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QCrypt Conference Series

10th International Conference on Quantum Cryptography

Started in 2011 by Christandl and Wehner ] iﬁ

Steadily growing since then:
approx. 100 submissions, 30 accepted as contributions, )
~300 participants in Montreal 2019. This year:

Amsterdam

goal of the conference: represent the previous year’s
best results on quantum cryptography, and to support
the building of a research community

Trying to keep a healthy balance between theory and
experiment

Half the program consists of 4 tutorials of 90 minutes, ch;:ioitg "
approximately 6 invited talks

QCrypt 2020



https://2020.qcrypt.net/
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[thanks to Serge Fehr, Stacey Jeffery, Chris Majenz, Florian Speelman, Ronald de Wolf]
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Quantum Mechanics

@ + basis @ ‘O>_|_ @ ‘1>_|_
‘ X basis ‘ |O>>< ‘ |1>><

Measurements: with prob. 1 yields 1

Quantum
operations: U

@ + [on @ ‘ @— H —‘
@ A with prob. % yields 0

‘ 0/1 with prob. % yields 1 :




No-Cloning Theorem

@ 0) @ 1) Quantum operations: | U
®) @n. %
=
|~

®)

@)

Proof: copying is a non-linear operation




Proof of No-Cloning Theore

Proof: Assume U such that for all [): U (J) @ |0)) = |[Y) & [y).

Then, U (|0) ® |0)) = [0) ® [0) and U (|1) ® [0)) = [1) & [1).

By linearity of U, it holds that

U((10)+ 1) ® [0) =U (|0) ® [0)) +U (|1) ® |0))

=[0) ® [0) +[1) ® [1)

# (10) +11) & (10) +|1))

=10) ®10)+10) @ 1) + 1) ® [0) + |1) @ |1) Contradiction!




Ei ' [Bennett Brassard 84]
iBOb

k=0101 1011

k=0101 1011

Eve

Offers an quantum solution to the key-exchange problem which does
not rely on computational assumptions (such as factoring, discrete
logarithms, security of AES, SHA-3 etc.)

Important caveat: classical communication has to be authenticated to
prevent man-in-the-middle attacks


http://dx.doi.org/10.1016/j.tcs.2014.05.025

k=110 k=110

[Bennett Brassard 84]




Quantum states are unknown to Eve, she cannot copy them.

Honest players can test whether Eve interfered.

[Bennett Brassard 84]



©2008 Vadimm Makarov www.vadl.com



Quantum Hacking

e.g. by the group of Vadim Makarov (Quantum Hacking Lab, Moscow)
i

Quantis_ =
Quantum Random o4& =1 L Dw
Number Generator § > e

SO

ol n* [ Quantis USB
erial n*: 100732A410

©2008 Vadim Makarov www.vadl.com


http://www.vad1.com/

Ei ' [Bennett Brassard 84]
iBOb

k=0101 1011

k=0101 1011

Eve

Three-party scenario: two honest players versus one dishonest eavesdropper

Quantum Advantage: Information-theoretic security is provably impossible with
only classical communication (Shannon’s theorem about perfect security)


http://dx.doi.org/10.1016/j.tcs.2014.05.025
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Secure Two-Party Cryptography

Information-theoretic security

Correctness (both honest)

No computational restrictions +

= .. 5o ‘;/-w SoR
< =
CO.| | Fl p p I N o L W=\
I - I I / : ’ 1
g W/ V‘Ai\ ©) (\\ 2000

| | ﬁ Y

Bit Commitment DE]

T ol

é Oblivious Transfer sy —. —

Hg ﬂ U S1 —> OT / — S,

>

S E 2-Party Function Evaluation .- Security for honest Bob
< I X —| T M (0

2 e ﬁ fey) — S — 9 (x, y) 1Y g

Multi-Party Computation
| (with dishonest majority)




Coin Flipping (CF)

Strong CF: No dishonest player can bias the outcome

Classically: a cheater can always obtain his desired outcome with prob 1

Quantum: [Ambainis 02] Quantum Protocol with bias 0.25

[Kitaev 03] lower bounds the bias by - % ~ (0.2

V2
[Chailloux Kerenidis 09] give optimal quantum protocol for strong CF with this bias

Weak CF (“who has to do the dishes?”): Alice wants heads, Bob wants tails

[Mochon 07] uses Kitaev’s formalism of point games to give a quantum protocol
for weak CF with arbitrarily small biase > 0

[Aharonov Chailloux Ganz Kerenidis Magnin 14] reduce the proof complexity from
80 to 50 pages... explicit protocol?

[Arora, Roland, Vlachou, Weis 18/19] explicit protcols



DAY

Bit Commitment (BC) L

Two-phase (reactive) protocol:

a=0 or commit
a=1 o0
Hiding: even dishonest

Bob does not learn a

Binding: dishonest Alice
cannot change her mind

Classically: impossible
Quantum: believed to be possible in the early 90s

shown impossible by [Mayers 97, LoChau 97] by a beautiful argument (purification and
Uhlmann’s theorem)

[Chailloux Kerenidis 11] show that in any quantum BC protocol, one player can cheat with
prob 0.739. They also give an optimal protocol achieving this bound. Crypto application?



Bit Commitment = Strong Coin Flipping




Oblivious Transfer (OT)

So—>f «— C
OT Ny

1-out-of-2 Oblivious Transfer:

Sq1 —>

Rabin OT:

s— MO — s/ 1
(secure erasure) |

Example One: A means for transmitting
two messages elither but not both of
which may bhe received.

Dishonest Alice does not learn
choice bit

Dishonest Bob can only learn one
of the two messages

These OT variants are information-theoretically equivalent (homework! ®)

OT is symmetric [Wolf Wullschleger at EuroCrypt 2006, only 10 pages long]

1-2 OT = BC:
— -— 0,1
IS o7 e
commit P—
—
a=0or
/‘i} a=1

A
™
™

[Wiesner 68, Even Goldreich Lempel 85, Rabin 81]



Quantum Protocol for Oblivious Transfer «—=E@=-.

IO, Il IC = {3,4,5}, Il—C = {112}

fO'fl i

] ki = f1(110)

ko = f,(01) ki=f,(110)  to =So D ko
ty = 51D kq
>

sy =t; @ f1(110)

Correctness v/

[Wiesner 68, Bennett Brassard Crepeau Skubiszewska 91]



Quantum Protocol for Oblivious Transfer «—=E@=-.

f i Iy, I Ic = {3,4,5}, Ii—¢c = {112}

fo, f1
] ki = f1(110)

ko = f,(01) ki=f,(110)  to =So D ko
ty = 51D kq
>

Security for honest Bob v/ sy =t; @ f1(110)

[Wiesner 68, Bennett Brassard Crepeau Skubiszewska 91]




So—| «—C
—_

Quantum Protocol for Oblivious Transfer =

f i IO, Il IC = {3,4,5}, Il—C — {%2}

fo f1
] ky = f1(110) ko = fo(01)

ko = f,(01) ki=f,(110)  to =So D ko

ti1= s k
Security for honest Bob v/ 1= 59 .

Security for honest Alice X s1=t; @ f,(110) So =t D fo(01)

[Wiesner 68, Bennett Brassard Crepeau Skubiszewska 91]




[D BC = Oblivious Transfer *=E@=:

I =145}, [1-c = {2}

!

ki = f1(10)

sy =t @ f1(10)

[Bennett Brassard Crepeau Skubiszewska 91, Damgaard Fehr Lunemann Salvail Schaffner 09, Unruh 10]




Limited Quantum Storage 1 — Rl —

@@~ - -

store all gbits

WJ \ , wait 1 sec>

f § Iy, I Ic = {3,4,5}, Ii—¢c = {112}

fOifl

] ki = f1(110)

ko = f,(01) ki=f,(110)  to =So D ko
ty = 51D kq
>

s; = t; @ f1(110)

[Damgaard Fehr Salvail Schaffner 05, Wehner Schaffner Terhal 09]




Summary of Quantum Two-Party Crypto

Information-theoretic security

No computational restrictions

R . . ~\ f \ [ =021
Coin-Flipping
\ % ke Bty ‘\\"\‘ N LB \:,,f

| | & M

Bit Commitment i
LBl o~

T ol

Oblivious Transter sy —. —c

p oy e

2-Party Function Evaluation

()]
()]
Q
=
)
(Tl
Q
(%))
>
)
s’
C
©
>
O

[Blum 83, Kilian 88]
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Conjugate Coding & Quantum Money

also known as quantum coding or quantum multiplexing

NEGEEEH
HENHNE

Originally proposed for securing quantum banknotes (private-key qguantum money)
Bank holds list of serial numbers with according g states

The note has to be transferred to the bank for verification

Theorem: Given access to a single authentic bank note, attempts to create two bank
notes having the same serial number that independently pass the bank’s test for
validity have success probability exactly (3/4)™.

| Molina Vidick Watrous 13]


https://dl.acm.org/citation.cfm%3Fid=1008908.1008920

. HENEEH

Quantum Money

EEENE
@ % HH

d00)

Thm: Given access to a single authentic bank note, attempts to create two bank notes
having the same serial number that independently pass the bank’s test for validity
have success probability exactly (3/4)™.

Is it secure?
No! Other attacks exists!

For instance, use n EPR pairs on two bank notes with the same serial number, submit
one for verification. Verification succeeds with probability p and you have another
valid bank note in your hands. What is p?

Furthermore, if the bank returns invalid bills, attacker can learn individual qubits by
asking for validation of X|«a) .

Therefore, invalid bills should never be returned by the bank.

[Molina Vidick Watrous 13,



https://arxiv.org/abs/1010.0256

Elitzur-Vaidman’s bomb gquality tester

a)  repeat N times b) repeat N times
0>—l—R5—T | 0/1 0) _LRF‘ | 0/1
0: OK 0: OK

- 10) 8 gy 2 1: Boom! 10 XA 1: Boom!

a dud a bomb

cosd —sind

_ ] be a counterclockwise
sind cosd

Pick a large N, small angle 6 = %, let Rg = [
rotation by 4.

a) After first round: (cos 6 |0) + sin §|1)) |0), after N rotations: [1)|0)

b) After first round: (cos & |0)|0) + sin §|1)|1)) . Prob of explosion: sin? &
If no explosion, collapse back to |0)|0), and start again

After N rounds of rotation and tests: |0)|0)

2
Overall prob of no explosion: (1 —sin? )N > 1 — Z—N



Bomb Testing to Counterfeit Q Money

N repetitions
0) 4Rs Rs w —R; ] 0/1
OK
foyf— |
@) 1 X H @) 9 X ) 9 X
the rest ! the rest ! the rest !
of § of § of $
Fail
$: get the $: get the $: get the

money back money back money back

$: 0 to jail $: g0 to jail $: g0 to jail

cosd —sind

sind coso

For |a@) = |0) or |1), we are in the “bomb” case from before. Validation flips the state

back to what it was, the probe does not rotate. Final outcome: O

Pick a large N, small angle 6 = %, let Rg = [

For |a) = |+), an X operation does nothing, the probe is rotated by §.
Final outcome: 1

For |a) = |—), one can check that for an even N, the final outcome is 0, and money is
never rejected.



Bomb Testing to Counterfeit Q Money

N repetitions

|0>—R5—T Ra—T—--- —Ra—T—m 0/1

la) 4 X la) 4 X ) 94X
the rest the rest the rest
of $ of $ of $

$: get the
money back

$: get the
money back

$: get the
money back

$: go to jail g go to jail $: go to jail
Hence, we can identify |a) = |[+) .
|a) = |—) can be identified using controlled - X operation
Otherwise, simply measure in the computational basis

Hence we can identify all n qubits using at most 2n X N adaptive queries to a strict
tester

Prob that attack succeeds: (1 — —

[Brodutch Nagaj Sattath Unruh 14]



More practical Q Money

Drawback of Wiesner’s money: needs quantum interaction with bank
Classically verifiable: bank sends basis string, client responds, bank checks

Theorem: The probability that a counterfeiter succeeds in two independent classical

verifications with the bank, given access to a single valid bank note is exactly
n

(2+22) ~ (0.927)".

In practice, one would like to have Q money schemes with public verifiability

Several schemes were proposed and broken by Aaronson, Christiano, Lutomirskiﬂ,_»__
Gosset, Kelner, Hassidim, Shor, Farhi, Pena, Faugere, Perret, Zhandry17, ... l?

Latest proposal by Shor

.

Good overview in Chapters 8 and 9 of lecture notes by Aaronson.

| y
O ‘

D |


https://arxiv.org/abs/1711.02276
https://simons.berkeley.edu/talks/quantum-money-based-lattices
http://www.scottaaronson.com/barbados-2016.pdf
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Delegated Computation

\Y

\
\

B\\

A
R 4
QCloud Inc. promises to perform a BQP computation for you. @ \\\\\\\ =

How can you securely delegate your quantum computation to an untrusted
quantum prover while maintaining privacy and/or integrity?

Various parameters:
Quantum capabilities of verifier: state preparation, measurements, g operations

Type of security: blindness (server does not learn input), integrity (client is sure the
correct computation has been carried out)

Amount of interaction: single round (fully homomorphic encryption) or multiple
rounds

Number of servers: single-server, unbounded / computationally bounded or multiple
entangled but non-communicating servers

Image: Tremani / TU Delft

Broadbent 17  Fitzsimons 16



https://arxiv.org/abs/1509.09180
https://arxiv.org/abs/1611.10107

Classical Verification of Q Computation

QCloud Inc. promises you to perform a BQP computation

How can a purely classical verifier be convinced that this
computation actually was performed?

Partial solutions:

Using interactive protocols with quantum communication between prover and verifier, this task
can be accomplished, using a certain minimum quantum ability of the verifier.
[Fitzsimons Kashefi 17, Broadbent 17, AlagicDulekSpeelmanSchaffnerl7]

Using two entangled, but non-communicating provers, verification can be accomplished using
rigidity results [ReichardtUngerVaziranil2]. Recently made way more practical by
[ColadangeloGriloJefferyVidick17]

Indications that information-theoretical blind computation is impossible
[AaronsonCojocaruGheorghiuKashefil7]

[see or for overview and more complete references]



https://journals.aps.org/pra/abstract/10.1103/PhysRevA.96.012303
https://arxiv.org/abs/1509.09180
https://arxiv.org/abs/1708.09156
https://arxiv.org/abs/1209.0448
https://arxiv.org/abs/1708.07359
https://arxiv.org/abs/1704.08482
https://arxiv.org/abs/1509.09180
https://arxiv.org/abs/1611.10107

Classical Verification of Q Computation

QCloud Inc. promises you to perform a BQP computation

How can a purely classical verifier be convinced that this
computation actually was performed?

[Mahadev18] Classical verification of Q Computations
[Mahadev18] Quantum fully homomorphic encryption

Verifiable quantum fully homomorphic encryption?
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Th a n k yo u ! QCryptoMindmap

= Thanks to all friends and colleagues that contributed to quantum cryptography and

to this presentation.
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