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Discrete-time nonlinear model

General multivariable nonlinear (NL) prediction model

M(Yk, Uk, Sk) = 0

Past inputs Uk = (uk−nb
, . . . , uk−1), uk ∈ Rnu

Past outputs Yk = (yk−na , . . . , yk), yk ∈ Rny

Measured exogenous signals Sk = (sk−nc , . . . , sk−1), sk ∈ Rns

na, nb and nc define the model order

Special case (state-space model): Uk = uk, Yk = xk

Assumption: M is differentiable

Examples: NL state-space models, deterministic parameter-varying NL-ARX models

(black-box), I/O difference equations from first principles, neural networks with

smooth activation function...

On linearization about arbitrary Û, Ŷ :

− A (Sk)0 ∆yk =

na∑
j=1

A (Sk)j ∆yk−j +

nb∑
j=1

B (Sk)j ∆uk−j + M(Ŷ, Û, Sk),

A,B represent required Jacobians
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MPC problem setup

Prediction horizon N , control horizon Nu

zk = {uk, . . . , uk+Nu−1, yk+1, . . . , yk+N}
=vector of decision variables

Performance index
min
z
‖fk(z)‖22

Examples:
- fk is linear, fk(z) =Wk(z − zref,k) (standard tracking problem)
- fk is arbitrary nonlinear differentiable function

Constraints
- (nonlinear) equality constraints due to the prediction model M
- upper and lower bounds on inputs and outputs pk ≤ z ≤ qk
- general inequality constraints g(uk+j , yk+j) ≤ 0 can be softened and
treated as equalities g(uk+j , yk+j) + σj = 0, with σj ≥ 0
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Constrained nonlinear programming (NLP) problem

Consider tracking problem with quadratic costs for simplicity
(everything immediately extends to arbitrary nonlinear costs ‖fk(z)‖22)

Resulting NLP formulation at each sample step k

min
z

1

2
‖Wk(z − zref,k)‖22

s.t. hk(z, φk) = 0,

pk ≤ z ≤ qk.

Matrix W is often diagonal and the Jacobian of h(z) is sparse and
structured

Initial condition vector φ consists of past I/O values
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Proposed NMPC formulation

Key Idea

Soften equality constraints via quadratic penalties

min
pk≤z≤qk

1

2
‖Wk(z − zref,k)‖22 +

ρ

2
‖hk(z)‖22

Penalty parameter ρ > 0 is a large weight

Motivation: model is uncertain anyway, so why impose hk(z, φk) = 0
exactly?

The problem can be rewritten as

min
pk≤z≤qk

1

2
‖rk(z)‖22, rk(z) =

[ 1√
ρWk(z − zref,k)

hk(z, φk)

]
Box-constrained nonlinear least squares problem is always feasible

Fast solution using bounded-variable nonlinear least squares (BVNLLS)

Same control performance as with conventional NMPC/NLP
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Bounded-variable nonlinear least squares (BVNLLS)

Problem: Sum-of-squares cost function with box constraints

min
pk≤z≤qk

1

2
‖rk(z)‖22

Gauss-Newton method: efficiently solves unconstrained nonlinear LS
- Sequence of linear least-squares problems
- Hessian (H) is approximated as H ≈ J>J , J = ∇zr(z)>
- Rapid convergence with good initial guess
- Only first-order information (J) is needed

Proposed solver: Gauss-Newton method with box constraints

Line-search problem: Linear least-squares with box constraints (BVLS)

Guaranteed convergence using sufficient decrease condition
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Bounded-variable nonlinear least squares (BVNLLS)

Problem: Sum-of-squares cost function with box constraints

min
pk≤z≤qk

1

2
‖rk(z)‖22

BVNLLS: Gauss-Newton method with box constraints

Bounded-variable nonlinear least squares

Initialize z(0) ∈ {z|p ≤ z ≤ q}, j ← 0

1: Update Jacobian J ← ∇zr
(
z(j)

)>
; (Linearization)

2: Compute gradient J>r of Lagrangian function;

3: If first-order optimality conditions are satisfied then stop;

4: Solve ∆← arg min
p−z(j)≤∆≤q−z(j)

‖J∆ + r
(
z(j)

)
‖22 via BVLS solver; (Line search)

5: Compute step-size 0 < α ≤ 1 for backtracking;

6: z(j+1) ← z(j) + α∆; (Update iterate)

7: j ← j + 1; go to Step 1;

Linear MPC case exactly recovered by single BVNLLS iteration!
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Bounded-variable least squares (BVLS)

Problem: Least-squares with box constraints

min
p≤x≤q

1

2
‖Jx− b‖22

BVLS [2] is a primal active-set algorithm

Finds solution x∗ by iterating until the optimal active set (A∗) is found

Active set? A = {{i|x(i) = p(i)} ∪ {i|x(i) = q(i)}}

Main computations:

- Solve unconstrained LS: J(:,¬A)† (b− J(:,A)x(A)) (every iteration)

- Gradient entries: J(:,A)>(b− Jx) (in some iterations)

A is updated by one index (inserted or removed)

=⇒ Subsequent LS problems are related by insertion or deletion of 1 column in J!
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BVLS solver

BVLS solves a sequence of related
LS problems

Efficient implementation with
numerically stable recursive QR
updates [3]

Library free, simple arithmetic
operations

Stable also in single precision

Suitable for embedded hardware
platforms
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Implemented and tested on a real industrial PLC (paper under preparation)
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BVLS for MPC: Problem Sparsity

Problem: Least-squares with box constraints

min
p≤x≤q

1

2
‖Jx− b‖22

J =

[
Wk

∇zhk(zk, φk)>

]
Problem can be constructed using sequence of affine models obtained from

linearization over previously computed or guess trajectory

−A (Sk)
(i)
0 ∆yk =

na∑
j=1

A (Sk)
(i)
j ∆yk−j+

nb∑
j=1

B (Sk)
(i)
j ∆uk−j+M(Ŷ (i), Û(i), Sk)

(i =prediction step)

x = ∆zk = {∆uk,∆yk+1, . . . ,∆uk+Nu−1,∆yk+Nu ,∆yk+Nu+1, . . . ,∆yk+N}

Outputs are kept as decision variables (non-condensed approach) for a larger but

sparse problem formulation which is cheap to construct
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BVLS for MPC: Problem Sparsity

Problem: Least-squares with box constraints

min
p≤x≤q

1

2
‖Jx− b‖22

∇zhk(zk, φk)> =

B
(1)
1 A

(1)
0 0 0 · · · · · · 0

B
(2)
2 A

(2)
1 B

(2)
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...
. . .

. . .
...

B
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Nu
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0 0 · · · 0
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· · · B
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B
(Nu+1)
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B
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3∑
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B
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z = {uk, yk+1, . . . , uk+Nu−1, yk+Nu , yk+Nu+1, . . . , yk+N}
Structure depends on the ordering of decision variables, model (na, nb, nu, ny) and

tuning parameters (N,Nu)

11 / 24



Problem formulation Optimization algorithms Sparsity exploitation Numerical results Conclusions

BVLS for MPC: Problem Sparsity

Problem: Least-squares with box constraints

min
p≤x≤q

1

2
‖Jx− b‖22

Structure depends on the ordering of decision variables, model and tuning

parameters

Sparsity pattern of ∇zhk(z) for a random model with Np = 10, Nu = 4, na = 2,

nb = 4, nu = 2 and ny = 2.
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Build-free MPC

Typical MPC setup:

- Step 1: Construct an optimization problem based on the prediction model and

tuning parameters (e.g., N,Nu)

- Step 2: Pass it in standard form to an optimization solver

Constructing optimization problem matrices can be time consuming, especially in

approaches with condensed formulation

A change in the model coefficients, horizons, tuning weights, model size, needs

re-construction of the optimization problem

We propose methods that systematically eliminate the problem construction phase,

resulting in:

- reduced memory requirement

- faster execution

- ability to adapt to changes in model/tuning parameters at runtime at no

computational cost

Key Idea

Parameterize the optimization algorithm in terms of model and tuning
parameters

13 / 24



Problem formulation Optimization algorithms Sparsity exploitation Numerical results Conclusions

Matrix abstraction

BVLS problem: Least-squares with box constraints

min
p≤x≤q

1

2
‖Jx− b‖22

The sparse Jacobian matrix J =

[
Wk

∇zhk(zk, φk)>
]

contains tuning

weights and coefficients from the sequence of affine models with
indexing completely defined by model and tuning parameters

Role of J in BVLS:
- Solve unconstrained LS: J(:,¬A)† (b− J(:,A)x(A))
- Gradient entries: J(:,A)>(b− Jx)
Key observation: all operations with J can be replaced by 2 abstract
operators
1) Jix: return ith column of J times a given scalar x
2) JtiX: return ith column of J times a given vector X
(ith column of J = ith row of J>)
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Two operators to replace all J instances

To code Jix and JtiX we need
1) Model coefficients from the sequence of affine models: store all in a single vector

M (faster execution) or generate online via linearization routines (lower memory)

2) Model parameters na, nb, nu, ny

3) Tuning parameters N,Nu and weights

For J times a vector v, use Jix over each element of v and accumulate
the result

For J> times a vector v, use JtiX over each element of v and store
result in the corresponding element of output vector

Recall: location of non-zeros is already known in terms of model and
tuning parameters!
=⇒ Only non-zero entries in J are operated
=⇒ Matrix operations as fast as sparse linear algebra while using

significantly lesser amount of memory!
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Build-free MPC algorithm

BVNLLS without problem construction

Initialize z(0) ∈ {z|p ≤ z ≤ q}, j ← 0

1: Update Jacobian J ← ∇zr
(
z(j)

)>
Update M; (Linearization)

2: Compute gradient J>r of Lagrangian function; Use JtiX

3: If first-order optimality conditions are satisfied then stop;

4: Solve ∆← arg min
p−z(j)≤∆≤q−z(j)

‖J∆ + r
(
z(j)

)
‖22 via BVLS solver; Uses Jix, JtiX

5: Compute step-size 0 < α ≤ 1 for backtracking;

6: z(j+1) ← z(j) + α∆; (Update iterate)

7: j ← j + 1; go to Step 1;

Code of Jix and JtiX does not change with any change in model or
tuning parameters or problem size
=⇒ entire MPC code is stand-alone for a given problem formulation
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Sparse matrix factors

Recall: we solve J(:,¬A)† (b− J(:,A)x(A)) in each BVLS iteration

Best way: recursive thin QR factorization (using Gram-Schmidt orthogonalization)

How to exploit sparsity? How to know the location of non-zeros in QR?
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Sparsity pattern of Jacobian J and its thin QR factors for a random NARX model with diagonal

weights, and parameters ny = nu = 2, na = 2, nb = 1, N = 4, Nu = 3.
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Gram-Schmidt orthogonalization

If J = QR,

Q′(:, i) = J(:, i)−
i−1∑
j=1

Q(:, j)Q(:, j)>J(:, i),

Q(:, i) = Q′(:, i)/
∥∥∥Q(:, i)

′
∥∥∥
2
.

R(j, i) = Q(:, j)>J(:, i),∀j ∈ [1, i− 1],

R(i, i) =
∥∥∥Q(:, i)

′
∥∥∥
2

Above formulae refer to classical Gram-Schmidt process: catastrophic
numerical cancellation possible

We use the theoretically equivalent modified Gram-Schmidt method
with automatic reorthogonalization for numerical stability
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Sparsity analysis

Define the non-zero structure of a vector x to be the set of indices
S(x) such that x(i) 6= 0, ∀i ∈ S(x), and x(j) = 0, ∀j /∈ S(x).

Theorem: Non-zero structure of columns of Q factor

Consider an arbitrary sparse matrix J ∈ Rn1×n2 of full rank such that
n1 ≥ n2 and let Q denote the Q-factor from its thin QR factorization i.e.,
J = QR. The non-zero structure of each column Q(:, i) of Q satisfies

S (Q(:, i)) ⊆
i⋃

j=1

S (J(:, j)) ,∀i ∈ [1, n2],

and S (Q(:, 1)) = S (J(:, 1)) .

Using the above theorem, which is based on MGS, and its
corollaries [4], we exploit sparsity without even storing J !
(paper [4] = Saraf, Bemporad 2019 available on arXiv)
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Recursive QR updates

With diagonal weights, sparsity pattern info of Q factor can be stored
in just 2 integer vectors

Recursive update in sparsity pattern =⇒ update entries in 2 vectors of
dimension = no. of columns of J

Main principle: thin QR factorization of a matrix is unique
=⇒ column indices of J may be added to or removed from the active

set in an arbitrary order!

R factor’s sparsity exploited using orthogonality: R = Q>J
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Numerical example: NMPC of CSTR

Continuous Stirred Tank Reactor (CSTR) 1

CSTR model

T (k+1) = T (k) + ts(T
(k)
f − 1.3T (k) + κ1C

(k)
A e

−5963.6

T (k) + 0.3TC
(k))

C
(k+1)
A = C

(k)
A + ts(C

(k)
Af − κ2C

(k)
A e

−5963.6

T (k) − C(k)
A )

Nonlinear system with 2 outputs, 1 input and 2 measured disturbances

Model coefficients as in MPC Toolbox demo (Mathworks)

1
retrieved from apmonitor.com
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Execution time: Small-sized problems

SQP: subproblems may be infeasible.

Warm start exploited (MATLAB fmincon)

IPOPT: uses MA57 solver, sparse routines.

No warm start exploited

BVNLLS: very few Gauss-Newton steps to

converge, exploits warmstarts

Sparse linear algebra (LA) is typically

slower than dense LA for small problems

- proposed sparsity exploiting methods

allow ≈ 10× faster solution than dense

variant even for small problem sizes!

- ≈ 100× speedup on mean CPU time

w.r.t. benchmarks

100

101

102

103

W
or

st
-c

a
se

C
P

U
ti

m
e

(m
s)

dense BVNLLS

sparse BVNLLS

fminconSQP (NLP)

IPOPT (NLP)

30 45 60 75 90 105 120 135 150

10−1

100

101

102

Number of decision variables n

M
ea

n
C

P
U

ti
m

e
(m

s)

Solver comparison in MATLAB for NMPC of CSTR
simulated on a Mac with 2.6GHz Intel Core i5.
N = n/3, no. of box constraints = n pairs, no. of

equality constraints = 2N ,
√
ρ = 104,

Nsim = 1500 sample steps.

22 / 24



Problem formulation Optimization algorithms Sparsity exploitation Numerical results Conclusions

Execution time: Larger problems

Active-set methods can be faster than

interior-point methods if sparsity is

exploited [1]

Faster even for large problems

sparse BVNLLS tool for NMPC

- Efficient C implementation

- easily embeddable

101

102

103

104

W
or

st
-c

a
se

C
P

U
ti

m
e

(m
s)

sparse BVNLLS

fminconSQP (NLP)

IPOPT (NLP)

150 210 255 300 345 390 435 480

101

102

103

104

Number of decision variables n

M
ea

n
C

P
U

ti
m

e
(m

s)

Solver comparison in MATLAB for NMPC of CSTR
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Conclusions

Key ideas:
- relax equality constraints due to dynamics using penalty functions
- parameterize optimization solver in terms of MPC parameters

The proposed optimization solvers for MPC are:
- simple to code, fast to execute, flexible in real time
- good for embedded platforms (PLCs, µcontrollers, ...)
- competitive with state-of-the-art algorithms

Novel linear algebra methods devised to heavily exploit sparsity

Unifying MPC framework for LTI/LPV/NLTI/NLPV systems

Linearization step can be code-generated using symbolic math software,
no other code generation required - easy deployability!

Extensions: Matrix-free MPC, more general problems
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