q to get M · G = C ∈ Fℓ×n

q (interleaved codeword)

• then the ciphertext is R = C + E ∈ Fℓ×n
q where E has column weight t

• Alice uses an interleaved Goppa decoder to decode R

1Elleuch, Wachter-Zeh, and Zeh, “A Public-Key Cryptosystem from Interleaved Goppa Codes”.
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Interleaved Cryptosystems

Table 12

2Holzbaur et al., “On Decoding and Applications of Interleaved Goppa Codes”.
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Interleaved Cryptosystems

Table 12

2Holzbaur et al., “On Decoding and Applications of Interleaved Goppa Codes”.
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Hard Problem

Problem (Interleaved Decoding)
Given: G ∈ Fk×n

q , R ∈ Fℓ×n
q , and t ∈ N

Find: is there an E ∈ Fℓ×n
q of column weight at most t, such that each row of R − E is in ⟨G⟩?
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Goals

• understand generic decoding of interleaved codes

(when ℓ ≪ t)
▶ important to assess security of interleaved cryptosystems
▶ important also from a coding theoretic perspective:

for ℓ ≥ t (and full rank E) there are efficient decoders for arbitrary linear constituent codes3,
but not true when ℓ ≪ t

• propose a new such generic decoder: interleaved Prange

3Metzner and Kapturowski, “A General Decoding Technique Applicable to Replicated File Disagreement Location and
Concatenated Code Decoding”.
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Generic Decoding of Interleaved Codes

Three algorithms:

• SD-based: reduce the problem to the classical syndrome decoding (SD) problem

• CF-based: reduce the problem to a low-weight codeword finding (CF) problem

• a new algorithm: Interleaved Prange
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Generic Decoding of Interleaved Codes

Reminder: our set-up is

C =


-------------- c1 --------------
-------------- c2 --------------
...
...
...
...
...
...
...

-------------- cℓ --------------

 the (interleaved) codeword

E =


-------------- e1 --------------
-------------- e2 --------------
...
...
...
...
...
...
...

-------------- eℓ --------------

 the error matrix which has only t non-zero columns

and the received word (the ciphertext) is R = C + E

We will be content with finding just a subset of the original t error positions
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SD-based Algorithms

• pick non-zero vector from ⟨R⟩ at random and solve the resulting SD problem

• most straightforward approach

• information set decoding (ISD) attacks are one of the best known algorithms to solve the SD

problem

• hence we call this approach Random ⟨ISD⟩ where ⟨ISD⟩ can be Prange, Stern, etc.
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SD-based Algorithms: Random Prange

• for Random Prange, the success probability is

t∑
v=0

( t
v)(q − 1)v

qt

(
n − k

v

)(
n
v

)−1

• similarly, we can derive a expression for Random Stern

16



CF-based Algorithms

• note that the code generated by G′ B
[

G
R

]
is the same as the code generated by

[
G
E

]
.

• thus the problem reduces to finding a low-weight codeword in the code ⟨G′⟩ of dimension k + ℓ.

• employ a CF-based algorithm (such as Stern’s algorithm) to solve this problem

17



Interleaved Prange

R

G
G′

J

k + `

k + `

t

is G′
J

rank-deficient?
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Interleaved Prange

High-level description:

1. let G′ B
[
G
R

]
2. pick a set of J of column positions of size k + ℓ

3. check if rank of G′
J

is less than k + ℓ

4. if yes, search for an error-free vector in ⟨R⟩ in the left null space of G′
J
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Interleaved Prange

The work factor of interleaved Prange is C
P where

P =
min{t ,k+ℓ}∑

i=0

( n−t
k+ℓ−i)(

t
i)

( n
k+ℓ)

·

1 − ℓ−1∏
j=0

(1 − qj−i)



is the success probability

C ∼ (k + ℓ)3 + 16
k−1∏
j=0

(1 − qj−k )
ℓ∑

p=1

q−p2+p(k + ℓ)(n − k − ℓ)

is the cost of one iteration
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Comparison

• we will do an asymptotic comparison
• some considerations for interleaved cryptosytems:
▶ the greater the interleaving order ℓ, the closer t can be to dmin
▶ but since the case ℓ ≥ t can be efficiently decoded, we still want ℓ ≪ t
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Comparison
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Comparison

ℓ Algorithm e(R∗, q) R∗

t/5

Interleaved Prange (upper bound) 0.0441 0.631

CF using Stern 0.0522 0.381

t/10
Interleaved Prange (upper bound) 0.06471 0.565

CF using Stern 0.06114 0.436

t/20
Interleaved Prange (upper bound) 0.07961 0.524

CF using Stern 0.06777 0.455

Maximum asymptotic cost e(R∗, q = 7) with maximum at rate R = R∗
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Conclusion

We looked at:

• how interleaved cryptosystems can be promising variant for code-based crypto

• three different algorithms for generic decoding of interleaved codes

• a new algorithm: Interleaved Prange

Interleaved Prange:

• asymptotically beats CF-based Stern in certain paramater ranges

• technique might also be applicable to decoders other than Prange
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