
Problem formulation Optimization algorithms Sparsity exploitation Numerical results Conclusions

An efficient non-condensed approach for model
predictive control

Nilay Saraf

Advisor: Prof. Alberto Bemporad

oCPS Fall School, Eindhoven
October 30, 2019

 / 8
Model predictive control toolset 1

This research has received funding from the European Union’s Horizon 2020 Framework Programme for Research
and Innovation under grant agreement no. 674875.

Problem formulation Optimization algorithms Sparsity exploitation Numerical results Conclusions

Outline

Optimization problem formulation

Equality constraint elimination and proposed nonlinear
least-squares approach with bounded variables

Bounded-variable least-squares (BVLS) solver

Problem sparsity and matrix abstraction (build-free MPC)

Numerically-stable sparse recursive QR factorization

Numerical results

1 / 24

Problem formulation Optimization algorithms Sparsity exploitation Numerical results Conclusions

Discrete-time nonlinear model

General multivariable nonlinear (NL) prediction model

M(Yk, Uk, Sk) = 0

Past inputs Uk = (uk−nb
, . . . , uk−1), uk ∈ Rnu

Past outputs Yk = (yk−na , . . . , yk), yk ∈ Rny

Measured exogenous signals Sk = (sk−nc , . . . , sk−1), sk ∈ Rns

na, nb and nc define the model order

Special case (state-space model): Uk = uk, Yk = xk

Assumption: M is differentiable

Examples: NL state-space models, deterministic parameter-varying NL-ARX models

(black-box), I/O difference equations from first principles, neural networks with

smooth activation function...

On linearization about arbitrary Û, Ŷ :

− A (Sk)0 ∆yk =

na∑
j=1

A (Sk)j ∆yk−j +

nb∑
j=1

B (Sk)j ∆uk−j + M(Ŷ, Û, Sk),

A,B represent required Jacobians

2 / 24

Problem formulation Optimization algorithms Sparsity exploitation Numerical results Conclusions

MPC problem setup

Prediction horizon N , control horizon Nu

zk = {uk, . . . , uk+Nu−1, yk+1, . . . , yk+N}
=vector of decision variables

Performance index
min
z
‖fk(z)‖22

Examples:
- fk is linear, fk(z) =Wk(z − zref,k) (standard tracking problem)
- fk is arbitrary nonlinear differentiable function

Constraints
- (nonlinear) equality constraints due to the prediction model M
- upper and lower bounds on inputs and outputs pk ≤ z ≤ qk
- general inequality constraints g(uk+j , yk+j) ≤ 0 can be softened and
treated as equalities g(uk+j , yk+j) + σj = 0, with σj ≥ 0

3 / 24

Problem formulation Optimization algorithms Sparsity exploitation Numerical results Conclusions

Constrained nonlinear programming (NLP) problem

Consider tracking problem with quadratic costs for simplicity
(everything immediately extends to arbitrary nonlinear costs ‖fk(z)‖22)

Resulting NLP formulation at each sample step k

min
z

1

2
‖Wk(z − zref,k)‖22

s.t. hk(z, φk) = 0,

pk ≤ z ≤ qk.

Matrix W is often diagonal and the Jacobian of h(z) is sparse and
structured

Initial condition vector φ consists of past I/O values

4 / 24

Problem formulation Optimization algorithms Sparsity exploitation Numerical results Conclusions

Proposed NMPC formulation

Key Idea

Soften equality constraints via quadratic penalties

min
pk≤z≤qk

1

2
‖Wk(z − zref,k)‖22 +

ρ

2
‖hk(z)‖22

Penalty parameter ρ > 0 is a large weight

Motivation: model is uncertain anyway, so why impose hk(z, φk) = 0
exactly?

The problem can be rewritten as

min
pk≤z≤qk

1

2
‖rk(z)‖22, rk(z) =

[1√
ρWk(z − zref,k)

hk(z, φk)

]
Box-constrained nonlinear least squares problem is always feasible

Fast solution using bounded-variable nonlinear least squares (BVNLLS)

Same control performance as with conventional NMPC/NLP

5 / 24

Problem formulation Optimization algorithms Sparsity exploitation Numerical results Conclusions

Bounded-variable nonlinear least squares (BVNLLS)

Problem: Sum-of-squares cost function with box constraints

min
pk≤z≤qk

1

2
‖rk(z)‖22

Gauss-Newton method: efficiently solves unconstrained nonlinear LS
- Sequence of linear least-squares problems
- Hessian (H) is approximated as H ≈ J>J , J = ∇zr(z)>
- Rapid convergence with good initial guess
- Only first-order information (J) is needed

Proposed solver: Gauss-Newton method with box constraints

Line-search problem: Linear least-squares with box constraints (BVLS)

Guaranteed convergence using sufficient decrease condition

6 / 24

Problem formulation Optimization algorithms Sparsity exploitation Numerical results Conclusions

Bounded-variable nonlinear least squares (BVNLLS)

Problem: Sum-of-squares cost function with box constraints

min
pk≤z≤qk

1

2
‖rk(z)‖22

BVNLLS: Gauss-Newton method with box constraints

Bounded-variable nonlinear least squares

Initialize z(0) ∈ {z|p ≤ z ≤ q}, j ← 0

1: Update Jacobian J ← ∇zr
(
z(j)

)>
; (Linearization)

2: Compute gradient J>r of Lagrangian function;

3: If first-order optimality conditions are satisfied then stop;

4: Solve ∆← arg min
p−z(j)≤∆≤q−z(j)

‖J∆ + r
(
z(j)

)
‖22 via BVLS solver; (Line search)

5: Compute step-size 0 < α ≤ 1 for backtracking;

6: z(j+1) ← z(j) + α∆; (Update iterate)

7: j ← j + 1; go to Step 1;

Linear MPC case exactly recovered by single BVNLLS iteration!
7 / 24

Problem formulation Optimization algorithms Sparsity exploitation Numerical results Conclusions

Bounded-variable least squares (BVLS)

Problem: Least-squares with box constraints

min
p≤x≤q

1

2
‖Jx− b‖22

BVLS [2] is a primal active-set algorithm

Finds solution x∗ by iterating until the optimal active set (A∗) is found

Active set? A = {{i|x(i) = p(i)} ∪ {i|x(i) = q(i)}}

Main computations:

- Solve unconstrained LS: J(:,¬A)† (b− J(:,A)x(A)) (every iteration)

- Gradient entries: J(:,A)>(b− Jx) (in some iterations)

A is updated by one index (inserted or removed)

=⇒ Subsequent LS problems are related by insertion or deletion of 1 column in J!

8 / 24

Problem formulation Optimization algorithms Sparsity exploitation Numerical results Conclusions

BVLS solver

BVLS solves a sequence of related
LS problems

Efficient implementation with
numerically stable recursive QR
updates [3]

Library free, simple arithmetic
operations

Stable also in single precision

Suitable for embedded hardware
platforms

20 50 100 150 180
10−5

10−4

10−3

10−2

10−1

100

Number of variables

W
or

st
-c

a
se

C
P

U
ti

m
e

(s
ec

s)

BVLS
QPoases C
fastGP
Gurobi AS
OSQP3000

Double precision, random poorly-conditioned,

box-constrained LS problems (2.6GHz Intel

Core i5 Mac)

Implemented and tested on a real industrial PLC (paper under preparation)

9 / 24

Problem formulation Optimization algorithms Sparsity exploitation Numerical results Conclusions

BVLS for MPC: Problem Sparsity

Problem: Least-squares with box constraints

min
p≤x≤q

1

2
‖Jx− b‖22

J =

[
Wk

∇zhk(zk, φk)>

]
Problem can be constructed using sequence of affine models obtained from

linearization over previously computed or guess trajectory

−A (Sk)
(i)
0 ∆yk =

na∑
j=1

A (Sk)
(i)
j ∆yk−j+

nb∑
j=1

B (Sk)
(i)
j ∆uk−j+M(Ŷ (i), Û(i), Sk)

(i =prediction step)

x = ∆zk = {∆uk,∆yk+1, . . . ,∆uk+Nu−1,∆yk+Nu ,∆yk+Nu+1, . . . ,∆yk+N}

Outputs are kept as decision variables (non-condensed approach) for a larger but

sparse problem formulation which is cheap to construct

10 / 24

Problem formulation Optimization algorithms Sparsity exploitation Numerical results Conclusions

BVLS for MPC: Problem Sparsity

Problem: Least-squares with box constraints

min
p≤x≤q

1

2
‖Jx− b‖22

∇zhk(zk, φk)> =

B
(1)
1 A

(1)
0 0 0 · · · · · · 0

B
(2)
2 A

(2)
1 B

(2)
1 A

(2)
0 0 · · · · · · 0

...
. . .

. . .
...

B
(Nu)
Nu

A
(Nu)
Nu−1 · · · B

(Nu)
1 A

(Nu)
0 0 · · · 0

B
(Nu+1)
Nu+1 A

(Nu+1)
Nu

· · · B
(Nu+1)
3 A

(Nu+1)
2

2∑
i=1

B
(Nu+1)
i A

(Nu+1)
1 A

(Nu+1)
0 0 · · · 0

B
(Nu+2)
Nu+2 A

(Nu+2)
Nu+1

. . . · · · B
(Nu+2)
4 A

(Nu+2)
3

3∑
i=1

B
(Nu+2)
i A

(Nu+2)
2 A

(Nu+2)
1 A

(Nu+2)
0 0 · · · 0

...
. . .

. . .
...

...
. . . 0

B
(Np)

Np
A

(Np)

Np−1 · · · B
(Np)

Np−Nu+2 A
(Np)

Np−Nu+1

Np−Nu+1∑
i=1

B
(Np)
i A

(Np)

Np−Nu
A

(Np)

Np−Nu−1 · · · A
(Np)
1 A

(Np)
0

z = {uk, yk+1, . . . , uk+Nu−1, yk+Nu , yk+Nu+1, . . . , yk+N}
Structure depends on the ordering of decision variables, model (na, nb, nu, ny) and

tuning parameters (N,Nu)

11 / 24

Problem formulation Optimization algorithms Sparsity exploitation Numerical results Conclusions

BVLS for MPC: Problem Sparsity

Problem: Least-squares with box constraints

min
p≤x≤q

1

2
‖Jx− b‖22

Structure depends on the ordering of decision variables, model and tuning

parameters

Sparsity pattern of ∇zhk(z) for a random model with Np = 10, Nu = 4, na = 2,

nb = 4, nu = 2 and ny = 2.
12 / 24

Problem formulation Optimization algorithms Sparsity exploitation Numerical results Conclusions

Build-free MPC

Typical MPC setup:

- Step 1: Construct an optimization problem based on the prediction model and

tuning parameters (e.g., N,Nu)

- Step 2: Pass it in standard form to an optimization solver

Constructing optimization problem matrices can be time consuming, especially in

approaches with condensed formulation

A change in the model coefficients, horizons, tuning weights, model size, needs

re-construction of the optimization problem

We propose methods that systematically eliminate the problem construction phase,

resulting in:

- reduced memory requirement

- faster execution

- ability to adapt to changes in model/tuning parameters at runtime at no

computational cost

Key Idea

Parameterize the optimization algorithm in terms of model and tuning
parameters

13 / 24

Problem formulation Optimization algorithms Sparsity exploitation Numerical results Conclusions

Matrix abstraction

BVLS problem: Least-squares with box constraints

min
p≤x≤q

1

2
‖Jx− b‖22

The sparse Jacobian matrix J =

[
Wk

∇zhk(zk, φk)>
]

contains tuning

weights and coefficients from the sequence of affine models with
indexing completely defined by model and tuning parameters

Role of J in BVLS:
- Solve unconstrained LS: J(:,¬A)† (b− J(:,A)x(A))
- Gradient entries: J(:,A)>(b− Jx)
Key observation: all operations with J can be replaced by 2 abstract
operators
1) Jix: return ith column of J times a given scalar x
2) JtiX: return ith column of J times a given vector X
(ith column of J = ith row of J>)

14 / 24

Problem formulation Optimization algorithms Sparsity exploitation Numerical results Conclusions

Two operators to replace all J instances

To code Jix and JtiX we need
1) Model coefficients from the sequence of affine models: store all in a single vector

M (faster execution) or generate online via linearization routines (lower memory)

2) Model parameters na, nb, nu, ny

3) Tuning parameters N,Nu and weights

For J times a vector v, use Jix over each element of v and accumulate
the result

For J> times a vector v, use JtiX over each element of v and store
result in the corresponding element of output vector

Recall: location of non-zeros is already known in terms of model and
tuning parameters!
=⇒ Only non-zero entries in J are operated
=⇒ Matrix operations as fast as sparse linear algebra while using

significantly lesser amount of memory!

15 / 24

Problem formulation Optimization algorithms Sparsity exploitation Numerical results Conclusions

Build-free MPC algorithm

BVNLLS without problem construction

Initialize z(0) ∈ {z|p ≤ z ≤ q}, j ← 0

1: Update Jacobian J ← ∇zr
(
z(j)

)>
Update M; (Linearization)

2: Compute gradient J>r of Lagrangian function; Use JtiX

3: If first-order optimality conditions are satisfied then stop;

4: Solve ∆← arg min
p−z(j)≤∆≤q−z(j)

‖J∆ + r
(
z(j)

)
‖22 via BVLS solver; Uses Jix, JtiX

5: Compute step-size 0 < α ≤ 1 for backtracking;

6: z(j+1) ← z(j) + α∆; (Update iterate)

7: j ← j + 1; go to Step 1;

Code of Jix and JtiX does not change with any change in model or
tuning parameters or problem size
=⇒ entire MPC code is stand-alone for a given problem formulation

16 / 24

Problem formulation Optimization algorithms Sparsity exploitation Numerical results Conclusions

Sparse matrix factors

Recall: we solve J(:,¬A)† (b− J(:,A)x(A)) in each BVLS iteration

Best way: recursive thin QR factorization (using Gram-Schmidt orthogonalization)

How to exploit sparsity? How to know the location of non-zeros in QR?

0 5 10 15

0

10

20

Sparse matrix J = QR

0 5 10 15

0

10

20

Q factor of J

0 5 10 15

0

5

10

15

R factor of J

Sparsity pattern of Jacobian J and its thin QR factors for a random NARX model with diagonal

weights, and parameters ny = nu = 2, na = 2, nb = 1, N = 4, Nu = 3.
17 / 24

Problem formulation Optimization algorithms Sparsity exploitation Numerical results Conclusions

Gram-Schmidt orthogonalization

If J = QR,

Q′(:, i) = J(:, i)−
i−1∑
j=1

Q(:, j)Q(:, j)>J(:, i),

Q(:, i) = Q′(:, i)/
∥∥∥Q(:, i)

′
∥∥∥
2
.

R(j, i) = Q(:, j)>J(:, i),∀j ∈ [1, i− 1],

R(i, i) =
∥∥∥Q(:, i)

′
∥∥∥
2

Above formulae refer to classical Gram-Schmidt process: catastrophic
numerical cancellation possible

We use the theoretically equivalent modified Gram-Schmidt method
with automatic reorthogonalization for numerical stability

18 / 24

Problem formulation Optimization algorithms Sparsity exploitation Numerical results Conclusions

Sparsity analysis

Define the non-zero structure of a vector x to be the set of indices
S(x) such that x(i) 6= 0, ∀i ∈ S(x), and x(j) = 0, ∀j /∈ S(x).

Theorem: Non-zero structure of columns of Q factor

Consider an arbitrary sparse matrix J ∈ Rn1×n2 of full rank such that
n1 ≥ n2 and let Q denote the Q-factor from its thin QR factorization i.e.,
J = QR. The non-zero structure of each column Q(:, i) of Q satisfies

S (Q(:, i)) ⊆
i⋃

j=1

S (J(:, j)) ,∀i ∈ [1, n2],

and S (Q(:, 1)) = S (J(:, 1)) .

Using the above theorem, which is based on MGS, and its
corollaries [4], we exploit sparsity without even storing J !
(paper [4] = Saraf, Bemporad 2019 available on arXiv)

19 / 24

Problem formulation Optimization algorithms Sparsity exploitation Numerical results Conclusions

Recursive QR updates

With diagonal weights, sparsity pattern info of Q factor can be stored
in just 2 integer vectors

Recursive update in sparsity pattern =⇒ update entries in 2 vectors of
dimension = no. of columns of J

Main principle: thin QR factorization of a matrix is unique
=⇒ column indices of J may be added to or removed from the active

set in an arbitrary order!

R factor’s sparsity exploited using orthogonality: R = Q>J

20 / 24

Problem formulation Optimization algorithms Sparsity exploitation Numerical results Conclusions

Numerical example: NMPC of CSTR

Continuous Stirred Tank Reactor (CSTR) 1

CSTR model

T (k+1) = T (k) + ts(T
(k)
f − 1.3T (k) + κ1C

(k)
A e

−5963.6

T (k) + 0.3TC
(k))

C
(k+1)
A = C

(k)
A + ts(C

(k)
Af − κ2C

(k)
A e

−5963.6

T (k) − C(k)
A)

Nonlinear system with 2 outputs, 1 input and 2 measured disturbances

Model coefficients as in MPC Toolbox demo (Mathworks)

1
retrieved from apmonitor.com

21 / 24

Problem formulation Optimization algorithms Sparsity exploitation Numerical results Conclusions

Execution time: Small-sized problems

SQP: subproblems may be infeasible.

Warm start exploited (MATLAB fmincon)

IPOPT: uses MA57 solver, sparse routines.

No warm start exploited

BVNLLS: very few Gauss-Newton steps to

converge, exploits warmstarts

Sparse linear algebra (LA) is typically

slower than dense LA for small problems

- proposed sparsity exploiting methods

allow ≈ 10× faster solution than dense

variant even for small problem sizes!

- ≈ 100× speedup on mean CPU time

w.r.t. benchmarks

100

101

102

103

W
or

st
-c

a
se

C
P

U
ti

m
e

(m
s)

dense BVNLLS

sparse BVNLLS

fminconSQP (NLP)

IPOPT (NLP)

30 45 60 75 90 105 120 135 150

10−1

100

101

102

Number of decision variables n

M
ea

n
C

P
U

ti
m

e
(m

s)

Solver comparison in MATLAB for NMPC of CSTR
simulated on a Mac with 2.6GHz Intel Core i5.
N = n/3, no. of box constraints = n pairs, no. of

equality constraints = 2N ,
√
ρ = 104,

Nsim = 1500 sample steps.

22 / 24

Problem formulation Optimization algorithms Sparsity exploitation Numerical results Conclusions

Execution time: Larger problems

Active-set methods can be faster than

interior-point methods if sparsity is

exploited [1]

Faster even for large problems

sparse BVNLLS tool for NMPC

- Efficient C implementation

- easily embeddable

101

102

103

104

W
or

st
-c

a
se

C
P

U
ti

m
e

(m
s)

sparse BVNLLS

fminconSQP (NLP)

IPOPT (NLP)

150 210 255 300 345 390 435 480

101

102

103

104

Number of decision variables n

M
ea

n
C

P
U

ti
m

e
(m

s)

Solver comparison in MATLAB for NMPC of CSTR
simulated on a Mac with 2.6GHz Intel Core i5. N = n/3,
no. of box constraints = n pairs, no. of equality constraints
= 2N ,

√
ρ = 104, Nsim = 1500 sample steps.

23 / 24

Problem formulation Optimization algorithms Sparsity exploitation Numerical results Conclusions

Conclusions

Key ideas:
- relax equality constraints due to dynamics using penalty functions
- parameterize optimization solver in terms of MPC parameters

The proposed optimization solvers for MPC are:
- simple to code, fast to execute, flexible in real time
- good for embedded platforms (PLCs, µcontrollers, ...)
- competitive with state-of-the-art algorithms

Novel linear algebra methods devised to heavily exploit sparsity

Unifying MPC framework for LTI/LPV/NLTI/NLPV systems

Linearization step can be code-generated using symbolic math software,
no other code generation required - easy deployability!

Extensions: Matrix-free MPC, more general problems

24 / 24

Key References

J. Nocedal and S. Wright
Numerical Optimization.
Springer, 2006.

P. Stark and R. Parker
Bounded-Variable Least-Squares: An Algorithm and Applications.
Computational Statistics, 10: 129–141, 1995.

N. Saraf and A. Bemporad
A bounded-variable least-squares solver based on stable QR
updates.
IEEE Transactions on Automatic Control, 2019.

N. Saraf and A. Bemporad
An efficient non-condensed approach for linear and nonlinear
model predictive control with bounded variables.
Preprint available at arXiv.org, 2019.

	NMPC problem formulation
	Model
	MPC setup

	Optimization algorithms
	BVNLLS
	BVLS solver
	Sparsity in BVLS MPC
	Build-freeMPC

	Sparsity exploitation
	Abstract operators
	Sparse QR factorization
	Recursive updates

	Numerical results
	Example
	Execution times

	Conclusions
	Appendix

