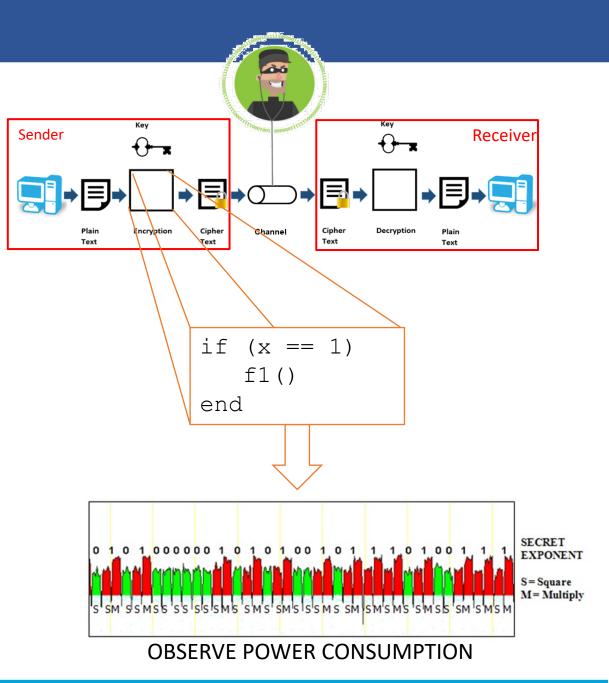
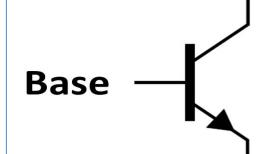
Master Thesis Topics

Hardware Security

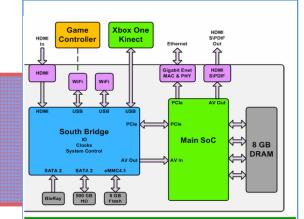

Mottaqiallah Taouil (<u>M.Taouil@tudelft.nl</u>) Cezar R. W. Reinbrecht (<u>C.R.WedigReinbrecht@tudelft.nl</u>) 14 May 2020

Delft University of Technology


Hardware Security

- Cybersecurity:
 - protection against attacks on computer systems
- Cryptography
 - AES: Internet communication, protect files
 - RSA: Bank communication, credit-card
- Hardware Vulnerabilities:
 - Technology
 - Design
 - Architecture

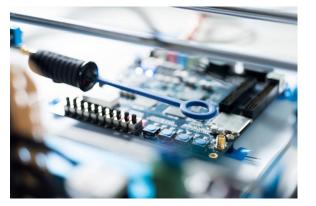
Hardware Vulnerabilities



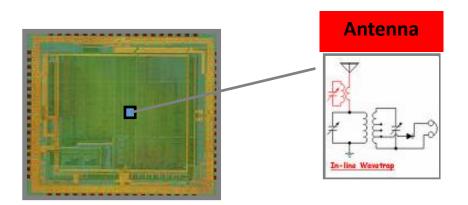
- Probe voltages/currents
- Change voltage/currents
- Current drain
- Heat observation
- EM emission
- Noise emission

- Observation of RTL, netlist or layout
- Accessible test structures
- Presence of spare cells and empty routing area can be exploited

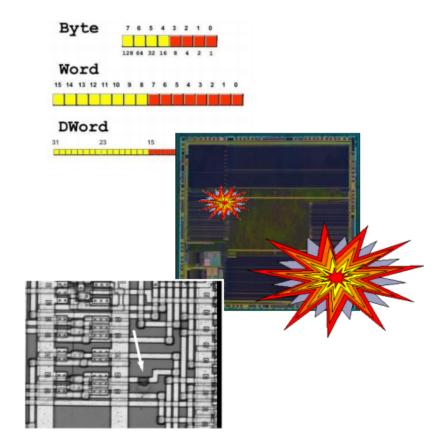
Architecture



- Instructions and operations take different time
- Latency to memory depends on cache
- Configuration registers (privilege control)
- Observe hardware performance counters


Hardware Vulnerabilities

• Examples:


TECHNOLOGY – Side Channel Analysis

DESIGN - Hardware Trojan

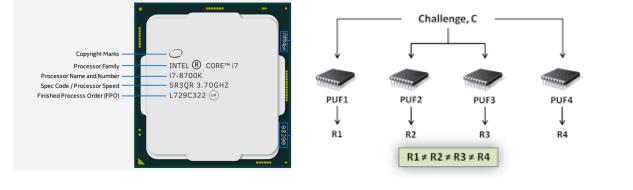
ARCHITECTURE – Fault Injection

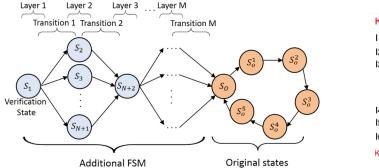
Hardware Countermeasures – IC Metering

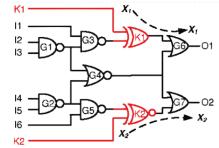
Passive Metering - identification

• Provides passive ways for designers to identify IC after manufacturing process

Active Metering – monitoring and control

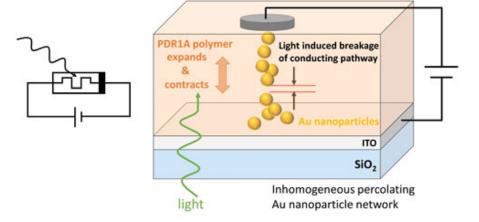

- Provides active ways for designers to identify, enable, control, or disable IC after manufacturing process
- Unlike passive metering, active metering requires communication between IP owner and the chip for proper activation

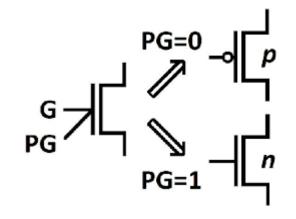

Passive (Identification):


- Reproducible: IDs/Watermark
- Unique: Fingerprint

Active:

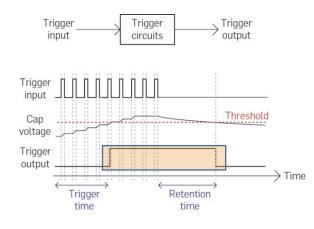
- FSM obfuscation
- Gate obfuscation (Logic Locking)

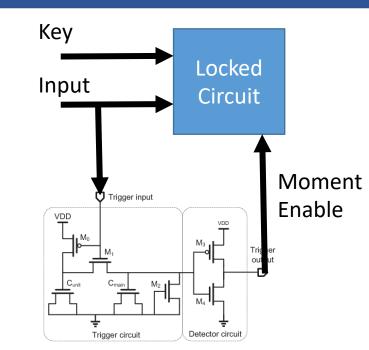


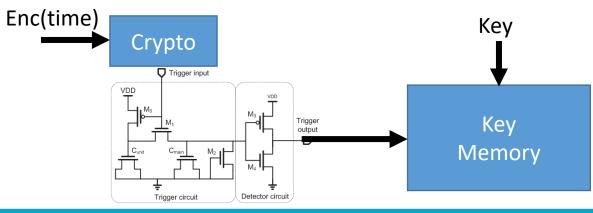

Hardware Attacks and Design for Security

Research Topics

Passive Metering – Unique ID Generation

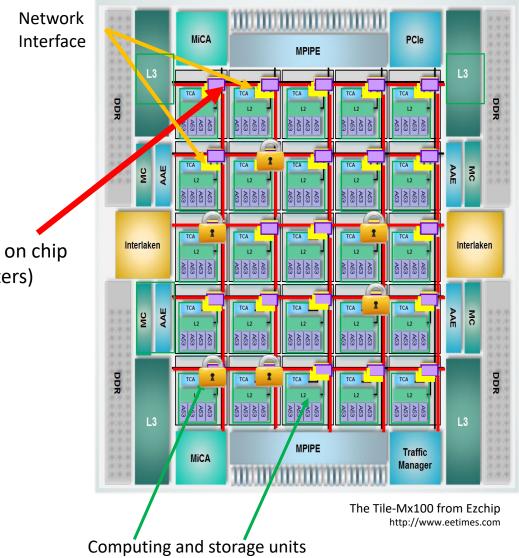

- 1. Use special circuits to create unique IDs
 - Polymorphic gates
- 2. Use emerging technologies to intentionally create IDs:
 - Memristors
- Research
 - Generate unique signatures inside Chip
 - Elaboration of ID circuit
 - Electrical simulations





Active Metering – Time-Dependent Logic Locking

- Logic Locking Scheme will depend on:
 - Key
 - Input
 - Moment "Exact time to unlock IC"
- Research
 - Design trigger circuit
 - Elaborate LL scheme that depends on time
 - 1. Internal:
 - Only when Moment Enable is 1, Key enters unlocking
 - 2. External:
 - Crypto used to establish time of unlocking
 - Key must be applied at specific time to be stored



Active Metering – Net-Lock

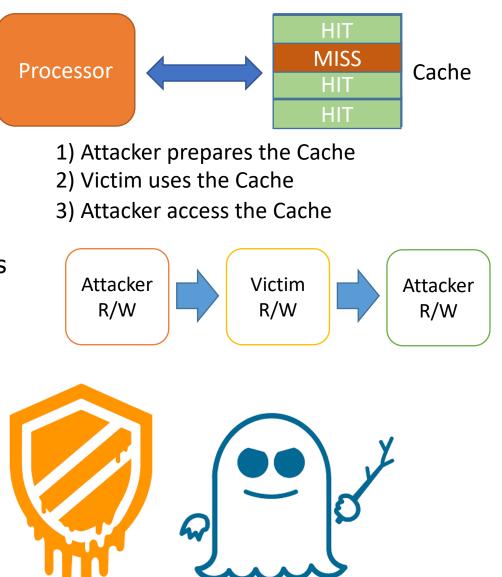
- Network-on-Chip Logic Locking
 - NoC integrates many elements
 - Lock routers means Lock IPs
- Research
 - Integrate Logic Locking scheme in a NoC Router
 - Elaborate online logic locking scheme
 - Activate/Deactivate IPs in the field
 - Cryptography and Protocols

NoC: Network on chip (links and routers)

Design-for-Security – Attack Models and Countermeasures

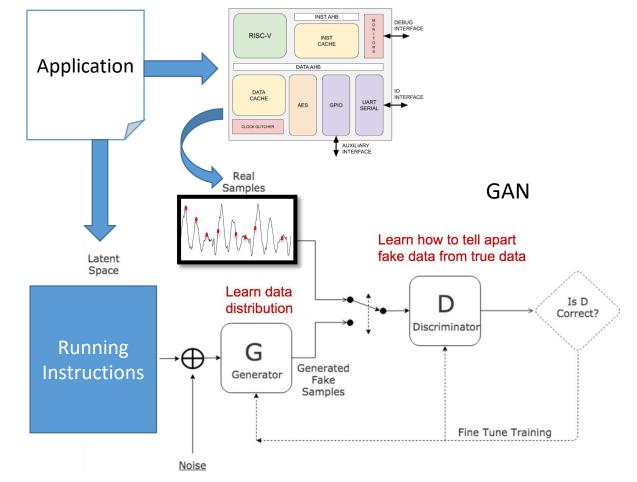
Caches are vulnerable to attacks

- Several popular attacks
- Attacks can be modeled


In collaboration with University of Technology of Talinn

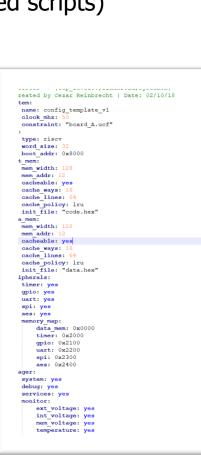
• Research

- $_{\odot}\,$ Evaluate existing attack models
- Elaborate new attack models
- $_{\odot}\,$ Develop methodologies to verify/evaluate security of designs
- $_{\odot}\,$ Develop new countermeasures based on attack models


ID		ID		- 11
ID	attack formula	ID	attack formula	*
1	$Vx \to Ar \to Vx$	15	$Vx \to Vx \to Ar$	d
2	$Vx \rightarrow Vr \rightarrow Vx$	16	$Ar \rightarrow Vx \rightarrow Vr$	d
3	$Ar \to A1 \to Vx$	17	$Vr \rightarrow Vx \rightarrow Vr$	d
4	$Vr \rightarrow A1 \rightarrow Vx$	18	$Vx \to Vx \to Vr$	d
5	$A1 \rightarrow A1 \rightarrow Vx$	19	$Ar \rightarrow Vx \rightarrow A1$	e
6	$V1 \rightarrow A1 \rightarrow Vx$	20	$Vr \rightarrow Vx \rightarrow A1$	e
7	$Vx \to A1 \to Vx$	21	$A1 \rightarrow Vx \rightarrow A1$	f
8	$Vx \rightarrow A1 \rightarrow Vx$	22	$V1 \rightarrow Vx \rightarrow A1$	-
9	$Vr \rightarrow V1 \rightarrow Vx$	23	$Vx \to Vx \to A1$	e
10	$A1 \rightarrow V1 \rightarrow Vx$	24	$Ar \rightarrow Vx \rightarrow V1$	b
11	$V1 \rightarrow V1 \rightarrow Vx$	25	$Vr \rightarrow Vx \rightarrow V1$	b
12	$Vx \rightarrow V1 \rightarrow Vx$	26	$A1 \rightarrow Vx \rightarrow V1$	-
13	$Ar \to Vx \to Ar$	27	$V1 \rightarrow Vx \rightarrow V1$	С
14	$Vr \rightarrow Vx \rightarrow Ar$	28	$Vx \rightarrow Vx \rightarrow V1$	b

Design-for-Security – ORGANICS

- Generate power traces as they were "real"
 - Uses Generative Adversarial Networks (GAN)
 - Train the GAN to generate traces of a processor running applications
- Research:
 - 1. Leakage Analysis or Attack Evaluations
 - Real power traces are used to train GAN
 - To be used when there is no physical access
 - 2. Secure IC design
 - Electrical Simulations train GAN
 - Security Evaluation of IC at design-time (new EDA tools?)

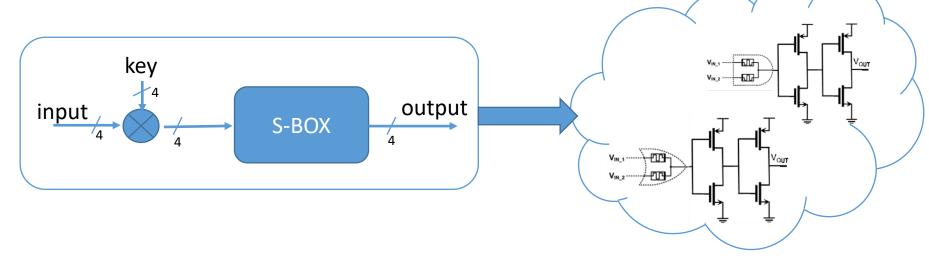

Design-for-Security – Hardware Security Platform

• Features:

- IP-based flow Customizable SoC
- Top-level generation based on configuration file
- Easy to simulate or emulate in FPGA (automated scripts)
- Vendor-independent design
- Use popular processors (mainly RISC-V)

• Objectives:

- Perform Attacks:
 - Physical Side Channel Analysis
 - Logical Side Channel Analysis
 - Fault Injection
 - HW Trojans
- Evaluates Countermeasures
 - Software
 - Hardware



Emerging Technologies – Security Aspects of Memristors

• Research

- Use MRL circuit to design a small cipher block (based on S-Box)
- Perform electrical simulations
- Evaluate with different cryptanalysis methods how difficult is to attack
- $_{\odot}\,$ Understand the power behaviour and leakage behaviour
 - $\circ~$ Is there a different power model that could be exploited?

Master Thesis Topics

Thank you

Mottaqiallah Taouil (<u>M.Taouil@tudelft.nl</u>) Cezar R. W. Reinbrecht (<u>C.R.WedigReinbrecht@tudelft.nl</u>) 14 May 2020

Delft University of Technology