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Quantum Cryptography Beyond QKD

n survey article with 
Anne Broadbent 

n aimed at classical cryptographers

[Broadbent Schaffner 16 in Designs, Codes and Cryptography]

http://arxiv.org/abs/1510.06120
In Designs, Codes and Cryptography 2016

http://arxiv.org/abs/1510.06120
http://dx.doi.org/10.1007/s10623-015-0157-4


QCrypt Conference Series
n Started in 2011 by Christandl and Wehner
n Steadily growing since then: 

approx. 100 submissions, 30 accepted as contributions, 
~300 participants in Montreal 2019. This year: 
Amsterdam

n goal of the conference: represent the previous year’s 
best results on quantum cryptography, and to support 
the building of a research community

n Trying to keep a healthy balance between theory and 
experiment

n Half the program consists of 4 tutorials of 90 minutes, 
approximately 6 invited talks

[QCrypt 2020, organized by Amsterdam group]

https://2020.qcrypt.net/


Overview

[thanks to Serge Fehr, Stacey Jeffery, Chris Majenz, Florian Speelman, Ronald de Wolf]



n experiments
n Selection of 

open questions

n Fork me on github!

MindMap
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[from 2018! https://github.com/cschaffner/QCryptoMindmap]

https://github.com/cschaffner/QCryptoMindmap
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Quantum Mechanics 
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No-Cloning Theorem

?
?

?

Quantum operations: U

Proof: copying is a non-linear operation



Proof of No-Cloning Theorem

?
?

?

Proof: Assume 𝑈 such that for all 𝜓 : 𝑈 𝜓 ⊗ 0 = 𝜓 ⊗ 𝜓 .

Then, 𝑈 0 ⊗ 0 = 0 ⊗ 0 and 𝑈 1 ⊗ 0 = 1 ⊗ 1 .

By linearity of U, it holds that
𝑈 ( 0 + |1⟩) ⊗ 0 = 𝑈 0 ⊗ 0 + 𝑈 1 ⊗ 0
= 0 ⊗ 0 + 1 ⊗ 1
≠ ( 0 + |1⟩) ⊗ ( 0 + |1⟩)
= 0 ⊗ 0 + 0 ⊗ 1 + 1 ⊗ 0 + 1 ⊗ 1 Contradiction!



Quantum Key Distribution (QKD)
Alice

Bob

Eve
n Offers an quantum solution to the key-exchange problem which does 

not rely on computational assumptions (such as factoring, discrete 
logarithms, security of AES, SHA-3 etc.)

n Important caveat: classical communication has to be authenticated to 
prevent man-in-the-middle attacks

[Bennett Brassard 84]
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k = ?

http://dx.doi.org/10.1016/j.tcs.2014.05.025
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Quantum Key Distribution (QKD)

[Bennett Brassard 84]
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k = 10 k = 10

n Quantum states are unknown to Eve, she cannot copy them.
n Honest players can test whether Eve interfered.

? ? ? ??

k = ?

Quantum Key Distribution (QKD)

[Bennett Brassard 84]



Alice

Bob

Eve

n technically feasible: no quantum computer required, 
only quantum communication

Quantum Key Distribution (QKD)



Quantum Hacking
e.g. by the group of Vadim Makarov (Quantum Hacking Lab, Moscow)

http://www.vad1.com/


Quantum Key Distribution (QKD)
Alice

Bob

Eve

n Three-party scenario: two honest players versus one dishonest eavesdropper
n Quantum Advantage: Information-theoretic security is provably impossible with 

only classical communication (Shannon’s theorem about perfect security)

[Bennett Brassard 84]

k = 0101 1011 k = 0101 1011

k = ?

http://dx.doi.org/10.1016/j.tcs.2014.05.025
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⇒

n Coin-Flipping

n Bit Commitment

n Oblivious Transfer

n 2-Party Function Evaluation

n Multi-Party Computation 
(with dishonest majority)

Secure Two-Party Cryptography
us
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n Information-theoretic security
n No computational restrictions Correctness (both honest)

Security for honest Alice

Security for honest Bob

⇏

ℱ 𝑦
𝑔(𝑥, 𝑦)

𝑥
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⇏
⇒

⇔⇒
⇒

⇒

OT 𝑐
𝑠!

𝑠"
𝑠#

[Blum 83, Kilian 88]
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n Strong CF: No dishonest player can bias the outcome
n Classically: a cheater can always obtain his desired outcome with prob 1
n Quantum: [Ambainis 02] Quantum Protocol with bias 0.25 

[Kitaev 03] lower bounds the bias by *
+
− *
+
≈ 0.2

[Chailloux Kerenidis 09] give optimal quantum protocol for strong CF with this bias

Coin Flipping (CF)

n Weak CF (“who has to do the dishes?”): Alice wants heads, Bob wants tails
n [Mochon 07] uses Kitaev’s formalism of point games to give a quantum protocol 

for weak CF with arbitrarily small bias 𝜀 > 0
n [Aharonov Chailloux Ganz Kerenidis Magnin 14] reduce the proof complexity from 

80 to 50 pages… explicit protocol?
n [Arora, Roland, Vlachou, Weis 18/19] explicit protcols



n Two-phase (reactive) protocol:

Bit Commitment (BC)

n Hiding: even dishonest 
Bob does not learn a

n Binding: dishonest Alice 
cannot change her mind

Bob‘s
view

commit

open

a = ?a=0 or 
a=1

a
n Classically: impossible 
n Quantum: believed to be possible in the early 90s
n shown impossible by [Mayers 97, LoChau 97] by a beautiful argument (purification and 

Uhlmann’s theorem)
n [Chailloux Kerenidis 11] show that in any quantum BC protocol, one player can cheat with 

prob 0.739. They also give an optimal protocol achieving this bound. Crypto application?
[Brassard Crepeau Jozsa Langlois: A quantum BC scheme provably unbreakable by both parties, FOCS 93]



Bit Commitment⇒ Strong Coin Flipping

[Blum 83]

a = b a ≠ b

a=0 or 
a=1

b=0 or 
b=1

b

a
a



n 1-out-of-2 Oblivious Transfer:

n Rabin OT: 
(secure erasure) 

Oblivious Transfer (OT)
n Dishonest Alice does not learn 

choice bit
n Dishonest Bob can only learn one 

of the two messages

n These OT variants are information-theoretically equivalent (homework! 😉 )
n OT is symmetric [Wolf Wullschleger at EuroCrypt 2006, only 10 pages long]
n 1-2 OT ⇒ BC:

[Wiesner 68, Even Goldreich Lempel 85, Rabin 81]

OT 𝑐
𝑠!

𝑠"
𝑠#

79 

We will first give two concrete examples of conjugate 

coding and then proceed to a more abstract treatment. 

Example One: A means for transmitting 
two messages either but not both of 
which may be received. 

The communication channel is a light pipe or guide down 

which polarized light is sent. Since the information will be 

conveyed by variat£ons in ths polarization, it is essential 

that the light pipe does not depolarize the light and that 

all polarizations of light travel with the same velocity 

and attenuation. 

The two messages are rendered into the form of two 

binary sequences. The transmitter then sends bursts of 

light at times that we will label T I, T 2, etco The amplitude 

of the bursts is adjusted so that it is unli]4ely that more 

than one photon from each burst will be detected at the 

receiving end of the light pipe. 

Before emitting the ith burst (i=1,2 ...), the transmitter 

chooses one of the two messages in a random manner by flipping 

a coin or selecting a bit from a table of random numbers. If 

the first message is chosen, the ith burst is polarized 

either vertically or horizontally depending on whether the 

ith digit of the first binary sequence is a zero or a one. 

If the second message is chosen, the ith burst is polarized 

in either the right or left-hand circular sense depending on 

whether the ith digit of the second message is a zero or a 

one. See Fig. l, next sheet. 

The receiver contains a quarter wave plate and bire- 

fringent crystal, or some other analyzer, that separates 

ROT 𝑠 / ⊥𝑠

OT 𝑐# ∈$ {0,1}
𝑠!!

𝑟#
𝑎 ⊕ 𝑟#

OT 𝑐% ∈$ {0,1}
𝑠!"

𝑟%
𝑎 ⊕ 𝑟%

OT 𝑐& ∈$ {0,1}
𝑠!#

𝑟&
𝑎 ⊕ 𝑟&

𝑎 = 0 or 
𝑎 = 1

commit
open

𝑎, 𝑟!, 𝑟", …



Quantum Protocol for Oblivious Transfer

0  1   1   1   0 0 0 1   1   0

𝐼5 = 3,4,5 , 𝐼*65 = 1,2𝐼7, 𝐼*

𝑘" = 𝑓"(01)
𝑘# = 𝑓# 110

𝑓7, 𝑓*

𝑡7 = 𝑠7⊕𝑘7
t* = 𝑠*⊕𝑘*

𝑠* = 𝑡*⊕𝑓* 110

[Wiesner 68, Bennett Brassard Crepeau Skubiszewska 91]
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Correctness ✓
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n Security for honest Bob ✓
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n Security for honest Bob  ✓
n Security for honest Alice ❌

store all qbits

𝑘" = 𝑓"(01)

𝑠7 = 𝑡7⊕𝑓7 01



BC ⇒ Oblivious Transfer OT 𝑐
𝑠!

𝑠"
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𝐼5 = 4,5 , 𝐼*65 = 2𝐼7, 𝐼*

𝑘" = 𝑓"(1)

𝑘# = 𝑓# 10

𝑓7, 𝑓*

𝑡7 = 𝑠7⊕𝑘7
t* = 𝑠*⊕𝑘*

𝑠* = 𝑡*⊕𝑓* 10

[Bennett Brassard Crepeau Skubiszewska 91, Damgaard Fehr Lunemann Salvail Schaffner 09, Unruh 10]

𝑘# = 𝑓# 10

0   0 1   1   0

0      1



0  1   1   1   0

Limited Quantum Storage

[Damgaard Fehr Salvail Schaffner 05, Wehner Schaffner Terhal 09]

wait 1 sec

OT 𝑐
𝑠!
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n Coin-Flipping

n Bit Commitment

n Oblivious Transfer

n 2-Party Function Evaluation

⇒

Summary of Quantum Two-Party Crypto
n Information-theoretic security
n No computational restrictions
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Quantum Money



Conjugate Coding & Quantum Money

n Originally proposed for securing quantum banknotes (private-key quantum money)
n Bank holds list of serial numbers with according q states
n The note has to be transferred to the bank for verification
n Theorem: Given access to a single authentic bank note, attempts to create two bank 

notes having the same serial number that independently pass the bank’s test for 
validity have success probability exactly 3/4 :.

[Wiesner 68, Molina Vidick Watrous 13]

0  1   1   1   0

also known as  quantum coding or quantum multiplexing

https://dl.acm.org/citation.cfm%3Fid=1008908.1008920


Quantum Money

n Thm: Given access to a single authentic bank note, attempts to create two bank notes 
having the same serial number that independently pass the bank’s test for validity 
have success probability exactly 3/4 :.

n Is it secure?
n No! Other attacks exists! 
n For instance, use 𝑛 EPR pairs on two bank notes with the same serial number, submit 

one for verification. Verification succeeds with probability 𝑝 and you have another 
valid bank note in your hands. What is 𝑝?

n Furthermore, if the bank returns invalid bills, attacker can learn individual qubits by 
asking for validation of 𝑋|𝛼⟩ .

n Therefore, invalid bills should never be returned by the bank.

[Molina Vidick Watrous 13, Lutomorski 10]

https://arxiv.org/abs/1010.0256


Elitzur-Vaidman’s bomb quality tester

n Pick a large 𝑁, small angle 𝛿 = ;
+<, let 𝑅= =

cos 𝛿 − sin 𝛿
sin 𝛿 cos 𝛿 be a counterclockwise 

rotation by 𝛿.
n a) After first round: (cos 𝛿 0 + sin 𝛿|1⟩) |0⟩, after N rotations: 1 0
n b) After first round: (cos 𝛿 0 0 + sin 𝛿|1⟩|1⟩) . Prob of explosion:  sin+ 𝛿
n If no explosion, collapse back to 0 0 , and start again
n After N rounds of rotation and tests: 0 0

n Overall prob of no explosion: (1 − sin+ 𝛿)< ≥ 1 − ;!

><
[Elitzur Vaidman 93, figures from    Brodutch Nagaj Sattath Unruh 14]



Bomb Testing to Counterfeit Q Money

n Pick a large 𝑁, small angle 𝛿 = ;
+<, let 𝑅= =

cos 𝛿 − sin 𝛿
sin 𝛿 cos 𝛿

n For 𝛼 = 0 or |1⟩, we are in the “bomb” case from before. Validation flips the state 
back to what it was, the probe does not rotate. Final outcome: 0

n For 𝛼 = + , an X operation does nothing, the probe is rotated by 𝛿. 
Final outcome: 1

n For 𝛼 = − , one can check that for an even N, the final outcome is 0, and money is 
never rejected. 

[Brodutch Nagaj Sattath Unruh 14]



Bomb Testing to Counterfeit Q Money

n Hence, we can identify 𝛼 = + . 
n 𝛼 = − can be identified using controlled –𝑋 operation
n Otherwise, simply measure in the computational basis
n Hence we can identify all 𝑛 qubits using at most 2𝑛 × 𝑁 adaptive queries to a strict 

tester

n Prob that attack succeeds: 1 − ;!

><

+:
≥ 1 − ;!:

+<

[Brodutch Nagaj Sattath Unruh 14]



More practical Q Money
n Drawback of Wiesner’s money: needs quantum interaction with bank
n Classically verifiable: bank sends basis string, client responds, bank checks
n Theorem: The probability that a counterfeiter succeeds in two independent classical 

verifications with the bank, given access to a single valid bank note is exactly 
?
>
+ +

@

:
≈ (0.927):.

n In practice, one would like to have Q money schemes with public verifiability
n Several schemes were proposed and broken by Aaronson, Christiano, Lutomirski, 

Gosset, Kelner, Hassidim, Shor, Farhi, Pena, Faugere, Perret, Zhandry17, …
n Latest proposal by Shor
n Good overview in Chapters 8 and 9 of lecture notes by Aaronson.

[Molina Vidick Watrous 13, Aaronson 09, …]

https://arxiv.org/abs/1711.02276
https://simons.berkeley.edu/talks/quantum-money-based-lattices
http://www.scottaaronson.com/barbados-2016.pdf
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Delegated Computation
n QCloud Inc. promises to perform a BQP computation for you.
n How can you securely delegate your quantum computation to an untrusted

quantum prover while maintaining privacy and/or integrity?
n Various parameters:

1. Quantum capabilities of verifier: state preparation, measurements, q operations
2. Type of security: blindness (server does not learn input), integrity (client is sure the

correct computation has been carried out)
3. Amount of interaction: single round (fully homomorphic encryption) or multiple 

rounds
4. Number of servers: single-server, unbounded / computationally bounded or multiple 

entangled but non-communicating servers

[Childs 05, ….  see e.g. Broadbent 17 or Fitzsimons 16 for overviews and references] Image: Tremani / TU Delft

https://arxiv.org/abs/1509.09180
https://arxiv.org/abs/1611.10107


n QCloud Inc. promises you to perform a BQP computation
n How can a purely classical verifier be convinced that this 

computation actually was performed?

n Partial solutions:
1. Using interactive protocols with quantum communication between prover and verifier, this task 

can be accomplished, using a certain minimum quantum ability of the verifier. 
[Fitzsimons Kashefi 17, Broadbent 17, AlagicDulekSpeelmanSchaffner17]

2. Using two entangled, but non-communicating provers, verification can be accomplished using 
rigidity results [ReichardtUngerVazirani12]. Recently made way more practical by 
[ColadangeloGriloJefferyVidick17]

n Indications that information-theoretical blind computation is impossible 
[AaronsonCojocaruGheorghiuKashefi17]

[see Broadbent 17 or Fitzsimons 16 for overview and more complete references]

Classical Verification of Q Computation

https://journals.aps.org/pra/abstract/10.1103/PhysRevA.96.012303
https://arxiv.org/abs/1509.09180
https://arxiv.org/abs/1708.09156
https://arxiv.org/abs/1209.0448
https://arxiv.org/abs/1708.07359
https://arxiv.org/abs/1704.08482
https://arxiv.org/abs/1509.09180
https://arxiv.org/abs/1611.10107


n QCloud Inc. promises you to perform a BQP computation
n How can a purely classical verifier be convinced that this 

computation actually was performed?

n [Mahadev18] Classical verification of Q Computations
n [Mahadev18] Quantum fully homomorphic encryption

n Verifiable quantum fully homomorphic encryption?

Classical Verification of Q Computation



Delegated Q Computation



Thank you!
End of this talk

Thanks for your attention!

tommaso@gagliardoni.net
http://arxiv.org/abs/1602.01441
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Questions

http://arxiv.org/abs/1510.06120
In Designs, Codes and Cryptography 2016

n Thanks to all friends and colleagues that contributed to quantum cryptography and 
to this presentation.

https://github.com/cschaffner/
QCryptoMindmap

http://arxiv.org/abs/1510.06120
http://dx.doi.org/10.1007/s10623-015-0157-4
https://github.com/cschaffner/QCryptoMindmap

