Optimization algorithms 00000000 Sparsity exploitation 0000000

Numerical results

Conclusions

An efficient non-condensed approach for model predictive control

Nilay Saraf

Advisor: Prof. Alberto Bemporad

oCPS Fall School, Eindhoven October 30, 2019

Optimizing Cyber Physical Systems

This research has received funding from the European Union's Horizon 2020 Framework Programme for Research and Innovation under grant agreement no. 674875.

Problem formulation	Optimization algorithms	Sparsity exploitation	Numerical results 000	Conclusions
Outline				

- Optimization problem formulation
- Equality constraint elimination and proposed nonlinear least-squares approach with bounded variables
- Bounded-variable least-squares (BVLS) solver
- Problem sparsity and matrix abstraction (build-free MPC)
- Numerically-stable sparse recursive QR factorization
- Numerical results

Optimization algorithms

Sparsity exploitation

Numerical results

Conclusions

Discrete-time nonlinear model

General multivariable nonlinear (NL) prediction model

 $\mathcal{M}(Y_k, U_k, S_k) = \mathbf{0}$

- Past inputs $U_k = (u_{k-n_{\mathrm{b}}}, \dots, u_{k-1}), u_k \in \mathbb{R}^{n_u}$
- Past outputs $Y_k = (y_{k-n_{\mathbf{a}}}, \dots, y_k)$, $y_k \in \mathbb{R}^{n_y}$
- Measured exogenous signals $S_k = (s_{k-n_c}, \dots, s_{k-1})$, $s_k \in \mathbb{R}^{n_s}$
- $n_{\mathrm{a}}, n_{\mathrm{b}}$ and n_{c} define the model order
- Special case (state-space model): $U_k = u_k$, $Y_k = x_k$
- Assumption: \mathcal{M} is differentiable
- Examples: NL state-space models, deterministic **parameter-varying** NL-ARX models (black-box), I/O difference equations from first principles, **neural networks** with smooth activation function...
- On linearization about arbitrary \hat{U}, \hat{Y} :

$$- \ A \left(S_k \right)_0 \Delta y_k \ = \ \sum_{j=1}^{n_{\mathbf{a}}} A \left(S_k \right)_j \Delta y_{k-j} \ + \ \sum_{j=1}^{n_{\mathbf{b}}} B \left(S_k \right)_j \Delta u_{k-j} \ + \ \mathcal{M}(\hat{Y}, \ \hat{U}, \ S_k),$$

 $\boldsymbol{A},\boldsymbol{B}$ represent required Jacobians

Problem formulation ○●○○	Optimization algorithms	Sparsity exploitation	Numerical results	Conclusions
MPC proble	em setup			

- Prediction horizon N, control horizon N_u
- $z_k = \{u_k, \dots, u_{k+N_u-1}, y_{k+1}, \dots, y_{k+N}\}$ =vector of decision variables

• Performance index

$$\min_{z} \|f_k(z)\|_2^2$$

Examples:

- f_k is linear, $f_k(z) = W_k(z z_{\mathsf{ref},k})$ (standard tracking problem)
- f_k is arbitrary nonlinear differentiable function
- Constraints
 - (nonlinear) equality constraints due to the prediction model ${\cal M}$
 - upper and lower bounds on inputs and outputs $p_k \leq z \leq q_k$

- general inequality constraints $g(u_{k+j},y_{k+j})\leq 0$ can be softened and treated as equalities $g(u_{k+j},y_{k+j})+\sigma_j=0$, with $\sigma_j\geq 0$

• Consider tracking problem with quadratic costs for simplicity (everything immediately extends to arbitrary nonlinear costs $||f_k(z)||_2^2$)

Resulting NLP formulation at each sample step \boldsymbol{k}

$$\begin{split} \min_{z} \frac{1}{2} \|W_k(z - z_{\mathsf{ref},k})\|_2^2 \\ \text{s.t.} \ h_k(z,\phi_k) &= \mathbf{0}, \\ p_k \leq z \leq q_k. \end{split}$$

- $\bullet\,$ Matrix W is often diagonal and the Jacobian of h(z) is sparse and structured
- Initial condition vector ϕ consists of past I/O values

Optimization algorithms

Sparsity exploitation

Numerical results

Conclusions

Proposed NMPC formulation

Key Idea

Soften equality constraints via quadratic penalties

$$\min_{p_k \le z \le q_k} \frac{1}{2} \|W_k(z - z_{\mathsf{ref},k})\|_2^2 + \frac{\rho}{2} \|h_k(z)\|_2^2$$

- Penalty parameter $\rho > 0$ is a large weight
- Motivation: model is uncertain anyway, so why impose $h_k(z, \phi_k) = \mathbf{0}$ exactly?
- The problem can be rewritten as

$$\min_{p_k \le z \le q_k} \frac{1}{2} \| r_k(z) \|_2^2, \ r_k(z) = \begin{bmatrix} \frac{1}{\sqrt{\rho}} W_k(z - z_{\mathsf{ref},k}) \\ h_k(z,\phi_k) \end{bmatrix}$$

- Box-constrained nonlinear least squares problem is always feasible
- Fast solution using bounded-variable nonlinear least squares (BVNLLS)
- Same control performance as with conventional NMPC/NLP

Optimization algorithms

Sparsity exploitation

Numerical results

Conclusions

Bounded-variable nonlinear least squares (BVNLLS)

Problem: Sum-of-squares cost function with box constraints

$$\min_{p_k \le z \le q_k} \frac{1}{2} \| r_k(z) \|_2^2$$

- Gauss-Newton method: efficiently solves unconstrained nonlinear LS
 - Sequence of linear least-squares problems
 - Hessian (H) is approximated as $H \approx J^{\top}J$, $J = \nabla_z r(z)^{\top}$
 - Rapid convergence with good initial guess
 - Only first-order information (J) is needed
- Proposed solver: Gauss-Newton method with box constraints
- Line-search problem: Linear least-squares with box constraints (BVLS)
- Guaranteed convergence using sufficient decrease condition

Optimization algorithms

Sparsity exploitation

Numerical results

Conclusions

Bounded-variable nonlinear least squares (BVNLLS)

Problem: Sum-of-squares cost function with box constraints

$$\min_{k \le z \le q_k} \frac{1}{2} \| r_k(z) \|_2^2$$

• BVNLLS: Gauss-Newton method with box constraints

 p_i

Bounded-variable nonlinear least squares

Initialize $z^{(0)} \in \{z | p \le z \le q\}, j \leftarrow 0$

- 1: Update Jacobian $J \leftarrow \nabla_z r\left(z^{(j)}\right)^{\top}$; (Linearization)
- 2: Compute gradient $J^{\top}r$ of Lagrangian function;
- 3: If first-order optimality conditions are satisfied then stop;

4: Solve $\Delta \leftarrow \arg \min_{p-z^{(j)} \le \Delta \le q-z^{(j)}} \|J\Delta + r(z^{(j)})\|_2^2$ via BVLS solver; (Line search)

5: Compute step-size $0 < \alpha \leq 1$ for backtracking;

6:
$$z^{(j+1)} \leftarrow z^{(j)} + \alpha \Delta$$
; (Update iterate)

7: $j \leftarrow j + 1$; go to Step 1;

• Linear MPC case exactly recovered by single BVNLLS iteration!

Optimization algorithms

Sparsity exploitation 0000000

Numerical results

Conclusions

Bounded-variable least squares (BVLS)

Problem: Least-squares with box constraints

$$\min_{p \le x \le q} \frac{1}{2} \|Jx - b\|_2^2$$

- BVLS [2] is a primal active-set algorithm
- Finds solution x^* by iterating until the optimal active set (\mathcal{A}^*) is found

• Active set?
$$\mathcal{A} = \{\{i | x(i) = p(i)\} \cup \{i | x(i) = q(i)\}\}$$

- Main computations:
 - Solve unconstrained LS: $J(:,\neg A)^{\dagger} (b J(:,A)x(A))$ (every iteration)
 - Gradient entries: $J(:, A)^{\top}(b Jx)$ (in some iterations)
- A is updated by one index (inserted or removed)

 \implies Subsequent LS problems are related by insertion or deletion of 1 column in J!

Problem formulation	Optimization algorithms	Sparsity exploitation	Numerical results 000	Conclusions
BVLS solver				

- BVLS solves a sequence of related LS problems
- Efficient implementation with numerically stable recursive QR updates [3]
- Library free, simple arithmetic operations
- Stable also in single precision
- Suitable for embedded hardware platforms

• Implemented and tested on a real industrial PLC (paper under preparation)

Optimization algorithms

Sparsity exploitation

Numerical results

Conclusions

BVLS for MPC: Problem Sparsity

Problem: Least-squares with box constraints

$$\min_{0 \le x \le q} \frac{1}{2} \| \mathbf{J} x - b \|_2^2$$

•
$$J = \begin{bmatrix} W_k \\ \nabla_z h_k(z_k, \phi_k)^\top \end{bmatrix}$$

• Problem can be constructed using sequence of affine models obtained from linearization over previously computed or guess trajectory

$$-A\left(S_{k}\right)_{0}^{(i)}\Delta y_{k} = \sum_{j=1}^{n_{a}} A\left(S_{k}\right)_{j}^{(i)}\Delta y_{k-j} + \sum_{j=1}^{n_{b}} B\left(S_{k}\right)_{j}^{(i)}\Delta u_{k-j} + \mathcal{M}(\hat{Y}^{(i)}, \, \hat{U}^{(i)}, \, S_{k})$$

(i = prediction step)

 $x = \Delta z_k = \{\Delta u_k, \Delta y_{k+1}, \dots, \Delta u_{k+N_u-1}, \Delta y_{k+N_u}, \Delta y_{k+N_u+1}, \dots, \Delta y_{k+N}\}$

 Outputs are kept as decision variables (non-condensed approach) for a larger but sparse problem formulation which is cheap to construct

Optimization algorithms

Sparsity exploitation

Numerical results

Conclusions

BVLS for MPC: Problem Sparsity

Problem: Least-squares with box constraints

$$\min_{1 \le x \le q} \frac{1}{2} \|\boldsymbol{J}x - b\|_2^2$$

p

7	$\nabla_z h_k($	z_k, ϕ_k)⊤	-											
	$B_1^{(1)} = B_2^{(2)}$	$A_0^{(1)} A_1^{(2)}$	$\binom{0}{B^{(2)}}$	$\begin{array}{c} 0 \\ A_0^{(2)} \end{array}$	 0									0 0]
	22	1	21	0	0									0	
		÷		÷.,				÷.						÷	
	$B_{N_{\mathrm{u}}}^{(N_{\mathrm{u}})}$	$A_{N_{\mathrm{u}}-1}^{(N_{\mathrm{u}})}$						$B_1^{(N_u)}$	$A_0^{(N_{\rm u})}$	0				0	
	$B_{N_{\mathrm{u}}+1}^{(N_{\mathrm{u}}+1)}$	$A_{N_{\mathrm{u}}}^{(N_{\mathrm{u}}+1)}$				$B_3^{(N_u+1)}$	$A_2^{(N_{\rm u}+1)}$	$\sum_{i=1}^{2} B_{i}^{(N_{u}+1)}$	$A_1^{(N_{\rm u}+1)}$	$A_0^{(N_u+1)}$	0			0	
	$B_{N_{\mathrm{u}}+2}^{(N_{\mathrm{u}}+2)}$	$A_{N_{\mathrm{u}}+1}^{(N_{\mathrm{u}}+2)}$	÷.,			$B_4^{(N_{\rm u}+2)}$	$A_3^{(N_{\rm u}+2)}$	$\mathop{\textstyle\sum}\limits_{i=1}^{3}B_{i}^{(N_{\mathrm{u}}+2)}$	${\cal A}_2^{(N_{\rm u}+2)}$	$A_1^{(N_{\rm u}+2)}$	$A_0^{(N_{\rm u}+2)}$	0		0	
		÷		÷.,		·.		:		÷		÷.,		0	
	$B_{N_{\mathrm{p}}}^{(N_{\mathrm{p}})}$	$A_{N_{\rm p}-1}^{(N_{\rm p})}$				$B_{N_{\rm p}-N_{\rm u}+2}^{(N_{\rm p})}$	$A_{N_{\rm p}-N_{\rm u}+1}^{(N_{\rm p})}$	$\sum\limits_{i=1}^{N_{\mathrm{p}}-N_{\mathrm{u}}+1}B_{i}^{(N_{\mathrm{p}})}$	$A_{N_{\rm p}-N_{\rm u}}^{(N_{\rm p})}$	$A_{N_{\rm p}-N_{\rm u}-1}^{(N_{\rm p})}$			$A_1^{(N_{\rm p})}$	$A_0^{(N_{\rm p})}$	

 $\begin{aligned} z &= \{u_k, y_{k+1}, \dots, u_{k+N_u-1}, y_{k+N_u}, y_{k+N_u+1}, \dots, y_{k+N}\} \end{aligned}$ Structure depends on the ordering of decision variables, model (n_a, n_b, n_u, n_y) and tuning parameters (N, N_u)

Optimization algorithms

Sparsity exploitation

Numerical results

Conclusions

BVLS for MPC: Problem Sparsity

Problem: Least-squares with box constraints

$$\min_{\leq x \leq q} \frac{1}{2} \|\boldsymbol{J}x - b\|_2^2$$

Structure depends on the ordering of decision variables, model and tuning parameters

p

Sparsity pattern of $\nabla_z h_k(z)$ for a random model with $N_p = 10$, $N_u = 4$, $n_a = 2$, $n_b = 4$, $n_u = 2$ and $n_y = 2$.

Problem formulation	Optimization algorithms	Sparsity exploitation	Numerical results 000	Conclusions
Build-free N	IPC			

- Typical MPC setup:
 - Step 1: Construct an optimization problem based on the prediction model and tuning parameters (e.g., $N, N_{u})$
 - Step 2: Pass it in standard form to an optimization solver
- Constructing optimization problem matrices can be time consuming, especially in approaches with *condensed* formulation
- A change in the model coefficients, horizons, tuning weights, model size, needs re-construction of the optimization problem
- We propose methods that systematically eliminate the problem construction phase, resulting in:
 - reduced memory requirement
 - faster execution
 - ability to adapt to changes in model/tuning parameters at runtime at no computational cost

Key Idea

Parameterize the optimization algorithm in terms of model and tuning parameters

Problem formulation	Optimization algorithms	Sparsity exploitation	Numerical results	Conclusions
Matrix abst	raction			

BVLS problem: Least-squares with box constraints

$$\min_{0 \le x \le q} \frac{1}{2} \| \mathbf{J} x - b \|_2^2$$

- The sparse Jacobian matrix $J = \begin{bmatrix} W_k \\ \nabla_z h_k(z_k, \phi_k)^\top \end{bmatrix}$ contains tuning weights and coefficients from the sequence of affine models with indexing completely defined by model and tuning parameters
- Role of J in BVLS:
 - Solve unconstrained LS: $J(:,\neg A)^{\dagger} (b J(:, A)x(A))$
 - Gradient entries: $J(:, \mathcal{A})^{\top} (b Jx)$
- Key observation: all operations with J can be replaced by 2 abstract operators
 - 1) Jix: return *i*th column of J times a given scalar x
 - 2) JtiX: return *i*th column of J times a given vector X (*i*th column of I = ith row of I^{\top})
 - (*i*th column of J = ith row of J^{\top})

Two operators to replace all J instances

• To code Jix and JtiX we need

- 1) Model coefficients from the sequence of affine models: store all in a single vector
- M (faster execution) or generate online via linearization routines (lower memory)
- 2) Model parameters n_a, n_b, n_u, n_y
- 3) Tuning parameters N, N_u and weights
- For J times a vector v, use Jix over each element of v and accumulate the result
- For J^{\top} times a vector v, use JtiX over each element of v and store result in the corresponding element of output vector
- Recall: location of non-zeros is already known in terms of model and tuning parameters!
 - \implies Only non-zero entries in J are operated

 \implies Matrix operations as fast as sparse linear algebra while using significantly lesser amount of memory!

Problem formulation	Optimization algorithms	Sparsity exploitation	Numerical results 000	Conclusions
Build-free M	PC algorithm			

BVNLLS without problem construction

Initialize $z^{(0)} \in \{z | p \le z \le q\}, j \leftarrow 0$

- 1: Update Jacobian $J \leftarrow \nabla_z r(z^{(j)})^\top$ Update M; (Linearization)
- 2: Compute gradient $J^{\top}r$ of Lagrangian function; Use JtiX
- 3: If first-order optimality conditions are satisfied then stop;
- 4: Solve $\Delta \leftarrow \arg \min_{p-z^{(j)} \leq \Delta \leq q-z^{(j)}} \|J\Delta + r(z^{(j)})\|_2^2$ via BVLS solver; Uses Jix, JtiX
- 5: Compute step-size $0 < \alpha \leq 1$ for backtracking;
- 6: $z^{(j+1)} \leftarrow z^{(j)} + \alpha \Delta$; (Update iterate)
- 7: $j \leftarrow j + 1$; go to Step 1;

Code of Jix and JtiX does not change with any change in model or tuning parameters or problem size

 \implies entire MPC code is stand-alone for a given problem formulation

- Recall: we solve $J(:,\neg A)^{\dagger} (b J(:,A)x(A))$ in each BVLS iteration
- Best way: recursive thin QR factorization (using Gram-Schmidt orthogonalization)
- How to exploit sparsity? How to know the location of non-zeros in QR?

Sparse matrix J = QR

Q factor of J

Sparsity pattern of Jacobian J and its thin QR factors for a random NARX model with diagonal weights, and parameters $n_y = n_u = 2$, $n_a = 2$, $n_b = 1$, N = 4, $N_u = 3$.

Problem formulation Optimization algorithms Sparsity exploitation Occord Conclusions Occo

• If J = QR,

$$\begin{aligned} Q'(:,i) &= J(:,i) - \sum_{j=1}^{i-1} Q(:,j)Q(:,j)^{\top}J(:,i), \\ Q(:,i) &= Q'(:,i) / \left\| Q(:,i)' \right\|_{2}. \\ R(j,i) &= Q(:,j)^{\top}J(:,i), \forall j \in [1,i-1], \\ R(i,i) &= \left\| Q(:,i)' \right\|_{2} \end{aligned}$$

- Above formulae refer to **classical** Gram-Schmidt process: catastrophic numerical cancellation possible
- We use the theoretically equivalent **modified** Gram-Schmidt method with **automatic reorthogonalization** for numerical stability

Problem formulation	Optimization algorithms	Sparsity exploitation	Numerical results	Conclusions
Sparsity ana	lysis			

• Define the non-zero structure of a vector x to be the set of indices S(x) such that $x(i) \neq 0$, $\forall i \in S(x)$, and x(j) = 0, $\forall j \notin S(x)$.

Theorem: Non-zero structure of columns of Q factor

Consider an arbitrary sparse matrix $J \in \mathbb{R}^{n_1 \times n_2}$ of full rank such that $n_1 \ge n_2$ and let Q denote the Q-factor from its thin QR factorization i.e., J = QR. The non-zero structure of each column Q(:,i) of Q satisfies

$$\mathcal{S}\left(Q(:,i)\right) \subseteq \bigcup_{j=1}^{i} \mathcal{S}\left(J(:,j)\right), \forall i \in [1, n_2],$$

and $\mathcal{S}\left(Q(:,1)\right) = \mathcal{S}\left(J(:,1)\right).$

• Using the above theorem, which is based on MGS, and its corollaries [4], we exploit sparsity without even storing *J*!

(paper [4] = Saraf, Bemporad 2019 available on arXiv)

Problem formulation	Optimization algorithms	Sparsity exploitation ○○○○○●	Numerical results 000	Conclusions
Recursive Q	R updates			

- With diagonal weights, sparsity pattern info of Q factor can be stored in just 2 integer vectors
- Recursive update in sparsity pattern \implies update entries in 2 vectors of dimension = no. of columns of J
- Main principle: thin QR factorization of a matrix is unique
 ⇒ column indices of J may be added to or removed from the active set in an arbitrary order!
- R factor's sparsity exploited using orthogonality: $R = Q^{\top}J$

Optimization algorithms 00000000 Sparsity exploitation

Numerical results

Conclusions

Numerical example: NMPC of CSTR

Continuous Stirred Tank Reactor (CSTR)¹

• CSTR model

$$\begin{split} T^{(k+1)} &= T^{(k)} + t_{\rm s} (T_{\rm f}^{(k)} - 1.3T^{(k)} + \kappa_1 C_{\rm A}^{(k)} e^{\frac{-5963.6}{T^{(k)}}} + 0.3T_{\rm C}^{(k)}) \\ C_{\rm A}^{(k+1)} &= C_{\rm A}^{(k)} + t_{\rm s} (C_{\rm Af}^{(k)} - \kappa_2 C_{\rm A}^{(k)} e^{\frac{-5963.6}{T^{(k)}}} - C_{\rm A}^{(k)}) \end{split}$$

- Nonlinear system with 2 outputs, 1 input and 2 measured disturbances
- Model coefficients as in MPC Toolbox demo (Mathworks)

¹ retrieved from apmonitor.com

Optimization algorithms

Sparsity exploitation

Numerical results

Conclusions

Execution time: Small-sized problems

- SQP: subproblems may be infeasible. Warm start exploited (MATLAB fmincon)
- IPOPT: uses MA57 solver, sparse routines.
 No warm start exploited
- BVNLLS: very few Gauss-Newton steps to converge, exploits warmstarts
- Sparse linear algebra (LA) is typically slower than dense LA for small problems ≥
 proposed sparsity exploiting methods allow ≈ 10× faster solution than dense variant even for small problem sizes!
 - $\approx 100\times$ speedup on mean CPU time w.r.t. benchmarks

simulated on a Mac with 2.6GHz Intel Core i5. N = n/3, no. of box constraints = n pairs, no. of equality constraints = 2N, $\sqrt{\rho} = 10^4$, $N_{\rm sim} = 1500$ sample steps.

Optimization algorithms

Sparsity exploitation

Numerical results

Conclusions

Execution time: Larger problems

- Active-set methods can be faster than interior-point methods if sparsity is exploited [1]
- Faster even for large problems
- sparse BVNLLS tool for NMPC
 - Efficient C implementation
 - easily embeddable

Problem formulation	Optimization algorithms	Sparsity exploitation	Numerical results 000	Conclusions
Conclusions				

• Key ideas:

- relax equality constraints due to dynamics using penalty functions
- parameterize optimization solver in terms of MPC parameters
- The proposed optimization solvers for MPC are:
 - simple to code, fast to execute, flexible in real time
 - good for embedded platforms (PLCs, μ controllers, ...)
 - competitive with state-of-the-art algorithms
- Novel linear algebra methods devised to heavily exploit sparsity
- Unifying MPC framework for LTI/LPV/NLTI/NLPV systems
- Linearization step can be code-generated using symbolic math software, no other code generation required easy deployability!
- Extensions: Matrix-free MPC, more general problems

Key References

- J. Nocedal and S. Wright Numerical Optimization. Springer, 2006.
- P. Stark and R. Parker Bounded-Variable Least-Squares: An Algorithm and Applications. Computational Statistics, 10: 129–141, 1995.
- 🔋 N. Saraf and A. Bemporad

A bounded-variable least-squares solver based on stable QR updates.

IEEE Transactions on Automatic Control, 2019.

N. Saraf and A. Bemporad An efficient non-condensed approach for linear and nonlinear

model predictive control with bounded variables.

Preprint available at arXiv.org, 2019.