Quantum Cryptography (Beyond QKD)

CHRISTIAN SCHAFFNER

(1)

INSTITUTE FOR LOGIC, LANGUAGE AND COMPUTATION (ILLC) UNIVERSITY OF AMSTERDAM

CWI

CENTRUM WISKUNDE \& INFORMATICA

Quantum Cryptography Beyond QKD

2 Basics of Quantum Information
2.1 State Space
2.2 Unitary Evolution and Circuits
2.3 Measurement
2.4 Quantum No-Cloning
2.5 Quantum Entanglement and Nonlocality
2.6 Physical Representations- survey article withAnne Broadbent

- aimed at classical cryptographers
3 Quantum Cryptographic Constructions
3.1 Conjugate Coding
3.2 Quantum Key Distribution
3.3 Bit Commitment implies Oblivious Transfer
3.3.1 Oblivious Transfer (OT) and Bit Commitment (..... (BC)
3.3.2 Quantum Protocol for Oblivious Transfer
3.4 Limited-Quantum-Storage Models
3.5 Delegated Quantum Computation
3.6 Quantum Protocols for Coin Flipping and Cheat-Sensitive Primitives
3.7 Device-Independent Cryptography
4 Quantum Cryptographic Limitations and Challenges
4.1 Impossibility of Quantum Bit Commitment
4.2 Impossibility of Secure Two-Party Computation using Quantum Communication
4.3 Zero-Knowledge Against Quantum Adversaries - "Quantum Rewinding"
4.4 Superposition Access to Oracles - Quantum Security Notions
http://arxiv.org/abs/1510.06120
In Designs, Codes and Cryptography 2016

QCrypt Conference Series

- Started in 2011 by Christandl and Wehner
- Steadily growing since then: approx. 100 submissions, 30 accepted as contributions, ~300 participants in Montreal 2019. This year: Amsterdam
- goal of the conference: represent the previous year's best results on quantum cryptography, and to support the building of a research community
- Trying to keep a healthy balance between theory and experiment
- Half the program consists of 4 tutorials of 90 minutes, approximately 6 invited talks

Overview

[thanks to Serge Fehr, Stacey Jeffery, Chris Majenz, Florian Speelman, Ronald de Wolf]

MindMap

- experiments
- Selection of open questions

- Fork me on github!

[from 2018! https://github.com/cschaffner/QCryptoMindmap]

MindMap

- experiments
- Selection of open questions

- Fork me on github!

[https://github.com/cschaffner/QCryptoMindmap]

Quantum Key Distribution (QKD)

Quantum Mechanics

Measurements:

with prob. 1 yields 1
Quantum operations:

$0 / 1$ with prob. $1 / 2$ yields 1

No-Cloning Theorem

Proof: copying is a non-linear operation

Proof of No-Cloning Theorem

Proof: Assume U such that for all $|\psi\rangle: U(|\psi\rangle \otimes|0\rangle)=|\psi\rangle \otimes|\psi\rangle$.
Then, $U(|0\rangle \otimes|0\rangle)=|0\rangle \otimes|0\rangle$ and $U(|1\rangle \otimes|0\rangle)=|1\rangle \otimes|1\rangle$.
By linearity of U, it holds that
$U((|0\rangle+|1\rangle) \otimes|0\rangle)=U(|0\rangle \otimes|0\rangle)+U(|1\rangle \otimes|0\rangle)$
$=|0\rangle \otimes|0\rangle+|1\rangle \otimes|1\rangle$
$\neq(|0\rangle+|1\rangle) \otimes(|0\rangle+|1\rangle)$
$=|0\rangle \otimes|0\rangle+|0\rangle \otimes|1\rangle+|1\rangle \otimes|0\rangle+|1\rangle \otimes|1\rangle$

Quantum Key Distribution (QKD)

Eve

$k=01011011$

- Offers an quantum solution to the key-exchange problem which does not rely on computational assumptions (such as factoring, discrete logarithms, security of AES, SHA-3 etc.)
- Important caveat: classical communication has to be authenticated to prevent man-in-the-middle attacks

Quantum Key Distribution (QKD)

Quantum Key Distribution (QKD)

Quantum Key Distribution (QKD)

Quantum Hacking

e.g. by the group of Vadim Makarov (Quantum Hacking Lab, Moscow)

Quantum Key Distribution (QKD)

Eve

$k=01011011$

- Three-party scenario: two honest players versus one dishonest eavesdropper
- Quantum Advantage: Information-theoretic security is provably impossible with only classical communication (Shannon's theorem about perfect security)

Quantum Key Distribution (QKD)

impossibility results

tight memory bounds
more advanced protocols bounded quantum-storage
implementation
individual-storage attacks
general attacks
more advanced storage models
noisy quantum-storage
implementations

multi-round with Q side commitment	
zero-knowledge bulti-prover	relativistic crypto
composability summoning states	

in the bounded-quantum-storage model
Q protocols in classical environment composability frameworks abstract cryptography

bit commitment (BC)	
impossibility \quad string commitments	
oblivious transfer (OT)	
$\frac{\text { secure identification }}{\text { zero-knowledge }}$	protocols
multi-party computation	

Secure Two-Party Cryptography

- Information-theoretic security
- No computational restrictions
- Coin-Flipping

ssəu|nłəsn

Security for honest Alice

- 2-Party Function Evaluation

- Multi-Party Computation (with dishonest majority)

Coin Flipping (CF)

- Strong CF: No dishonest player can bias the outcome
- Classically: a cheater can always obtain his desired outcome with prob 1
- Quantum: [Ambainis 02] Quantum Protocol with bias 0.25
[Kitaev 03] lower bounds the bias by $\frac{1}{\sqrt{2}}-\frac{1}{2} \approx 0.2$
[Chailloux Kerenidis 09] give optimal quantum protocol for strong CF with this bias
- Weak CF ("who has to do the dishes?"): Alice wants heads, Bob wants tails
- [Mochon 07] uses Kitaev's formalism of point games to give a quantum protocol for weak CF with arbitrarily small bias $\varepsilon>0$
- [Aharonov Chailloux Ganz Kerenidis Magnin 14] reduce the proof complexity from 80 to 50 pages... explicit protocol?
- [Arora, Roland, Vlachou, Weis 18/19] explicit protcols

Bit Commitment (BC)

- Quantum: believed to be possible in the early 90s
- shown impossible by [Mayers 97, LoChau 97] by a beautiful argument (purification and Uhlmann's theorem)
- [Chailloux Kerenidis 11] show that in any quantum BC protocol, one player can cheat with prob 0.739. They also give an optimal protocol achieving this bound. Crypto application?
[Brassard Crepeau Jozsa Langlois: A quantum BC scheme provably unbreakable by both parties, FOCS 93]

Bit Commitment \Rightarrow Strong Coin Flipping

$$
\begin{aligned}
& a=0 \text { or } \\
& a=1
\end{aligned}
$$a

$$
a=b
$$

$a \neq b$

Oblivious Transfer (OT)

- 1-out-of-2 Oblivious Transfer:
- Rabin OT: (secure erasure)

- Dishonest Alice does not learn choice bit
- Dishonest Bob can only learn one of the two messages
- These OT variants are information-theoretically equivalent (homework! ;)
- OT is symmetric [Wolf Wullschleger at EuroCrypt 2006, only 10 pages long]
- 1-2 OT $\Rightarrow \mathrm{BC}$:

[Wiesner 68, Even Goldreich Lempel 85, Rabin 81]

Quantum Protocol for Oblivious Transfer $\underset{\substack{s_{i} \\ s_{1}}}{\substack{\text { OT}}} \underbrace{c}_{s_{c}}$

Correctness \checkmark

$$
\begin{gathered}
\xrightarrow[f_{0}, f_{1}]{\substack{I_{0}, I_{1}}} \quad I_{c}=\{3,4,5\}, I_{1-c}=\{1,2\} \\
t_{0}=s_{0} \bigoplus k_{0} \\
\mathrm{t}_{1}=s_{1} \oplus k_{1}
\end{gathered}
$$

[Wiesner 68, Bennett Brassard Crepeau Skubiszewska 91]

Quantum Protocol for Oblivious Transfer $\underbrace{s_{1}}_{s_{1}} 0$ or $-c$

$I_{c}=\{3,4,5\}, I_{1-c}=\{1,2\}$

$$
s_{1}=t_{1} \oplus f_{1}(110)
$$

Quantum Protocol for Oblivious Transfer $\underset{\substack{s_{i} \\ s_{i}}}{\substack{\text { OT}}} \underbrace{c}_{s_{c}}$

[Bennett Brassard Crepeau Skubiszewska 91, Damgaard Fehr Lunemann Salvail Schaffner 09, Unruh 10]

Limited Quantum Storage

Summary of Quantum Two-Party Crypto

- Information-theoretic security
- No computational restrictions

- Coin-Flipping
$\Uparrow \uplus$
- Bit Commitment
π サ \downarrow

- Oblivious Transter

- 2-Party Function Evaluation $\begin{aligned} & x \\ & f(x, y) \rightleftarrows \mathcal{F} \leftrightarrows y(x, y)\end{aligned}$

Quantum Money

Conjugate Coding \& Quantum Money

also known as quantum coding or quantum multiplexing

- Originally proposed for securing quantum banknotes (private-key quantum money)
- Bank holds list of serial numbers with according q states
- The note has to be transferred to the bank for verification
- Theorem: Given access to a single authentic bank note, attempts to create two bank notes having the same serial number that independently pass the bank's test for validity have success probability exactly $(3 / 4)^{n}$.

Quantum Money

- Thm: Given access to a single authentic bank note, attempts to create two bank notes having the same serial number that independently pass the bank's test for validity have success probability exactly $(3 / 4)^{n}$.
- Is it secure?
- No! Other attacks exists!
- For instance, use n EPR pairs on two bank notes with the same serial number, submit one for verification. Verification succeeds with probability p and you have another valid bank note in your hands. What is p ?
- Furthermore, if the bank returns invalid bills, attacker can learn individual qubits by asking for validation of $X|\alpha\rangle$.
- Therefore, invalid bills should never be returned by the bank.

Elitzur-Vaidman's bomb quality tester

b) repeat N times

- Pick a large N, small angle $\delta=\frac{\pi}{2 N^{\prime}}$ let $R_{\delta}=\left[\begin{array}{cc}\cos \delta & -\sin \delta \\ \sin \delta & \cos \delta\end{array}\right]$ be a counterclockwise rotation by δ.
- a) After first round: $(\cos \delta|0\rangle+\sin \delta|1\rangle)|0\rangle$, after N rotations: $|1\rangle|0\rangle$
- b) After first round: $(\cos \delta|0\rangle|0\rangle+\sin \delta|1\rangle|1\rangle)$. Prob of explosion: $\sin ^{2} \delta$
- If no explosion, collapse back to $|0\rangle|0\rangle$, and start again
- After N rounds of rotation and tests: $|0\rangle|0\rangle$
- Overall prob of no explosion: $\left(1-\sin ^{2} \delta\right)^{N} \geq 1-\frac{\pi^{2}}{4 N}$

Bomb Testing to Counterfeit Q Money

- Pick a large N, small angle $\delta=\frac{\pi}{2 N}$, let $R_{\delta}=\left[\begin{array}{cc}\cos \delta & -\sin \delta \\ \sin \delta & \cos \delta\end{array}\right]$
- For $|\alpha\rangle=|0\rangle$ or $|1\rangle$, we are in the "bomb" case from before. Validation flips the state back to what it was, the probe does not rotate. Final outcome: 0
- For $|\alpha\rangle=|+\rangle$, an X operation does nothing, the probe is rotated by δ. Final outcome: 1
- For $|\alpha\rangle=|-\rangle$, one can check that for an even N, the final outcome is 0 , and money is never rejected.

Bomb Testing to Counterfeit Q Money

- Hence, we can identify $|\alpha\rangle=|+\rangle$.
- $|\alpha\rangle=|-\rangle$ can be identified using controlled $-X$ operation
- Otherwise, simply measure in the computational basis
- Hence we can identify all n qubits using at most $2 n \times N$ adaptive queries to a strict tester
- Prob that attack succeeds: $\left(1-\frac{\pi^{2}}{4 N}\right)^{2 n} \geq 1-\frac{\pi^{2} n}{2 N}$

More practical Q Money

- Drawback of Wiesner's money: needs quantum interaction with bank
- Classically verifiable: bank sends basis string, client responds, bank checks
- Theorem: The probability that a counterfeiter succeeds in two independent classical verifications with the bank, given access to a single valid bank note is exactly

$$
\left(\frac{3}{4}+\frac{\sqrt{2}}{8}\right)^{n} \approx(0.927)^{n} .
$$

- In practice, one would like to have Q money schemes with public verifiability
- Several schemes were proposed and broken by Aaronson, Christiano, Lutomirski, Gosset, Kelner, Hassidim, Shor, Farhi, Pena, Faugere, Perret, Zhandry17, ...
- Latest proposal by Shor
- Good overview in Chapters 8 and 9 of lecture notes by Aaronson.

[Molina Vidick Watrous 13, Aaronson 09, ...]

Delegated Q Computation

	two entangled provers
verification of Q computations	basic Q operations by verifier
	single prover, fully classical verifier

Delegated Computation

- QCloud Inc. promises to perform a BQP computation for you.

- How can you securely delegate your quantum computation to an untrusted quantum prover while maintaining privacy and/or integrity?
- Various parameters:

1. Quantum capabilities of verifier: state preparation, measurements, q operations
2. Type of security: blindness (server does not learn input), integrity (client is sure the correct computation has been carried out)
3. Amount of interaction: single round (fully homomorphic encryption) or multiple rounds
4. Number of servers: single-server, unbounded / computationally bounded or multiple entangled but non-communicating servers

Classical Verification of Q Computation

- QCloud Inc. promises you to perform a BQP computation
- How can a purely classical verifier be convinced that this computation actually was performed?

- Partial solutions:

1. Using interactive protocols with quantum communication between prover and verifier, this task can be accomplished, using a certain minimum quantum ability of the verifier. [Fitzsimons Kashefi 17, Broadbent 17, AlagicDulekSpeelmanSchaffner17]
2. Using two entangled, but non-communicating provers, verification can be accomplished using rigidity results [ReichardtUngerVazirani12]. Recently made way more practical by [ColadangeloGriloJefferyVidick17]

- Indications that information-theoretical blind computation is impossible [AaronsonCojocaruGheorghiuKashefi17]

Classical Verification of Q Computation

- QCloud Inc. promises you to perform a BQP computation
- How can a purely classical verifier be convinced that this computation actually was performed?
- [Mahadev18] Classical verification of Q Computations
- [Mahadev18] Quantum fully homomorphic encryption
- Verifiable quantum fully homomorphic encryption?

Delegated Q Computation

	two entangled provers
verification of Q computations	basic Q operations by verifier
	single prover, fully classical verifier

Thank you!

- Thanks to all friends and colleagues that contributed to quantum cryptography and to this presentation.

鱼 u Ottawa

CWI

MARYLAND

(1)uSoft

