An efficient non-condensed approach for model predictive control

Nilay Saraf

Advisor: Prof. Alberto Bemporad
oCPS Fall School, Eindhoven October 30, 2019

SCHOOL
FOR ADVANCED STUDIES
LUCCA

Optimizing Cyber Physical Systems

Outline

- Optimization problem formulation
- Equality constraint elimination and proposed nonlinear least-squares approach with bounded variables
- Bounded-variable least-squares (BVLS) solver
- Problem sparsity and matrix abstraction (build-free MPC)
- Numerically-stable sparse recursive QR factorization
- Numerical results

Discrete-time nonlinear model

General multivariable nonlinear (NL) prediction model

$$
\mathcal{M}\left(Y_{k}, U_{k}, S_{k}\right)=\mathbf{0}
$$

- Past inputs $U_{k}=\left(u_{k-n_{\mathrm{b}}}, \ldots, u_{k-1}\right), u_{k} \in \mathbb{R}^{n_{u}}$
- Past outputs $Y_{k}=\left(y_{k-n_{\mathrm{a}}}, \ldots, y_{k}\right), y_{k} \in \mathbb{R}^{n_{y}}$
- Measured exogenous signals $S_{k}=\left(s_{k-n_{\mathrm{c}}}, \ldots, s_{k-1}\right), s_{k} \in \mathbb{R}^{n_{s}}$
- $n_{\mathrm{a}}, n_{\mathrm{b}}$ and n_{c} define the model order
- Special case (state-space model): $U_{k}=u_{k}, Y_{k}=x_{k}$
- Assumption: \mathcal{M} is differentiable
- Examples: NL state-space models, deterministic parameter-varying NL-ARX models (black-box), I/O difference equations from first principles, neural networks with smooth activation function...
- On linearization about arbitrary \hat{U}, \hat{Y} :

$$
-A\left(S_{k}\right)_{0} \Delta y_{k}=\sum_{j=1}^{n_{\mathrm{a}}} A\left(S_{k}\right)_{j} \Delta y_{k-j}+\sum_{j=1}^{n_{\mathrm{b}}} B\left(S_{k}\right)_{j} \Delta u_{k-j}+\mathcal{M}\left(\hat{Y}, \quad \hat{U}, \quad S_{k}\right),
$$

A, B represent required Jacobians

MPC problem setup

- Prediction horizon N, control horizon N_{u}
- $z_{k}=\left\{u_{k}, \ldots, u_{k+N_{u}-1}, y_{k+1}, \ldots, y_{k+N}\right\}$ $=$ vector of decision variables

- Performance index

$$
\min _{z}\left\|f_{k}(z)\right\|_{2}^{2}
$$

Examples:

- f_{k} is linear, $f_{k}(z)=W_{k}\left(z-z_{\text {ref }, k}\right)$ (standard tracking problem)
- f_{k} is arbitrary nonlinear differentiable function
- Constraints
- (nonlinear) equality constraints due to the prediction model \mathcal{M}
- upper and lower bounds on inputs and outputs $p_{k} \leq z \leq q_{k}$
- general inequality constraints $g\left(u_{k+j}, y_{k+j}\right) \leq 0$ can be softened and treated as equalities $g\left(u_{k+j}, y_{k+j}\right)+\sigma_{j}=0$, with $\sigma_{j} \geq 0$

Constrained nonlinear programming (NLP) problem

- Consider tracking problem with quadratic costs for simplicity (everything immediately extends to arbitrary nonlinear costs $\left\|f_{k}(z)\right\|_{2}^{2}$)

Resulting NLP formulation at each sample step k

$$
\begin{gathered}
\min _{z} \frac{1}{2}\left\|W_{k}\left(z-z_{\text {ref }, k}\right)\right\|_{2}^{2} \\
\text { s.t. } \\
h_{k}\left(z, \phi_{k}\right)=\mathbf{0} \\
\\
p_{k} \leq z \leq q_{k}
\end{gathered}
$$

- Matrix W is often diagonal and the Jacobian of $h(z)$ is sparse and structured
- Initial condition vector ϕ consists of past I/O values

Proposed NMPC formulation

Key Idea

Soften equality constraints via quadratic penalties

$$
\min _{p_{k} \leq z \leq q_{k}} \frac{1}{2}\left\|W_{k}\left(z-z_{\text {ref }, k}\right)\right\|_{2}^{2}+\frac{\rho}{2}\left\|h_{k}(z)\right\|_{2}^{2}
$$

- Penalty parameter $\rho>0$ is a large weight
- Motivation: model is uncertain anyway, so why impose $h_{k}\left(z, \phi_{k}\right)=\mathbf{0}$ exactly?
- The problem can be rewritten as

$$
\min _{p_{k} \leq z \leq q_{k}} \frac{1}{2}\left\|r_{k}(z)\right\|_{2}^{2}, r_{k}(z)=\left[\begin{array}{c}
\frac{1}{\sqrt{\rho}} W_{k}\left(z-z_{\mathrm{ref}, k}\right) \\
h_{k}\left(z, \phi_{k}\right)
\end{array}\right]
$$

- Box-constrained nonlinear least squares problem is always feasible
- Fast solution using bounded-variable nonlinear least squares (BVNLLS)
- Same control performance as with conventional NMPC/NLP

Bounded-variable nonlinear least squares (BVNLLS)

Problem:

cost function with

$$
\min _{p_{k} \leq z \leq q_{k}} \frac{1}{2}\left\|r_{k}(z)\right\|_{2}^{2}
$$

- Gauss-Newton method: efficiently solves unconstrained nonlinear LS
- Sequence of linear least-squares problems
- Hessian (H) is approximated as $H \approx J^{\top} J, J=\nabla_{z} r(z)^{\top}$
- Rapid convergence with good initial guess
- Only first-order information (J) is needed
- Proposed solver: Gauss-Newton method with box constraints
- Line-search problem: Linear least-squares with box constraints (BVLS)
- Guaranteed convergence using sufficient decrease condition

Bounded-variable nonlinear least squares (BVNLLS)

Problem: Sum-of-squares cost function with box constraints

$$
\min _{p_{k} \leq z \leq q_{k}} \frac{1}{2}\left\|r_{k}(z)\right\|_{2}^{2}
$$

- BVNLLS: Gauss-Newton method with box constraints

Bounded-variable nonlinear least squares

Initialize $z^{(0)} \in\{z \mid p \leq z \leq q\}, j \leftarrow 0$
1: Update Jacobian $J \leftarrow \nabla_{z} r\left(z^{(j)}\right)^{\top}$; (Linearization)
2: Compute gradient $J^{\top} r$ of Lagrangian function;
3: If first-order optimality conditions are satisfied then stop;
4: Solve $\Delta \leftarrow \arg \underset{p-z^{(j)} \leq \Delta \leq q-z^{(j)}}{ }\left\|J \Delta+r\left(z^{(j)}\right)\right\|_{2}^{2}$ via BVLS solver; (Line search)
5: Compute step-size $0<\alpha \leq 1$ for backtracking;
6: $z^{(j+1)} \leftarrow z^{(j)}+\alpha \Delta$; (Update iterate)
7: $j \leftarrow j+1$; go to Step 1;

- Linear MPC case exactly recovered by single BVNLLS iteration!

Bounded-variable least squares (BVLS)

Problem: Least-squares with box constraints

$$
\min _{p \leq x \leq q} \frac{1}{2}\|J x-b\|_{2}^{2}
$$

- BVLS [2] is a primal active-set algorithm
- Finds solution x^{*} by iterating until the optimal active set $\left(\mathcal{A}^{*}\right)$ is found
- Active set? $\mathcal{A}=\{\{i \mid x(i)=p(i)\} \cup\{i \mid x(i)=q(i)\}\}$
- Main computations:
- Solve unconstrained LS: $J(:, \neg \mathcal{A})^{\dagger}(b-J(:, \mathcal{A}) x(\mathcal{A}))$ (every iteration)
- Gradient entries: $J(:, \mathcal{A})^{\top}(b-J x)$ (in some iterations)
- \mathcal{A} is updated by one index (inserted or removed)
\Longrightarrow Subsequent LS problems are related by insertion or deletion of $\mathbf{1}$ column in J !

BVLS solver

- BVLS solves a sequence of related LS problems
- Efficient implementation with numerically stable recursive QR updates [3]
- Library free, simple arithmetic operations
- Stable also in single precision
- Suitable for embedded hardware platforms

Double precision, random poorly-conditioned,
box-constrained LS problems (2.6GHz Intel Core i5 Mac)

- Implemented and tested on a real industrial PLC (paper under preparation)

BVLS for MPC: Problem Sparsity

Problem: Least-squares with box constraints

$$
\min _{p \leq x \leq q} \frac{1}{2}\|J x-b\|_{2}^{2}
$$

- $J=\left[\begin{array}{c}W_{k} \\ \nabla_{z} h_{k}\left(z_{k}, \phi_{k}\right)^{\top}\end{array}\right]$
- Problem can be constructed using sequence of affine models obtained from linearization over previously computed or guess trajectory
$-A\left(S_{k}\right)_{0}^{(i)} \Delta y_{k}=\sum_{j=1}^{n_{\mathrm{a}}} A\left(S_{k}\right)_{j}^{(i)} \Delta y_{k-j}+\sum_{j=1}^{n_{\mathrm{b}}} B\left(S_{k}\right)_{j}^{(i)} \Delta u_{k-j}+\mathcal{M}\left(\hat{Y}^{(i)}, \hat{U}^{(i)}, S_{k}\right)$
($i=$ prediction step)
$x=\Delta z_{k}=\left\{\Delta u_{k}, \Delta y_{k+1}, \ldots, \Delta u_{k+N_{u}-1}, \Delta y_{k+N_{u}}, \Delta y_{k+N_{u}+1}, \ldots, \Delta y_{k+N}\right\}$
- Outputs are kept as decision variables (non-condensed approach) for a larger but sparse problem formulation which is cheap to construct

BVLS for MPC: Problem Sparsity

Problem: Least-squares with box constraints

$$
\min _{p \leq x \leq q} \frac{1}{2}\|\boldsymbol{J} x-b\|_{2}^{2}
$$

$\nabla_{z} h_{k}\left(z_{k}, \phi_{k}\right)^{\top}=$

$z=\left\{u_{k}, y_{k+1}, \ldots, u_{k+N_{u}-1}, y_{k+N_{u}}, y_{k+N_{u}+1}, \ldots, y_{k+N}\right\}$
Structure depends on the ordering of decision variables, model ($n_{a}, n_{b}, n_{u}, n_{y}$) and tuning parameters $\left(N, N_{u}\right)$

BVLS for MPC: Problem Sparsity

Problem: Least-squares with box constraints

$$
\min _{p \leq x \leq q} \frac{1}{2}\|J x-b\|_{2}^{2}
$$

Structure depends on the ordering of decision variables, model and tuning parameters

Sparsity pattern of $\nabla_{z} h_{k}(z)$ for a random model with $N_{\mathrm{p}}=10, N_{\mathrm{u}}=4, n_{\mathrm{a}}=2$, $n_{\mathrm{b}}=4, n_{u}=2$ and $n_{y}=2$.

Build-free MPC

- Typical MPC setup:
- Step 1: Construct an optimization problem based on the prediction model and tuning parameters (e.g., N, N_{u})
- Step 2: Pass it in standard form to an optimization solver
- Constructing optimization problem matrices can be time consuming, especially in approaches with condensed formulation
- A change in the model coefficients, horizons, tuning weights, model size, needs re-construction of the optimization problem
- We propose methods that systematically eliminate the problem construction phase, resulting in:
- reduced memory requirement
- faster execution
- ability to adapt to changes in model/tuning parameters at runtime at no computational cost

Matrix abstraction

BVLS problem: Least-squares with box constraints

$$
\min _{p \leq x \leq q} \frac{1}{2}\|\boldsymbol{J} x-b\|_{2}^{2}
$$

- The sparse Jacobian matrix $J=\left[\begin{array}{c}W_{k} \\ \nabla_{z} h_{k}\left(z_{k}, \phi_{k}\right)^{\top}\end{array}\right]$ contains tuning weights and coefficients from the sequence of affine models with indexing completely defined by model and tuning parameters
- Role of J in BVLS:
- Solve unconstrained LS: $J(:, \neg \mathcal{A})^{\dagger}(b-J(:, \mathcal{A}) x(\mathcal{A}))$
- Gradient entries: $J(:, \mathcal{A})^{\top}(b-J x)$
- Key observation: all operations with J can be replaced by 2 abstract operators

1) Jix: return i th column of J times a given scalar x
2) JtiX: return i th column of J times a given vector X (i th column of $J=i$ th row of J^{\top})

Two operators to replace all J instances

- To code Jix and JtiX we need

1) Model coefficients from the sequence of affine models: store all in a single vector
M (faster execution) or generate online via linearization routines (lower memory)
2) Model parameters $n_{a}, n_{b}, n_{u}, n_{y}$
3) Tuning parameters N, N_{u} and weights

- For J times a vector v, use Jix over each element of v and accumulate the result
- For J^{\top} times a vector v, use JtiX over each element of v and store result in the corresponding element of output vector
- Recall: location of non-zeros is already known in terms of model and tuning parameters!
\Longrightarrow Only non-zero entries in J are operated
\Longrightarrow Matrix operations as fast as sparse linear algebra while using significantly lesser amount of memory!

Build-free MPC algorithm

BVNLLS without problem construction

Initialize $z^{(0)} \in\{z \mid p \leq z \leq q\}, j \leftarrow 0$
1: Update Jacobian $J \leftarrow \nabla_{z} r\left(z^{(j)}\right)^{\top}$ Update M; (Linearization)
2: Compute gradient $J^{\top} r$ of Lagrangian function; Use JtiX
3: If first-order optimality conditions are satisfied then stop;
4: Solve $\Delta \leftarrow \arg \min _{p-z^{(j)} \leq \Delta \leq q-z^{(j)}}\left\|J \Delta+r\left(z^{(j)}\right)\right\|_{2}^{2}$ via BVLS solver; Uses Jix, JtiX
5: Compute step-size $0<\alpha \leq 1$ for backtracking;
6: $z^{(j+1)} \leftarrow z^{(j)}+\alpha \Delta$; (Update iterate)
7: $j \leftarrow j+1$; go to Step 1 ;

Code of Jix and JtiX does not change with any change in model or tuning parameters or problem size
\Longrightarrow entire MPC code is stand-alone for a given problem formulation

Sparse matrix factors

- Recall: we solve $J(:, \neg \mathcal{A})^{\dagger}(b-J(:, \mathcal{A}) x(\mathcal{A}))$ in each BVLS iteration
- Best way: recursive thin QR factorization (using Gram-Schmidt orthogonalization)
- How to exploit sparsity? How to know the location of non-zeros in QR?

R factor of J

Sparse matrix $J=Q R$
Q factor of J

Sparsity pattern of Jacobian J and its thin QR factors for a random NARX model with diagonal weights, and parameters $n_{y}=n_{u}=2, n_{\mathrm{a}}=2, n_{\mathrm{b}}=1, N=4, N_{u}=3$.

Gram-Schmidt orthogonalization

- If $J=Q R$,

$$
\begin{aligned}
Q^{\prime}(:, i) & =J(:, i)-\sum_{j=1}^{i-1} Q(:, j) Q(:, j)^{\top} J(:, i), \\
Q(:, i) & =Q^{\prime}(:, i) /\left\|Q(:, i)^{\prime}\right\|_{2} \\
R(j, i) & =Q(:, j)^{\top} J(:, i), \forall j \in[1, i-1], \\
R(i, i) & =\left\|Q(:, i)^{\prime}\right\|_{2}
\end{aligned}
$$

- Above formulae refer to classical Gram-Schmidt process: catastrophic numerical cancellation possible
- We use the theoretically equivalent modified Gram-Schmidt method with automatic reorthogonalization for numerical stability

Sparsity analysis

- Define the non-zero structure of a vector x to be the set of indices $\mathcal{S}(x)$ such that $x(i) \neq 0, \forall i \in \mathcal{S}(x)$, and $x(j)=0, \forall j \notin \mathcal{S}(x)$.

Theorem: Non-zero structure of columns of Q factor

Consider an arbitrary sparse matrix $J \in \mathbb{R}^{n_{1} \times n_{2}}$ of full rank such that $n_{1} \geq n_{2}$ and let Q denote the Q-factor from its thin $Q R$ factorization i.e., $J=Q R$. The non-zero structure of each column $Q(:, i)$ of Q satisfies

$$
\begin{aligned}
\mathcal{S}(Q(:, i)) & \subseteq \bigcup_{j=1}^{i} \mathcal{S}(J(:, j)), \forall i \in\left[1, n_{2}\right], \\
\text { and } \mathcal{S}(Q(:, 1)) & =\mathcal{S}(J(:, 1)) .
\end{aligned}
$$

- Using the above theorem, which is based on MGS, and its corollaries [4], we exploit sparsity without even storing J ! (paper [4] = Saraf, Bemporad 2019 available on arXiv)

Recursive QR updates

- With diagonal weights, sparsity pattern info of Q factor can be stored in just 2 integer vectors
- Recursive update in sparsity pattern \Longrightarrow update entries in 2 vectors of dimension $=$ no. of columns of J
- Main principle: thin QR factorization of a matrix is unique \Longrightarrow column indices of J may be added to or removed from the active set in an arbitrary order!
- R factor's sparsity exploited using orthogonality: $R=Q^{\top} J$

Numerical example: NMPC of CSTR

- CSTR model

$$
\begin{aligned}
& T^{(k+1)}=T^{(k)}+t_{\mathrm{s}}\left(T_{\mathrm{f}}^{(k)}-1.3 T^{(k)}+\kappa_{1} C_{\mathrm{A}}^{(k)} e^{\frac{-5963.6}{T^{(k)}}}+0.3 T_{\mathrm{C}}^{(k)}\right) \\
& C_{\mathrm{A}}^{(k+1)}=C_{\mathrm{A}}^{(k)}+t_{\mathrm{s}}\left(C_{\mathrm{Af}}^{(k)}-\kappa_{2} C_{\mathrm{A}}^{(k)} e^{\frac{-5963.6}{T^{(k)}}}-C_{\mathrm{A}}^{(k)}\right)
\end{aligned}
$$

- Nonlinear system with 2 outputs, 1 input and 2 measured disturbances
- Model coefficients as in MPC Toolbox demo (Mathworks)

[^0]
Execution time: Small-sized problems

- SQP: subproblems may be infeasible. Warm start exploited (MATLAB fmincon)
- IPOPT: uses MA57 solver, sparse routines. No warm start exploited
- BVNLLS: very few Gauss-Newton steps to converge, exploits warmstarts
- Sparse linear algebra (LA) is typically slower than dense LA for small problems - proposed sparsity exploiting methods allow $\approx 10 \times$ faster solution than dense variant even for small problem sizes!
- $\approx 100 \times$ speedup on mean CPU time w.r.t. benchmarks

Number of decision variables n Solver comparison in MATLAB for NMPC of CSTR simulated on a Mac with 2.6 GHz Intel Core i5. $N=n / 3$, no. of box constraints $=n$ pairs, no. of equality constraints $=2 N, \sqrt{\rho}=10^{4}$, $N_{\text {sim }}=1500$ sample steps.

Execution time: Larger problems

- Active-set methods can be faster than interior-point methods if sparsity is exploited [1]
- Faster even for large problems
- sparse BVNLLS tool for NMPC
- Efficient C implementation
- easily embeddable

Conclusions

- Key ideas:
- relax equality constraints due to dynamics using penalty functions
- parameterize optimization solver in terms of MPC parameters
- The proposed optimization solvers for MPC are:
- simple to code, fast to execute, flexible in real time
- good for embedded platforms (PLCs, μ controllers, ...)
- competitive with state-of-the-art algorithms
- Novel linear algebra methods devised to heavily exploit sparsity
- Unifying MPC framework for LTI/LPV/NLTI/NLPV systems
- Linearization step can be code-generated using symbolic math software, no other code generation required - easy deployability!
- Extensions: Matrix-free MPC, more general problems

Key References

Q J. Nocedal and S. Wright
Numerical Optimization.
Springer, 2006.
呞 P. Stark and R. Parker
Bounded-Variable Least-Squares: An Algorithm and Applications.
Computational Statistics, 10: 129-141, 1995.
围 N. Saraf and A. Bemporad
A bounded-variable least-squares solver based on stable QR updates.
IEEE Transactions on Automatic Control, 2019.
E- N. Saraf and A. Bemporad
An efficient non-condensed approach for linear and nonlinear model predictive control with bounded variables.
Preprint available at arXiv.org, 2019.

[^0]: ${ }^{1}$ retrieved from apmonitor.com

