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Abstract

In this paper we propose a bootstrap version of the Wald test for cointegration in a

single-equation conditional error correction model. The multivariate sieve bootstrap is

used to deal with dependence in the series. We show that the introduced bootstrap test

is asymptotically valid.

We also analyze the small sample properties of our test by simulation and compare

it with the asymptotic test and several alternative bootstrap tests. The bootstrap test

offers significant improvements in terms of size properties over the asymptotic test, while

having similar power properties.

The sensitivity of the bootstrap test to the allowance for deterministic components

is also investigated. Simulation results show that the tests with sufficient deterministic

components included are insensitive to the true value of the trends in the model, and

retain correct size.
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1 Introduction

In this paper we present a bootstrap version of the single-equation error correction model

(ECM) Wald test for cointegration originally proposed by Boswijk (1994).

Broadly speaking, tests proposed in the literature to test for the absence of cointegration

can be classified in two groups. Tests that allow for more than one cointegrating vector under

the alternative using for example a VAR framework, see e.g. Johansen (1995), and tests that

consider single-equation models and assuming at most a single cointegrating vector under the

alternative. Among the latter ones, we can further distinguish between approaches based on

the triangular representation of a cointegration system that naturally leads to residual-based

tests for cointegration (e.g. Phillips and Ouliaris, 1990) that make use of semi-parametric

correction for endogeneity and serial correlation; and those based on fully specified parametric

data generating processes that naturally lead to single equation dynamic models. The ECM

test considered in this paper falls in this category. As already discussed in the literature,

ECM tests are an attractive option for cointegration testing, as, contrary to the more popular

residual-based tests, ECM tests do not suffer from imposing potentially invalid common factor

restrictions (Kremers, Ericsson, and Dolado, 1992; Banerjee, Dolado, and Mestre, 1998; Zivot,

2000). Moreover, Pesavento (2004) analyzes several tests which have as null hypothesis no

cointegration, including the residual ADF test by Engle and Granger (1987) and the maximum

eigenvalue test by Johansen and Juselius (1990), and finds that among these the ECM tests

perform best in terms of power both in small and large samples, while performing similarly

as the other tests in terms of size. ECM tests thus appear to be an appealing tool of testing

for cointegration.

The ECM Wald test has as main advantage over the ECM t-test (Banerjee et al., 1998)

that it is more intuitive and one does not have to add a redundant regressor if no particular

cointegrating vector is specified. Although the Wald ECM test performs well in general,

especially in terms of power, it still suffers from size distortions in finite samples (see for

example Boswijk and Franses, 1992). It is well known that the bootstrap’s ability to provide

asymptotic refinements often leads to a reduction of size distortions for hypothesis tests.

Even under “non-favorable” conditions for the bootstrap, under which it is unclear whether

it provides asymptotic refinements, such as when dealing with nonstationary time series, the

bootstrap has been shown to reduce size distortions in finite samples (see for example the

tests for unit roots considered in Chang and Park, 2003, Palm, Smeekes, and Urbain, 2008 or

Paparoditis and Politis, 2003).1

Little is known so far about the application of the bootstrap to cointegration testing

in error correction models. Swensen (2006) and Trenkler (2006) provide theoretical and

1The notable exception to the lack of theoretical results is Park (2003), who shows that bootstrap ADF
tests offer asymptotic refinements under the assumption that the errors are a finite AR process with known
order.
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simulation results on bootstrap versions of the trace test for cointegration rank by Johansen

(1995). Their setting differs from ours in that we a priori assume that the cointegrating rank

is at most one. Seo (2006) provides analytical and simulation results for a residual-based

bootstrap test in a threshold vector error correction model. Closer to our setting, Mantalos

and Shukur (1998) and Ahlgren (2000) consider a bootstrap version of the test with known

cointegrating vector by Kremers et al. (1992), however they only provide simulation results

for a simple model. In this paper we will allow for more general dependence over time in our

model, and we provide analytical as well as simulation results.

Our paper relies on the sieve bootstrap introduced by Bühlmann (1997), a method that

can handle time series dependence in the form of a general linear process that is approxi-

mated by an autoregressive process. The sieve bootstrap method is easy to use and performs

well relative to other time series bootstrap methods, especially the block bootstrap (for a

comparison between methods in the unit root setting, see Palm et al., 2008). The condition

of linearity is fulfilled by a large class of processes, and is needed to validate the use of the

Wald test without the bootstrap as well.

The contribution of the paper is threefold. First, we prove that the sieve bootstrap version

of the single-equation Wald test of no cointegration is asymptotically valid. The proofs are

given in detail for the multivariate setting, such that proofs of other types of tests could be

done along the same lines as presented here. Second, we provide simulation results showing

that the bootstrap version of the Wald test has better properties in finite samples than the

asymptotic test. Third, we investigate the sensitivity of the bootstrap to various specifications

of deterministic components and alternative distributional assumptions.

The structure of the paper is as follows. Section 2 explains the model and assumptions.

The construction of the bootstrap test and the establishment of its asymptotic validity are

discussed in Section 3. Our simulation study is presented in Section 4. The inclusion of

deterministic components is discussed in Section 5. Section 6 concludes. All proofs are

contained in Appendix A.

Finally, a word on notation. We use | · | to denote the Euclidean norm for vectors and

matrices, i.e. |v| = (v′v)1/2 for a vector v and |M | = (tr M ′M)1/2 for a matrix M . For

matrices we also use the operator norm ||M || = maxv |Mv|/|v|. W (r) = (W1(r),W2(r)
′)′

denotes a multivariate standard Brownian motion of dimension (1 + l). [x] is the largest

integer smaller than or equal to x. Convergence in distribution (probability) is denoted by
d−→

(
p−→). Bootstrap quantities (conditional on the original sample) are indicated by appending

a superscript ∗ to the standard notation. Subscripts p (or q) are used to indicate quantities

depending on approximations of infinite order models by models of order p (or q). For

simplicity we suppress these subscripts whenever clarity allows it.
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2 The model

Our Data Generating Process (DGP) is closely related to that of Pesavento (2004). We let

our (1 + l)-dimensional time series zt = (yt, x
′
t)
′ be described by the process

zt = µ + τt + ζt. (1)

The stochastic component ζt is given by

∆ζt = (ρ − 1)αβ′ζt−1 + ut, (2)

where

ut = Ψ(L)εt (3)

with Ψ(z) =
∑∞

j=0 Ψjz
j . Furthermore we assume that ζ0 = 0.2 The null hypothesis is

H0 : ρ = 1, there is no cointegration. Under the alternative H1 : ρ < 1 there is cointegration

with a single cointegrating vector β and the error correction term must be present in the

equation for yt. Also, we impose α1 = 1 and α2 = 0, which follows from the triangular

representation of the model as in Pesavento (2004) and is needed for identification purposes.3

These points are formalized in Assumption 1.

Assumption 1. We assume

(i) αβ′ is of rank 1, i.e. there is a single (1 + l)-dimensional cointegrating vector β,

(ii) β is normalized on the coefficient of yt, i.e. β = (1,−γ′)′,

(iii) α = (1, 0′)′.

It is important to remark that Assumption 1 is of no importance for the derivation of the

null distribution of the tests as it only concerns the situation where cointegration is present

in the system. It is however important to derive the equivalence between the triangular

representation and the ECM form. Assumption 1 is also important to enable us to focus on

a single equation ECM and to rule out cases where the ECM tests would trivially have low

power. This would for example occur under the alternative if the cointegration vector only

appears in the equation for the conditioning variables xt.

Equation (3) shows that we take ut to be a linear process (Phillips and Solo, 1992).

Assumption 2 ensures the invertibility of ut and the existence of moments of εt. These

assumptions are not very stringent and encompass many assumptions (including all finite

VARMA models) that are often used in cointegration analysis.

2This assumption is made for expositional simplicity only and can be extended to ζ0 = Op(1).
3Pesavento (2004) shows that this restriction corresponds to the assumption that xt are not mutually

cointegrated, as required under Assumption 1(i), and are known a priori to be I(1).
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Assumption 2. We assume

(i) εt are i.i.d. with E(εt) = 0, E(εtε
′
t) = Σ and E |εt|4 < ∞.

(ii) det(Ψ(z)) 6= 0 for all |z| ≤ 1, and
∑∞

j=0 j|Ψj | < ∞.

By Assumption 2 we may write Φ(L) =
∑∞

j=0 ΦjL
j = Ψ(L)−1. We may then substitute

equation (1) into (2) and apply the Beveridge-Nelson decomposition to show as in Pesavento

(2004) that this model can be rewritten in VECM form

∆zt = (ρ − 1)Φ(1)αβ′(zt−1 − µ − τ(t − 1)) + τ̃ + Φ∗(L)∆zt−1 + εt (4)

where,

Φ∗(L) =

∞
∑

j=0



(1 − ρ)





∞
∑

i=j+1

Φi



αβ′ − Φj+1



Lj

and

τ̃ =





∞
∑

j=0

Φj + (ρ − 1)





∞
∑

j=0

∞
∑

i=j+1

Φi



αβ′



 τ.

It can be seen from the above representation that zt has a drift if τ 6= 0, and this drift leads

to a linear trend in the cointegrating relation if β′τ 6= 0. The constant µ only appears in the

cointegrating relation; note that the cointegrating relation has mean zero if β′µ = 0.

Pesavento shows that the model can be written in triangular form as well, which makes

it a very flexible model. As we do not need that representation here, we continue with the

VECM representation (4) and condition on xt to obtain

∆yt = (ρ − 1)θβ′(zt−1 − µ − τ(t − 1)) + τ̃1 + π′
0∆xt +

∞
∑

j=1

π′
j∆zt−j + ξt, (5)

where ξt = ε1,t − Σ12Σ
−1
22 ε2,t ∼ i.i.d. (0, ω2) and θ = Φ1(1)α − Σ12Σ

−1
22 Φ2(1)α with Φ(1) =

(Φ1(1)
′,Φ2(1)

′)′.4

The advantage of this framework is that its assumptions are weaker than what is usually

assumed for tests based on a conditional ECM, as it does not impose that xt are weakly

exogenous for β under the alternative of cointegration. Under the null however, the error

correction term does not appear in the marginal equations, which makes a test on the error

correction term in the conditional model a valid test for cointegration (Boswijk, 1994).

4Note that ω2 = σ11 − Σ12Σ
−1
22 Σ21. Σ and εt have been partitioned conformably with yt and xt, i.e. ε1,t

is a scalar and ε2,t is an l-dimensional vector.
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3 The bootstrap test and asymptotics

3.1 Test statistic

The Wald test proposed by Boswijk (1994) is based on the conditional model (5). Consider

the regression

∆yt = δ′z̃t−1 + λ′Dt + π′
0∆xt +

p
∑

j=1

π′
j∆zt−j + ξp,t, (6)

where Dt are the (unrestricted) deterministic components included in the regression, z̃t−1 =

(z′t−1,D
r
t−1)

′ where Dr
t are the deterministic components that are restricted to be equal to zero

under the null (see Section 5) and ξp,t =
∑∞

j=p+1 π′
j∆zt−j + ξt. If ρ = 1, δ′ = (ρ − 1)θβ′ = 0,

which leads to the test statistic

Twald = δ̂′ ̂Var(δ̂)
−1

δ̂, (7)

where δ̂ is the OLS estimator of δ in (6) and ̂Var(δ̂) is its estimated covariance matrix. The

null hypothesis of no cointegration is then rejected for large values of Twald.

We let the lag length p in regression (6) grow to infinity at a controlled rate.

Assumption 3. Let p → ∞ and p = o(n1/2) as n → ∞.

The limiting distribution of Twald can be found in Boswijk (1994) for the ECM with

finite autoregressive dependence and in Pesavento (2004) for the infinite-order model. The

asymptotic distribution of the test without the inclusion of any deterministic components

(and with µ = τ = 0) is given for completeness in Lemma 1 without proof.

Lemma 1. Under Assumptions 2 and 3 we have that

Twald
d−→
∫ 1

0
dW1(r)W (r)′

[∫ 1

0
W (r)W (r)′dr

]−1 ∫ 1

0
W (r)dW1(r)

where Twald is defined in equation (7).

3.2 Bootstrap method

The multivariate sieve bootstrap method we employ here is similar to the one employed by

Chang, Park, and Song (2006). It is important to note that they study bootstrap inference on

the cointegrating regressions and they do not consider bootstrap tests for no cointegration.

The full algorithm is given below.

Bootstrap Algorithm.
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Step 1: Fit a VAR(q) process to ∆zt by OLS and save the residuals

ε̂q,t = ∆zt − λ̂sD
s
t −

q
∑

j=1

Φ̂j∆zt−j , (8)

where Ds
t are the deterministic components included in this sieve estimation (see

Section 5 for details). Recenter the residuals ε̂q,t in the case where no constant

is included to eliminate any drifts in the resampled series and save the recentered

residuals ε̃q,t = ε̂q,t − (n − q − 1)−1
∑

t ε̂q,t.
5

Step 2: Resample with replacement from ε̃q,t to obtain bootstrap errors ε∗t .

Step 3: Build u∗
t recursively as

u∗
t =

q
∑

j=1

Φ̂ju
∗
t−j + ε∗t , (9)

using the estimated parameters Φ̂j from Step 1, and build z∗t as

z∗t = z∗t−1 + u∗
t . (10)

Note that it is unnecessary to include deterministic components in this step, as the

tests we consider are asymptotically similar (see Remark 8 in Section 5).

Step 4: Using the bootstrap sample z∗t , obtain δ̂∗ from the regression

∆y∗t = δ∗′z̃∗t−1 + λ∗′D∗
t + π∗′

0 ∆x∗
t +

p∗
∑

j=1

π∗′
j ∆z∗t−j + ξ∗p∗,t, (11)

where p∗ is the lag length selected in the bootstrap regression (see Remark 6) and

z̃∗t−1 = (z∗′t−1,D
r∗
t−1)

′, and calculate the bootstrap test statistic

T ∗
wald = δ̂∗′ ̂Var∗(δ̂∗)

−1

δ̂∗. (12)

D∗
t and Dr∗

t are the bootstrap counterparts of Dt and Dr
t . In order to get the correct

asymptotic bootstrap distribution, one should always take D∗
t = Dt and Dr∗

t = Dr
t .

Step 5: Repeat Steps 2 to 4 B times, obtaining bootstrap test statistics T ∗b
wald, b = 1, . . . , B,

and select the bootstrap critical value c∗α as c∗α = min{c :
∑B

b=1 I(T ∗b
wald > c) ≤ α},

or equivalently as the (1−α)-quantile of the ordered T ∗b
wald statistics. Reject the null

5In the cases where we do not include a constant in this regression the residuals may have a sample mean
unequal to zero, even though their theoretical mean is zero. As the sample mean of the residuals becomes the
population mean of the bootstrap errors, this may lead to (unwanted) drifts in the bootstrap sample.
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of no cointegration if Twald, calculated from equations (6) and (7), is larger than c∗α,

where α is the nominal level of the test.

We need to allow the lag length q in the sieve bootstrap to go to infinity at a controlled

rate. We will use two assumptions.

Assumption 4. Let q → ∞ and q = o((n/ ln n)1/2) as n → ∞.

Assumption 4′. Let q → ∞ and q = o((n/ ln n)1/3) as n → ∞.

We also need an assumption on the relative speed of the lag lengths p and q.

Assumption 5. Let p/q → κ > 1 as n → ∞, where κ may be infinite.

Note that by allowing κ to be infinite, we do not impose the same rate on p and q.

Assumption 5 imposes a lower bound but not an upper bound on the rate of p (or equivalently

an upper bound but not a lower bound on the rate of q).

Remark 1. In Step 3 we need to initialize u∗
t in (9) and z∗t in (10). We propose to generate a

large number of values of u∗
t and delete the first generated values. This will ensure that u∗

t is

a stationary process. The initial values in (9) will then become unimportant as the realization

of u∗
t will not depend on them; hence they may be set equal to zero. An alternative is to

take the first q values of u∗
t equal to the first q values of ut; this however does not ensure

stationarity of u∗
t .

As asymptotically the effect of z∗0 disappears, we simply set z∗0 = 0. The logical alternative

here would be to set z∗0 = z0, especially in applications.

Remark 2. Instead of estimating the sieve under the null of no cointegration (which we impose

by fitting the VAR model to ∆zt in Step 1), we may also estimate it under the alternative of

cointegration. In this case we would estimate the residuals as

ε̂q,t = ∆zt − λ̂bD
s,a
t − Φ̂0zt−1 −

q
∑

j=1

Φ̂j∆zt−j , (13)

where Φ̂0 denotes the unrestricted OLS estimator and Ds,a
t are the deterministic components

included in this alternative-based sieve estimation. Note that even for the same deterministic

setting, Ds,a
t is not necessarily the same as Ds

t in (8), as is explained in Section 5 (Remark

10).

In the context of unit root testing, Paparoditis and Politis (2005) advocate the use of such

a “residual-based” estimation as opposed to the “difference-based” estimation in (8), claiming

that the residual-based tests have better power properties. We will return to this point in

our simulations in Section 4.
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Remark 3. A second alternative bootstrap strategy would be to base the sieve bootstrap on

the conditional/marginal ECM model instead of the VECM/VAR model. In this case we

would need two separate equations to estimate residuals in Step 1. We would estimate the

residuals from the conditional model as

ε̂1,q,t = ∆yt − λ̂s,1D
s
t,1 − π̂′

0∆xt −
q
∑

j=1

π̂j∆zt−j

and the residuals from the marginal model as

ε̂2,q,t = ∆xt − λ̂s,2D
s
t,2 −

q
∑

j=1

Φ̂2,j∆zt−j

for the difference-based alternative. We can of course also construct a residual-based version

of this test. In the simulations in Section 4 we will look at these alternatives as well.

Although such an approach is closer in spirit to the single-equation Wald test statistic,

it is basically just a reparametrization of the VECM approach, as the model on which the

bootstrap is based is still completely specified. An alternative approach, which would be

“truly conditional” on xt, is to take xt as fixed and only resample yt. To justify such an

approach we would have to assume strong exogeneity, see Van Giersbergen and Kiviet (1996)

for a discussion. This last approach will not be investigated in this paper.

Remark 4. Although estimation under the alternative is an option in Step 1, it is not possible

to build the bootstrap sample z∗t in Step 3 based on the alternative hypothesis, i.e. using

z∗t = (I + Φ̂0)z
∗
t−1 + u∗

t . (14)

Basawa, Mallik, McCormick, Reeves, and Taylor (1991) show that if such an alternative-

based recursion is used in the unit root setting, the limiting distribution of the bootstrap test

statistic is random due to the discontinuity of the limiting distribution at the unit root. The

same logic applies here, therefore the null hypothesis of no cointegration must be imposed in

Step 3.

Remark 5. To obtain the theoretical results in the next subsection, we set all deterministic

components equal to zero, both in the model (µ and τ) and in the test (all variants of Dt).

In Section 5 we will go into more detail about the inclusion of deterministic components, and

present some simulation results. We conjecture that asymptotic validity still holds in the

presence of deterministic components.

Remark 6. In Step 4 we specify the lag length in the bootstrap test regression (11) as p∗, in

order to emphasize that this lag length does not have to be the same as the lag length in the

original test regression (6). In finite samples the performance of the bootstrap test will be

better if the lag length is allowed to be different. Just as for the original test regression (and
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the sieve bootstrap), the lag length can be chosen in practice using information criteria like

AIC and BIC.

Obviously, p∗ has to fulfil the same conditions as p. Therefore, we can write p∗ as p in the

theoretical results, which is done for notational simplicity.

Remark 7. As we will see in the next subsection, Assumption 4 is sufficient to prove Theo-

rem 1. However, to prove the second result needed for Theorem 2, we require the stronger

assumption 4′. The result in the proof of Theorem 3.3 of Park (2002, p. 487, line 12), where

it is stated (in Park’s notation) that

p
∑

k=1

k|α̂p,k| =

p
∑

k=1

k|αp,k| + o(1) a.s.,

with α̂p,k being the OLS estimators of the p-th order autoregressive approximation of the

univariate general linear process considered by Park (2002) with coefficients αp,k, does not go

through with p = o((n/ ln n)1/2). One needs a stronger restriction on p to make the second

part o(1).6 With our stronger Assumption 4′ one can show that Theorem 3.3 of Park (2002)

(and consequently our Theorem 2) holds.

3.3 Asymptotic results

In this section we will give the main theoretical results needed to show the asymptotic validity

of the bootstrap test. As stated in Remark 5, we derive these results for the tests (and DGP)

without deterministic components. The proofs of all the results here plus additional lemmas

can be found in Appendix A. Most of the proofs are based on the proofs in Chang et al.

(2006), and the papers they refer to.

As we present all our proofs for vector processes, the theory employed in the paper can be

used to prove validity of other multivariate bootstrap procedures as well. Note that all our

bootstrap weak convergence results hold in probability as we derive all underlying results in

probability.

The first step in proving the asymptotic validity is the development of an invariance

principle for the bootstrap errors ε∗t .

Theorem 1. Under Assumptions 2 and 4, we have that

W ∗
n(r) = n−1/2

[nr]
∑

t=1

ε∗t
d∗−→ LW (r) in probability

where L is a (1 + l) × (1 + l)-dimensional lower triangular matrix such that the Cholesky

decomposition of Σ is equal to LL′.

6We thank Anders Swensen for bringing this point to our attention in a personal communication.
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We can show this result by first showing that E∗ |ε∗t |a = Op(1) for some a > 2, and then

referring to Einmahl (1987), who shows that an invariance principle holds if this condition is

met.

From this result, with the help of the Beveridge-Nelson decomposition, we can construct

an invariance principle for u∗
t .

Theorem 2. Under Assumptions 2 and 4′ we have that

B∗
n(r) = n−1/2

[nr]
∑

t=1

u∗
t

d∗−→ B(r) in probability

where B(r) is a (1 + l)-dimensional Brownian motion such that B(r) = Ψ(1)LW (r).

Then, using Theorem 2, we can derive the limiting distributions of the elements of the test

statistic, and finally show the consistency of the bootstrap variance estimator. With these

results, we can then present Theorem 3 which establishes the asymptotic distribution of the

bootstrap test statistic.

Theorem 3. Under Assumptions 2, 3, 4′ and 5 we have that

T ∗
wald

d∗−→
∫ 1

0
dW1(r)W (r)′

[∫ 1

0
W (r)W (r)′dr

]−1 ∫ 1

0
W (r)dW1(r) in probability

where T ∗
wald is defined in equation (12).

Note that Theorem 3 shows that the bootstrap test statistic has the same asymptotic

distribution as the original test statistic, which shows that the bootstrap test is asymptoti-

cally valid. Also note that the test statistic is asymptotically pivotal, which means that the

bootstrap may offer asymptotic refinements, although this does not have to be so.

4 Simulations

We wish to study the small sample properties of our test by simulation. We compare our

test with the test based on asymptotic critical values (provided by Boswijk, 1994) and with

the three alternative bootstrap tests mentioned in Remarks 2 and 3. Our bootstrap test

is denoted by T ∗
v,n, where the subscript v stands for estimation based on the VAR/VECM

model, and the n for estimation of the sieve bootstrap under the null. The alternative test

discussed in Remark 2 is denoted by T ∗
v,a, with the subscript a indicating estimation under

the alternative. Similarly, the two alternatives discussed in Remark 3 are given as T ∗
c,n and

T ∗
c,a, where the subscript c indicates that these are based on the conditional/marginal model.

Finally, the asymptotic test is denoted as Tas.
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For the simulation study we use the same setup as Pesavento (2004). We let the bivariate

series (yt, xt)
′ be generated by the triangular system

yt = γxt + wt,

wt = ρwt−1 + v1t,

∆xt = v2t.

(15)

We take ρ = 1 to analyze the size of tests, and ρ < 1 for the power. For the local power

analysis, ρ = 1 + c/n, where n, the sample size, is either 50 or 100. The tests are invariant

to the true value of γ as long as it is non-zero, therefore we set γ = 1. Furthermore we set

w0 = x0 = 0.

The errors vt = (v1t, v2t)
′ are generated as

(1 − ΦL)vt = (1 + ΘL)εt,

where εt is generated as an i.i.d. sequence from a bivariate normal distribution with covariance

matrix

Σ =

[

1 r

r 1

]

.

The exact parameter combinations considered are summarized in Table 1.

Insert Table 1 about here

We can rewrite the above DGP in terms of the model in (2) by setting α = (1, 0)′,

β = (1,−γ)′ and ut =
[

1 γ
0 1

]

vt in equation (2).

The lag lengths in (6), (8) and (11) are selected by BIC, with maximum lag lengths of 8

for n = 50 and 11 for n = 100. Each generated sample is used to perform all the tests, such

that the lag length p in (6) is always the same for all tests. Our results are based on 2000

simulations, with 999 bootstrap replications per simulation.

The results for the DGPs with white noise errors (Φ = Θ = 0) are given in Table 2. For

this case, the asymptotic test has a reasonably good size, but the bootstrap tests clearly have

sizes even closer to the nominal size, especially for n = 50. The rejection frequencies of the

bootstrap tests are somewhat smaller than those of the asymptotic test under the alternatives

considered, but it is difficult to compare powers as sizes are not equal. We therefore also report

size-corrected powers for the asymptotic test (in the Table as Tsc).
7 The size-corrected power

of the asymptotic test is close to the power of the bootstrap tests, which shows that the higher

raw power of the asymptotic test is mainly due to the higher size distortions. All bootstrap

7There is no need to correct the power of the bootstrap tests, as they have virtually no size distortions;
their size-corrected powers would be almost the same as their raw powers.
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tests perform similarly both in terms of size and power, indicating that there is no evidence

of reduced power for the difference-based tests in this setting.

Insert Table 2 about here

Table 3 gives the results for the size of the tests for DGPs with autoregressive and moving-

average errors. For all DGPs considered here, there is a clear advantage of using the boot-

strap, which virtually eliminates all size distortions except for the negative moving-average

coefficients. Again note that the difference between the bootstrap and asymptotic test is

the largest for n = 50. The bootstrap tests perform fairly similarly, with a minor advan-

tage for the difference-based tests. This is especially noticeable for the DGP with negative

moving-average coefficients.

Insert Table 3 about here

To illustrate the power properties for DGPs allowing for some dependence in the errors,

we selected one DGP with autoregressive and one with moving-average coefficients from the

set considered above. The results are given in Table 4. We again have to be cautious when

comparing raw powers as the sizes vary across the tests. We see that the asymptotic test

has somewhat higher rejection frequencies than the bootstrap tests, but as in Table 2 the

differences are due to high size distortions of the asymptotic test. This is confirmed by the

size-corrected power of the asymptotic test, which is not better, and in some cases considerably

worse, than the power of the bootstrap tests. The difference-based tests appear to have higher

power than the residual-based tests (especially for n = 50 and for alternatives close to the

null). This is quite surprising, as it is exactly the opposite of what Paparoditis and Politis

(2005) found for unit root tests. This may possibly be a small sample phenomenon reflecting

the fact that very often imposing invalid restrictions may lead to improved finite sample

statistical inference by reducing the effect of sampling errors.

Insert Table 4 about here

These results show that the bootstrap tests all offer significant size improvements over the

asymptotic test, while retaining quite good power properties. Note that the four bootstrap

tests perform similarly, with a small advantage for the difference-based tests, both in terms of

size and power. The bootstrap tests based on the conditional-marginal representation perform

as their counterparts based on the vector representation, thus giving no reason to prefer the

conditional representation over the more straightforward vector representation.

As suggested by a referee, the similar performances of the bootstrap tests based on the

vector representation and the conditional-marginal representation may be due to the normal-

ity of the innovations in our DGP. In order address this issue, we also performed simulations

where the εt’s are generated from non-normal distributions, in particular central χ2- and
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t-distributions. The simulation results not reported here show that the two representations

also lead to very similar results if the variables are not normal.

We also investigated the sensitivity to the form of vt. In the first analysis we generate the

innovations εt as multivariate GARCH errors, which fall outside the class of processes defined

by Assumption 2. In the second analysis we consider a Markov-switching model in which the

parameters of the short-run dynamics are generated by a Markov process. The results show

that the bootstrap tests are robust against both types of processes.

Finally, we also performed simulations with the original DGP using AIC instead of BIC

to select lag lengths. The results show that the bootstrap tests are somewhat undersized.

The only notable improvement of the size of the bootstrap tests with respect to lag length

selection by BIC occurs in the case of the large negative MA parameters. The power of the

bootstrap tests is adversely affected by the use of AIC. Surprisingly, the asymptotic test has

larger size distortions using AIC than BIC.8

5 Deterministic components

In this section we will discuss how to include deterministic components in the tests. Determin-

istic components have to be included both in the test regression (Dt and Dr
t in equation (6)

and their bootstrap counterparts in equation (11)) and in Step 1 of the bootstrap procedure

(Ds
t in equation (8)). We consider the five different options proposed by Boswijk (1994).

The first option is to simply leave out all deterministic components, which is the case we

analyzed before in the paper. Obviously this is only valid if both µ and τ in equation (1) are

equal to zero.

The second and third options (Boswijk’s ξ∗µ and ξµ) arise if there is no drift in zt (τ = 0).

In this case we include an intercept in regression (6) and its bootstrap equivalent (11). The

intercept can but need not be restricted to zero under the null of no cointegration. In the

first case Dt = 0 and Dr
t = 1, in the second case Dt = 1 and Dr

t = 0. As in both cases zt

does not have a drift, there is no need to include any deterministic components in Step 1 of

the bootstrap procedure, hence Ds
t = 0.

If the variables are generated by a process with drift, we have to include a linear trend

as well as an intercept in equations (6) and (11) (Boswijk’s ξ∗τ and ξτ ). Again we can either

restrict the trend to be equal to zero under the null, in which case Dt = 1 and Dr
t = t, or we

leave it unrestricted, in which case Dt = (1, t)′ and Dr
t = 0. As ∆zt now has a nonzero mean,

we include a constant term in equation (8) in Step 1 of the bootstrap procedure, i.e. we set

Ds
t = 1 in both cases.

Remark 8. While it is possible to account for the presence of deterministic components in

Step 3 of the bootstrap algorithm as well, it is not necessary. By specifying the tests as above,

8The results of all the additional simulations discussed above can be found on the website
http://www.personeel.unimaas.nl/s.smeekes/research.htm.
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the tests are similar, i.e. their asymptotic distributions do not depend on the true value of

the deterministic components. Therefore, building the bootstrap process with or without

deterministic components will both lead to the correct limiting distribution, as long as the

deterministic specification in the bootstrap test regression (11) is the same as the specification

in the original regression (6), i.e. D∗
t = Dt and Dr∗

t = Dr
t .

9

Remark 9. One might want to use the test with the unrestricted constant term to deal with

the situation where the variables have a drift, but the drift does not lead to a time trend in

the cointegrating relation (β′τ = 0). However, Boswijk (1994) stresses that in this case the

asymptotic distribution of the test will not be similar and depend on whether the drift is zero

or not. Therefore we do not consider this to be a viable option.

Remark 10. One can also adapt the bootstrap procedure mentioned in Remark 2 to the

inclusion of deterministic components. As estimation in Step 1 is done under the alternative

hypothesis, the inclusion of deterministic components is slightly different. If we only include

a constant term in the regression, then a constant term must be included in equation (13) as

well, hence Ds,a
t = 1. If the variables are generated by a drift, and a trend is added to the

regression, Ds,a
t = (1, t)′.

To illustrate the tests with deterministic components, we perform a small simulation study.

The DGP used for the simulations corresponds to the DGP used in Section 4, except that we

now add deterministic components to the triangular system as follows.

yt = µ1 + τ1t + γxt + wt,

wt = ρwt−1 + v1t,

∆(xt − µ2 − τ2t) = v2t.

(16)

Note that µ1 and τ1 correspond to β′µ and β′τ respectively in equation (4). To reduce the

size of the experiment we only report simulations for n = 50, and for c = 0 and c = −10.

Also, we only consider three combinations of Φ and Θ: Φ = Θ = 0; Φ = [ 0.2 0.5
0.5 0.2 ] and Θ = 0;

and Φ = 0 and Θ = [ 0.2 0.5
0.5 0.2 ]. We restrict our attention to the two bootstrap variants T ∗

v,n and

T ∗
v,a and the asymptotic test Tas.

We consider two models without a drift, and two where a drift is present. For the models

without drift, a DGP with no deterministic components and one with just a constant term

are chosen. For the models with drift, we select one DGP where the drift cancels out in the

direction of the cointegrating vector (i.e. τ1 = 0), and one where it does not. For each model

we perform the tests with every deterministic specification that is appropriate for that specific

model. The specific values used and the corresponding empirical rejection frequencies can be

found in Table 5.

9Unreported simulation results, which can also be found on the website mentioned above, show that in
finite samples the tests perform the same whether or not deterministic components are included in Step 3.
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Insert Table 5 about here

It can be seen from the table that the size of the bootstrap test is satisfactory for all

settings considered. As in Section 4, the null-based test has slightly better size than the

alternative-based test in the presence of serial correlation. The asymptotic test has again large

size distortions almost everywhere. In terms of power the conclusions are similar to those

drawn in Section 4 as well. Also, both in terms of size and power, the rejection frequencies

for a particular deterministic specification of the tests (D
(r)
t ), are comparable across different

specifications for the trends in the DGP (µ and τ), confirming the similarity of the tests.

Noticeable is that the bootstrap tests lose power if deterministic components are included

unnecessarily. This is very much a small sample effect, unreported simulations for n = 100

show that this effect, although still present, is less pronounced there. The asymptotic test

does not seem to lose as much power. This can be explained by the fact that (contrary to the

bootstrap tests) the size distortions of the asymptotic test increase when deterministic com-

ponents are added unnecessarily. It also appears that the tests with unrestricted deterministic

components are slightly more powerful than their restricted counterparts.

6 Conclusion

In this paper we present a bootstrap version of the Wald test for cointegration in a conditional

single-equation ECM originally proposed by Boswijk (1994) and also considered by Pesavento

(2004). A multivariate sieve bootstrap method is used to deal with dependence in the data,

and shown to be asymptotically valid. We also consider several alternative bootstrap tests,

for which the asymptotic validity can be established in a similar fashion, and show how

deterministic components can be included in the test.

The small sample properties of our bootstrap tests are studied by simulation, and com-

pared to those of the asymptotic test and several alternative bootstrap tests. All bootstrap

tests clearly outperform the asymptotic test in terms of size, while retaining good power.

Our bootstrap test based on the null hypothesis performs slightly better in terms of size and

power than the bootstrap test based on the alternative, while the performance of the tests

based on the vector representation is very similar to that of the tests based on the conditional

representation. The bootstrap tests with deterministic components retain excellent size prop-

erties and are insensitive to the true value of the trends in the model as long as sufficient

deterministic components are included.

The results show that our bootstrap version of the Wald ECM test is worth being con-

sidered in empirical research, as our test can be seen to improve upon the original Wald test

considered by Boswijk (1994) and Pesavento (2004). The Wald ECM test easily allows for

other bootstrap variants as well, such as those considered in the simulation study, or block

bootstrap methods, which account for somewhat more general DGPs. Such tests could easily
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be placed in the framework presented here.

A Proofs

All bootstrap weak convergence results that we present in the following are in probability.

We do not add this explicitly to every result in order to simplify the notation.

Also note that we define bootstrap stochastic order symbols O∗
p(·) and o∗p(·) in the same

way as Op(·) and op(·) for the original sample (see Chang and Park, 2003, Remark 1).

In order to prove Theorem 1, we first need the following lemma.

Lemma 2. Under Assumptions 2 and 4 we have for any 2 < a ≤ 4

E∗ |ε∗t |a = Op(1).

Proof of Lemma 2. Our proof follows Park (2002, Proof of Lemma 3.2). Note that10

E∗ |ε∗t |a =
1

n

n
∑

t=1

∣

∣

∣

∣

∣

ε̂q,t −
1

n

n
∑

t=1

ε̂q,t

∣

∣

∣

∣

∣

a

=
1

n

n
∑

t=1

∣

∣

∣

∣

∣

ε̂q,t − εq,t + εq,t − εt + εt −
1

n

n
∑

t=1

ε̂q,t

∣

∣

∣

∣

∣

a

≤ 4a−1 1

n

n
∑

t=1

{

|ε̂q,t − εq,t|a + |εq,t − εt|a + |εt|a +

∣

∣

∣

∣

∣

1

n

n
∑

t=1

ε̂q,t

∣

∣

∣

∣

∣

a}

= c(An + Bn + Cn + Dn)

where

An =
1

n

n
∑

t=1

|εt|a Bn =
1

n

n
∑

t=1

|εq,t − εt|a

Cn =
1

n

n
∑

t=1

|ε̂q,t − εq,t|a Dn =

∣

∣

∣

∣

∣

1

n

n
∑

t=1

ε̂q,t

∣

∣

∣

∣

∣

a

and c = 4a−1 is a constant not depending on n. Note that εq,t is defined as

εq,t = ut −
q
∑

j=1

Φjut−j = εt +
∞
∑

j=q+1

Φjut−j . (17)

10Every convex function f(x) has the property that f(
∑k

i=1 xi/k) ≤
∑k

i=1 f(xi)/k. Applying this to the
function f(x) = |x|a, we have

∣

∣

∣

∣

∣

k
∑

i=1

xi

∣

∣

∣

∣

∣

a

= ka

∣

∣

∣

∣

∣

k
∑

i=1

xi/k

∣

∣

∣

∣

∣

a

≤ ka

k
∑

i=1

|xi|
a /k = ka−1

k
∑

i=1

|xi|
a .
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We first look at An. By the weak law of large numbers, 1
n

∑n
t=1 |εt|a

p−→ E |εt|a. As by

Assumption 2 E |εt|a = O(1), we have that An = Op(1).

For Bn, we wish to show that E |εq,t − εt|a = o(q−a) as 1
n

∑n
t=1 |εq,t − εt|a

p−→ E |εq,t − εt|a.
Using Minkowski’s inequality we have

E |εq,t − εt|a = E

∣

∣

∣

∣

∣

∣

∞
∑

j=q+1

Φjut−j

∣

∣

∣

∣

∣

∣

a

≤





∞
∑

j=q+1

(E |Φjut−j |a)1/a





a

≤





∞
∑

j=q+1

|Φj | (E |ut−j |a)1/a





a

=



(E |ut|a)1/a
∞
∑

j=q+1

|Φj|





a

= E |ut|a




∞
∑

j=q+1

|Φj |





a

= o(q−a).

The final step comes from Bühlmann (1995), where it is shown in Lemma 2.1 that As-

sumption 2 implies that
∑∞

j=0 j|Φj | < ∞. It is also shown (in the proof of Theorem 3.1)

that
∑∞

j=q+1 j|Φj | = o(1) if
∑∞

j=0 j|Φj | < ∞. Consequently
∑∞

j=q+1 |Φj | = o(q−1) as

q
∑∞

j=q+1 |Φj| ≤
∑∞

j=q+1 j|Φj |.
Next we turn to Cn. We can write

ε̂q,t = ut −
q
∑

j=1

Φ̂jut−j = εq,t +

q
∑

j=1

Φjut−j −
q
∑

j=1

Φ̂jut−j

= εq,t −
q
∑

j=1

(Φ̂j − Φq,j)ut−j −
q
∑

j=1

(Φq,j − Φj)ut−j

(18)

where Φq,j is defined as the coefficient of yt−j in the best linear predictor of yt in terms of

yt−1, . . . , yt−q. Then

|ε̂q,t − εq,t|a ≤ 2a−1





∣

∣

∣

∣

∣

∣

q
∑

j=1

(Φ̂j − Φq,j)ut−j

∣

∣

∣

∣

∣

∣

a

+

∣

∣

∣

∣

∣

∣

q
∑

j=1

(Φq,j − Φj)ut−j

∣

∣

∣

∣

∣

∣

a

 .

We define

C1n =
1

n

n
∑

t=1

∣

∣

∣

∣

∣

∣

q
∑

j=1

(Φ̂j − Φq,j)ut−j

∣

∣

∣

∣

∣

∣

a

, C2n =
1

n

n
∑

t=1

∣

∣

∣

∣

∣

∣

q
∑

j=1

(Φq,j − Φj)ut−j

∣

∣

∣

∣

∣

∣

a
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and show that C1n, C2n = op(1). Then we have that

C1n =
1

n

n
∑

t=1

∣

∣

∣

∣

∣

∣

q
∑

j=1

(Φ̂j − Φq,j)ut−j

∣

∣

∣

∣

∣

∣

a

≤ qa−1 1

n

n
∑

t=1

q
∑

j=1

∣

∣

∣(Φ̂j − Φq,j)
∣

∣

∣

a
|ut−j |a

≤ qa−1

(

max
1≤j≤q

∣

∣

∣
Φ̂j − Φq,j

∣

∣

∣

a
)

1

n

n
∑

t=1

q
∑

j=1

|ut−j |a ,

As every value of |ut−j |a for j = 1 − q, . . . , n − 1 occurs at most q times in the double sum
∑n

t=1

∑q
j=1 |ut−j |a, we have that

C1n ≤ qa−1

(

max
1≤j≤q

∣

∣

∣Φ̂j − Φq,j

∣

∣

∣

a
)

1

n

n
∑

t=1

q
∑

j=1

|ut−j |a

≤ qa

(

max
1≤j≤q

∣

∣

∣
Φ̂j − Φq,j

∣

∣

∣

a
)

1

n

(

n−1
∑

t=0

|ut|a +

1−q
∑

t=−1

|ut|a
)

= Op((ln n/n)a/2)(qa/n)Op(n) = Op(q
a(ln n/n)a/2),

where we use that

max
1≤j≤q

∣

∣

∣
Φ̂j − Φq,j

∣

∣

∣
= Op((ln n/n)1/2) (19)

uniformly in q < Qn, where Qn = o((n/ ln n)1/2), from Hannan and Kavalieris (1986). Note

that while Hannan and Kavalieris (1986) show their result for the Yule-Walker estimator, (19)

is valid for OLS as well by Theorem 1 of Poskitt (1994). To conclude this part of the proof,

note that C1n = op(1) as q = o((n/ ln n)1/2).

For C2n, note that by Markov’s inequality for any ǫ > 0

P(|C2n| > ǫ) ≤ ǫ−1 E

∣

∣

∣

∣

∣

∣

1

n

n
∑
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∣

∣

∣

∣

∣

q
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(Φq,j − Φj)ut−j

∣

∣

∣

∣

∣

∣

a∣
∣

∣

∣

∣

∣

Then, using Minkowski’s inequality and the stationarity of ut, we have

E

∣

∣

∣

∣
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∣

q
∑

j=1

(Φq,j − Φj)ut−j

∣

∣

∣

∣

∣

∣

a

≤





q
∑

j=1

(E |(Φq,j − Φj)ut−j |a)1/a





a

≤



(E |ut|a)1/a
q
∑

j=1

|Φq,j − Φj|





a

= E |ut|a




q
∑

j=1

|Φq,j − Φj|





a

.
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Again from Bühlmann (1995, p. 337), we have that

q
∑

j=1

|Φq,j − Φj| ≤ c
∞
∑

j=q+1

|Φj| = o(q−1) (20)

with c some constant. Hence, C2n = o(q−a) which completes the proof for Cn.

Finally, we look at Dn. We want to show that

1

n

n
∑

t=1

ε̂q,t =
1

n

n
∑

t=1

εq,t + op(1) =
1

n

n
∑

t=1

εt + op(1).

Using equations (17) and (18) we can write

ε̂q,t = εt +

∞
∑

j=q+1

Φjut−j −
q
∑

j=1

(Φ̂j − Φq,j)ut−j −
q
∑

j=1

(Φq,j − Φj)ut−j .

Hence, what we need to show is that

1

n

n
∑

t=1

∞
∑

j=q+1

Φjut−j
p−→ 0 (21)

1

n

n
∑

t=1

q
∑

j=1

(Φq,j − Φj)ut−j
p−→ 0 (22)

1

n

n
∑

t=1

q
∑

j=1

(Φ̂j − Φq,j)ut−j
p−→ 0. (23)

Note that, using Markov’s inequality, we have for any ε > 0

P
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∣

∣

∣

∣

∣

∣

a

= o(q−a)

for any 2 < a ≤ 4 which follows from the proof for Bn. This shows (21). To show (22), we

can use the proof of C2n to show that

P
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= o(q−a).
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Finally, to prove (23), note that

∣

∣

∣

∣

∣

∣

1

n

n
∑

t=1

q
∑

j=1

(Φ̂j − Φq,j)ut−j

∣

∣

∣

∣

∣

∣

≤ q

(

max
1≤j≤q

∣

∣

∣Φ̂j − Φq,j

∣

∣

∣

)

1

n

(

n−1
∑

t=0

|ut| +
1−q
∑

t=−1

|ut|
)

= Op(q(ln n/n)1/2)

which follows exactly as in the proof of C1n. This shows that Dn = op(1), and the proof is

complete.

Before proceeding with the proof of Theorem 1, we need one additional lemma to ensure

that the covariance matrix of the bootstrap errors correctly mimics that of the original errors.

Lemma 3. Under Assumptions 2 and 4 we have that

Σ∗ = E∗(ε∗t ε
∗′
t ) = Σ + op(1).

Proof of Lemma 3. This proof follows Paparoditis (1996, Proof of Theorem 2.5, p. 288). First

note that E∗(ε∗t ε
∗′
t ) = n−1

∑n
t=1 ε̃q,tε̃

′
q,t. Then

|Σ∗ − Σ| =

∣

∣

∣

∣

∣

n−1
n
∑

t=1

ε̃q,tε̃
′
q,t − Σ

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

n−1
n
∑

t=1

(ε̃q,tε̃
′
q,t − εtε

′
t)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

n−1
n
∑

t=1

εtε
′
t − Σ

∣

∣

∣

∣

∣

= n−1
n
∑

t=1

∣

∣ε̃q,tε̃
′
q,t − εtε

′
t

∣

∣+ op(1)

= n−1
n
∑

t=1

∣

∣(ε̃q,t − εt)ε̃
′
q,t + εt(ε̃q,t − εt)

′
∣

∣+ op(1)

≤ n−1
n
∑

t=1

|ε̃q,t − εt| |ε̃q,t| + n−1
n
∑

t=1

|εt| |ε̃q,t − εt| + op(1)

≤ max
1≤t≤n

|ε̃q,t|n−1
n
∑

t=1

|ε̃q,t − εt| + max
1≤t≤n

|εt|n−1
n
∑

t=1

|ε̃q,t − εt| + op(1),

as n−1
∑n

t=1 εtε
′
t − Σ

p−→ 0 by the weak law of large numbers.

Note that

|ε̃q,t| ≤ |ε̂q,t| +
∣

∣

∣

∣

∣

n−1
n
∑

t=1

ε̂t

∣

∣

∣

∣

∣

≤ |ε̂q,t − εq,t| + |εq,t − εt| + |εt| +
∣

∣

∣

∣

∣

n−1
n
∑

t=1

ε̂q,t

∣

∣

∣

∣

∣

and

|ε̃q,t − εt| =

∣

∣

∣

∣

∣

ε̂q,t − n−1
n
∑

t=1

ε̂q,t − εt

∣

∣

∣

∣

∣

≤ |ε̂tq, − εq,t| + |εq,t − εt| +
∣

∣

∣

∣

∣

n−1
n
∑

t=1

ε̂t

∣

∣

∣

∣

∣

.
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It now follows that |Σ∗ − Σ| = op(1) by applying the methods from the proof of Lemma 2

(with a = 1).

Proof of Theorem 1. In this proof we draw heavily on results by Einmahl (1987), as in Chang

et al. (2006). Therefore, we first need to introduce notation used by Einmahl (1987). Let

(Rd, | · |) denote the d-dimensional Euclidean space. Let Cd[0, 1] be the space of all continuous

Rd-valued functions on [0, 1] endowed with the sup-norm || · ||.
Let λ(Q1, Q2, δ) denote the δ-distance of two measures Q1 and Q2, that is

λ(Q1, Q2, δ) = sup{Q1(A) − Q2(A
δ) : A ⊆ Cd[0, 1] closed}

where Aδ = {g ∈ Cd[0, 1] : ∃f ∈ A, ||f − g|| < δ}. Then Einmahl (1987) shows that

λ(W ∗
n ,W, δ) ≤ cδ−aK∗

an, (24)

holds for all δ if 2 < a < 4, and δ > K∗γ
an if a ≥ 4; where K∗

an =
∑n

t=1 E∗ |ε∗t |a, c is a positive

constant depending only on a, l and γ, and 0 < γ < 1/(2a − 4).

By noting that K∗
an =

∑n
t=1 E∗ |ε∗t |a = n E∗ |ε∗t |a, we can, as in Chang et al. (2006),

transform this into the following condition:

P∗

{

sup
0≤r≤1

|W ∗
n(r) − W (r)| > n−1/2cn

}

≤ Knc−a
n E∗ |ε∗t |a (25)

for any sequence {cn}, cn = n1/a+δ2 for any δ2 > 0, where K is an absolute constant depending

only on a and l.

Once we have the result in (25), we can take 0 < δ2 < 1/2 − 1/a, or alternatively,

δ2 = 1/2− 1/a− ǫ, where 0 < ǫ(< 1/2− 1/a). Then on the left-hand side we have n−1/2cn =

n−1/2+1/a+δ2 = n−ǫ. On the right-hand side we have c−a
n = (n1/a+δ2)−a = n−1−aδ2 , to show

that

P∗

{

sup
0≤r≤1

|W ∗
n(r) − W (r)| > n−ǫ

}

≤ Kn−(1+aδ2) E∗ |ε∗t |a,

from which we can deduce that, as n → ∞,

sup
0≤r≤1

|W ∗
n(r) − W (r)| = o∗p(1).
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Proof of Theorem 2. Using the Beveridge-Nelson decomposition, we can write

ε∗t = u∗
t −

q
∑

j=1

Φ̂ju
∗
t−j

= (I −
q
∑

j=1

Φ̂j)u
∗
t +

q
∑

i=1

q
∑

j=i

Φ̂j(u
∗
t−i+1 − u∗

t−i)

= Φ̂(1)u∗
t −

q
∑

i=1

q
∑

j=i

Φ̂j(u
∗
t−i − u∗

t−i+1)

and hence

u∗
t = Ψ̂(1)ε∗t + Ψ̂(1)

q
∑

i=1





q
∑

j=i

Φ̂j



 (u∗
t−i − u∗

t−i+1) = Ψ̂(1)ε∗t + (ū∗
t−1 − ū∗

t ),

where ū∗
t−1 = Ψ̂(1)

∑q
i=1(

∑q
j=i Φ̂j)u

∗
t−i and Ψ̂(1) = Φ̂(1)−1. Then

B∗
n(r) = n−1/2

[nr]
∑

t=1

u∗
t = n−1/2

[nr]
∑

t=1

Ψ̂(1)ε∗t + n−1/2

[nr]
∑

t=1

(ū∗
t−1 − ū∗

t )

= Ψ̂(1)W ∗
n(r) + n−1/2(ū∗

0 − ū∗
[nr])

Hence, we need to show that

Φ̂(1)
p−→ Φ(1) (26)

P∗

{

max
1≤t≤n

|n−1/2ū∗
t | > ǫ

}

= op(1) (27)

We can follow Chang et al. (2006, Proof of Theorem 3.3) for the proofs of these result.

We first show (26). Using equations (19) and (20) we have that

∣

∣

∣
Φ̂(1) − Φ(1)

∣

∣

∣
≤

q
∑

j=1

∣

∣

∣
Φ̂j − Φq,j

∣

∣

∣
+

q
∑

j=1

|Φq,j − Φj|+
∞
∑

j=q+1

|Φj| = Op(q(ln n/n)1/2)+ o(q−1).

Hence Φ̂(1) = Φ(1) + op(1). This proves (26).

To prove (27), we have as in Park (2002)

P∗

{

max
1≤t≤n

|n−1/2ū∗
t | > ǫ

}

≤ n P∗
{

|n−1/2ū∗
t | > ǫ

}

≤ (1/ǫa)n1−a/2 E∗ |ū∗
t |a

The second inequality follows from Markov’s inequality. Hence, we have to show that

n1−a/2 E∗ |ū∗
t |a = op(1), (28)
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which for a > 2 implies that we have to show that E∗ |ū∗
t |a = Op(1). If the Yule-Walker method

is used to estimate (8), the estimated autoregression is always invertible. Although invertibil-

ity of the estimated autoregression is not guaranteed for finite samples using OLS, the asymp-

totic equivalence of OLS to Yule-Walker (Poskitt, 1994, Theorem 1) implies that for large n

we can write u∗
t =

∑∞
j=0 Ψ̂jε

∗
t−j and furthermore ū∗

t =
∑∞

j=0 Ψ̄jε
∗
t−j , where Ψ̄j =

∑∞
i=j+1 Ψ̂j.

Let ū∗
(k),t be the k-th element of ū∗

t and let Ψ̄(k),j be the k-th row of Ψ̄j. By successive appli-

cation of the Marcinkiewicz-Zygmund inequality (Berger, 1991) and Minkowski’s inequality

element by element, we have

E∗ |ū∗
t |a = E∗

(

l+1
∑

k=1

ū∗2
(k),t

)a/2

≤ (l + 1)a/2−1
l+1
∑

k=1

E∗ |ū∗
(k),t|a

≤ ca(l + 1)a/2−1
l+1
∑

k=1

E∗





∞
∑

j=0

|Ψ̄(k),jε
∗
t−j |2





a/2

≤ ca(l + 1)a/2−1
l+1
∑

k=1





∞
∑

j=0

(

E∗ |Ψ̄(k),jε
∗
t−j |a

)2/a





a/2

≤ ca

l+1
∑

k=1





∞
∑

j=0

|Ψ̄(k),j |2




a/2

E∗ |ε∗t |a

≤ ca(l + 1)a/2−1





∞
∑

j=0

|Ψ̄j |2




a/2

E∗ |ε∗t |a

(29)

for some constant ca not depending on n. Phillips and Solo (1992, p. 973) show that a

sufficient condition for
∑∞

j=1 |Ψ̄j|2 = Op(1) is

∞
∑

j=1

j1/2|Ψ̂j | = Op(1). (30)

This will in turn hold if (Hannan and Kavalieris, 1986)

q
∑

j=1

j1/2|Φ̂j | = Op(1).
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We have

q
∑

j=1

j1/2|Φ̂j| =

q
∑

j=1

j1/2|Φ̂j − Φq,j + Φq,j − Φj + Φj|

≤
q
∑

j=1

j1/2|Φ̂j − Φq,j| +
q
∑

j=1

j1/2|Φq,j − Φj| +
q
∑

j=1

j1/2|Φj|

≤ q1/2
q
∑

j=1

|Φ̂j − Φq,j| + q1/2
q
∑

j=1

|Φq,j − Φj| +
∞
∑

j=1

j1/2|Φj|

≤ q3/2 max
1≤j≤q

|Φ̂j − Φq,j| + q1/2
q
∑

j=1

|Φq,j − Φj| +
∞
∑

j=1

j1/2|Φj|

= Op(q
3/2(ln n/n)1/2) + o(q−1/2) + O(1) = Op(1),

by (19), (20) and Assumption 4′. Together with Lemma 2 this shows that

E∗ |ū∗
t |a = Op(1). (31)

This concludes the proof of this theorem.

Next we need several lemmas in order to show the limiting distribution of the bootstrap

test statistic.

Lemma 4. Let ξ∗t be the bootstrap equivalent of ξ defined in equation (5), i.e.

y∗t = π∗′
0 ∆x∗

t +
∞
∑

j=1

π∗′
j ∆z∗t−j + ξ∗t . (32)

Then, if Assumptions 2 and 4′ hold,

n−1/2

[nr]
∑

t=1

ξ∗t
d∗−→ Bξ(r),

where Bξ(r) is a scalar Brownian motion with variance ω2, i.e Bξ(r) = ωW1(r), where W1(r)

is the first element of the standard Brownian motion W (r).

Proof of Lemma 4. Follows immediately from Theorem 1.

Lemma 5. Let f∗ denote the spectral density and Γ∗(k) the autocovariance function of u∗
t .

Under Assumptions 2 and 4′, we have

sup
λ

|f∗(λ) − f(λ)| = o∗p(1) (33)
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and

∞
∑

k=−∞

Γ∗(k) =

∞
∑

k=−∞

Γ(k) + o∗p(1). (34)

Proof of Lemma 5. The spectral density f∗(λ) of u∗
t is

f∗(λ) =
1

2π
(I −

q
∑

j=1

Φ̂je
− i jλ)−1Σ∗(I −

q
∑

j=1

Φ̂′
je

i jλ)−1.

Note that by Lemma 3 Σ∗ p−→ Σ. Furthermore,

∣

∣

∣

∣

∣

∣

q
∑

j=1

(

Φ̂j − Φj

)

e− i jλ

∣

∣

∣

∣

∣

∣

≤
q
∑

j=1

∣

∣

∣Φ̂j − Φq,j

∣

∣

∣

∣

∣e− i jv
∣

∣+

q
∑

j=1

|Φq,j − Φj|
∣

∣e− i jv
∣

∣

≤ q max
1≤j≤q

∣

∣

∣
Φ̂j − Φq,j

∣

∣

∣
+

q
∑

j=1

|Φq,j − Φj| = op(1)

by (19) and (20). Now the result in (33) follows straightforwardly.

The result in (34) follows trivially by noting that
∑∞

k=−∞ Γ(k) = 2πf(0) and correspond-

ingly
∑∞

k=−∞ Γ∗(k) = 2πf∗(0).

Now we can derive the limiting distributions of the different elements of the test statis-

tic. First define wp,t = (∆x′
t,∆z′t−1, . . . ,∆zt−p)

′, and let Wp = (wp,1, . . . , wp,n)′, Z−1 =

(z0, . . . , zn−1)
′, Ξp = (ξp,1, . . . , ξp,n)′ and ∆Y = (∆y1, . . . ,∆yn)′, and define their bootstrap

versions accordingly.

Lemma 6. Under Assumptions 2, 3, 4′ and 5 we have

a) n−2Z∗′
−1Z

∗
−1 = n−2

n
∑

t=1

z∗t−1z
∗′
t−1

d∗−→
∫ 1

0
B(r)B(r)′dr (35)

b) n−1Z∗′
−1Ξ

∗
p = n−1

n
∑

t=1

z∗t−1ξ
∗
p,t

d∗−→
∫ 1

0
B(r)dBξ(r) (36)

c)
∣

∣

∣

∣

∣

∣

(

n−1W ∗′
p W ∗

p

)−1
∣

∣

∣

∣

∣

∣ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

1

n

n
∑

t=1

w∗
p,tw

∗′
p,t

)−1
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= O∗
p(1) (37)

d)
∣

∣Z∗′
−1W

∗
p

∣

∣ =

∣

∣

∣

∣

∣

n
∑

t=1

z∗t−1w
∗′
p,t

∣

∣

∣

∣

∣

= O∗
p(np1/2) (38)

e)
∣

∣W ∗′
p Ξ∗

p

∣

∣ =

∣

∣

∣

∣

∣

n
∑

t=1

w∗
p,tξ

∗
p,t

∣

∣

∣

∣

∣

= O∗
p(n

1/2p1/2). (39)
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Proof of Lemma 6. First we look at a). As we set z∗0 = 0, we have

z∗t =

t
∑

i=1

u∗
t

and therefore

B∗
n(r) = n−1/2z[nr].

Then by Theorem 2 and the continuous mapping theorem we have

n−2
n
∑

t=1

z∗t−1z
∗′
t−1 = n−1

n
∑

t=1

∫ t/n

(t−1)/n
z∗[nr]z

∗′
[nr]dr =

n
∑

t=1

∫ t/n

(t−1)/n
B∗

n(r)B∗′
n (r)dr

=

∫ 1

0
B∗

n(r)B∗′
n (r)dr

d∗−→
∫ 1

0
B(r)B(r)′dr

as in Chang et al. (2006, Proof of Lemma 3.4).

Next we look at b). We have

|n−1
n
∑

t=1

z∗t−1ξ
∗
p,t| ≤ |n−1

n
∑

t=1

z∗t−1ξ
∗
t | + |n−1

n
∑

t=1

z∗t−1(ξ
∗
p,t − ξ∗t )|.

Hence, we first have to show that n−1
∑n

t=1 z∗t−1(ξ
∗
p,t − ξ∗t ) = op(1). We can follow Chang

et al. (2006, Proof of Lemma A.6) for the proof.

Note that ξ∗p,t =
∑∞

k=p+1 π∗′
k u∗

t−k + ξ∗t , where

π∗′
k = Φ̂1,k − Σ̂12Σ̂

−1
22 Φ̂2,k (40)

and Φ̂k = (Φ̂′
1,k, Φ̂

′
2,k)

′. As Φ̂k = 0 for k > q and using Assumption 5, we have that

∞
∑

j=p+1

|π∗
j | =

q
∑

k=p+1

|π∗
j | = op(1).

Then define Ψ̂p,j such that

ξ∗t − ξ∗p,t =
∞
∑

k=p+1

π∗′
k u∗

t−k =
∞
∑

j=p+1

j
∑

k=p+1

π∗′
k Ψ̂j−kε

∗
t−j =

∞
∑

j=p+1

Ψ̂p,jε
∗
t−j , (41)

We then have that

∞
∑

j=p+1

∣

∣

∣
Ψ̂p,j

∣

∣

∣
≤

j
∑

k=p+1

|π∗′
k |

∞
∑

j=p+1

|Ψ̂j−k| ≤





∞
∑

j=p+1

|π∗
j |





(

∞
∑

i=0

|Ψ̂i|
)

=





∞
∑

j=p+1

|π∗
j |



Op(1).
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Define η∗t =
∑t

i=1 ε∗i , such that we can write

z∗t = Ψ̂(1)η∗t + (ū∗
0 − ū∗

t ).

Then we have

n
∑

t=1

z∗t−1(ξ
∗
p,t − ξ∗t )

′ =
n
∑

t=1

Ψ̂(1)η∗t−1(ξ
∗
p,t − ξ∗t )′ +

n
∑

t=1

ū∗
0(ξ

∗
p,t − ξ∗t )

′ −
n
∑

t=1

ū∗
t−1(ξ

∗
p,t − ξ∗t )

′

= R∗
1n + R∗

2n + R∗
3n.

We first want to show that R∗
1n = o∗p(n). Let δij be the Kronecker delta. We have

∣

∣

∣

∣

∣

n
∑

t=1

η∗t−1(ξ
∗
p,t − ξ∗t )

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

n
∑

t=1

η∗t−1





∞
∑

j=p+1

Ψ̂p,jε
∗
t−j





∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∞
∑

j=p+1

n
∑

t=1

t−1
∑

i=1

ε∗t−iε
∗′
t−jΨ̂

′
p,j

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

n−1
∑

j=p+1

(n − j)ΣΨ̂′
p,j +

∞
∑

j=p+1

n
∑

t=1

t−1
∑

i=1

(

ε∗t−iε
∗′
t−j − δijΣ

)

Ψ̂′
p,j

∣

∣

∣

∣

∣

∣

=

∞
∑

j=p+1

|Ψ̂p,j|O∗
p(n) +

∞
∑

j=p+1

|Ψ̂p,j|O∗
p(n

1/2)

=





∞
∑

j=p+1

|π∗
j |



O∗
p(n) = o∗p(n).

Next we turn to R∗
2n. We have

n
∑

t=1

(ξ∗p,t − ξ∗t ) =

n
∑

t=1

∞
∑

j=p+1

Ψ̂p,jε
∗
t−j =

∞
∑

j=p+1

Ψ̂p,j

n
∑

t=1

ε∗t−j

=





∞
∑

j=p+1

|Ψ̂p,j|



O∗
p(n

1/2) =





∞
∑

j=p+1

|π∗
j |



O∗
p(n

1/2),

from which we can easily see that R∗
2n = o∗p(n

1/2).

Finally we look at R∗
3n. First note that by applying the Beveridge-Nelson decomposition

in a slightly different way than before, we can derive that ū∗
t =

∑∞
j=0

∑∞
i=j+1 Ψ̂iε

∗
t−j−i. Then,
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using the same approach as for R∗
1n, we have for |R∗

3n| that

∣

∣

∣

∣

∣

n
∑

t=1

ū∗
t−1(ξ

∗
p,t − ξ∗t )

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

n
∑

t=1

ū∗
t−1

∞
∑

j=p+1

Ψ̂p,jε
∗
t−j

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

n
∑

t=1

∞
∑

i=0

∞
∑

k=i+1

Ψ̂kε
∗
t−i−1

∞
∑

j=p+1

Ψ̂p,jε
∗
t−j

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∞
∑

i=0

∞
∑

j=p+1

∞
∑

k=i

Ψ̂k

n
∑

t=1

(

ε∗t−i−1ε
∗′
t−j

)

Ψ̂′
p,j

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

n
∞
∑

j=p+1

∞
∑

k=j

Ψ̂kΣΨ̂′
p,j +

∞
∑

i=0

∞
∑

k=i

Ψ̂k

∞
∑

j=p+1

n
∑

t=1

(

ε∗t−i−1ε
∗
t−j − δi+1,jΣ

)

Ψ̂′
p,j

∣

∣

∣

∣

∣

∣

=

∞
∑

j=p+1

∞
∑

k=j

|Ψ̂k||Ψ̂p,j|O∗
p(n) +

∞
∑

i=0

∞
∑

k=i

|Ψ̂k|
∞
∑

j=p+1

|Ψ̂p,j|O∗
p(n

1/2)

=

∞
∑

j=p+1

|Ψ̂p,j|O∗
p(n) +

∞
∑

j=p+1

|Ψ̂p,j|O∗
p(n

1/2)

=





∞
∑

j=p+1

|π∗
j |



O∗
p(n).

Therefore, R∗
3n = o∗p(n), and hence

n−1
n
∑

t=1

z∗t−1(ξ
∗
p,t − ξ∗t ) = n−1 (R∗

1n + R∗
2n + R∗

3n) = o∗p(1).

Then

n−1
n
∑

t=1

z∗t−1ξ
∗
p,t = n−1

n
∑

t=1

z∗t−1ξ
∗
t + o∗p(1),

while by Park and Phillips (1989, Lemma 2.1), Theorem 2 and Lemma 4, we have that

n−1
n
∑

t=1

z∗t−1ξ
∗
t

d∗−→
∫ 1

0
B(r)dBξ(r).

This completes the proof of part b).

For c), we want to show that

E∗

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

1

n

n
∑

t=1

w∗
p,tw

∗′
p,t

)−1
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= Op(1). (42)
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Following Chang and Park (2003, Proof of Lemma 3) we first want to show that

E∗

∣

∣

∣

∣

∣

n
∑

t=1

[

u∗
t−iu

∗′
t−j − Γ∗(i − j)

]

∣

∣

∣

∣

∣

2

= Op(n). (43)

For this to hold it is sufficient to show that

E∗

(

n
∑

t=1

[

u∗
(a),t−iu

∗′
(b),t−j − Γ∗

(ab)(i − j)
]

)2

= Op(n), (44)

for all 1 ≤ a, b ≤ 1 + l, where u∗
(a),t is the a-th element of u∗

t , and similarly Γ∗
(ab)(i − j) is the

(a, b)-th element of Γ∗(i − j).

Analogous to the case for univariate time series models discussed in Berk (1974, eqs (2.10)

and (2.11), p. 491), we have that

E∗

(

n
∑

t=1

[

u∗
(a),t−iu

∗
(b),t−i − Γ∗

(ab)(i − j)
]

)2

≤ 2n
∞
∑

k=−∞

Γ∗
(ab)(k)2

+ n
∑

c,d,e,f

|κ̃∗
cdef |

(

∞
∑

k=0

Ψ∗2
(ac),k

)1/2( ∞
∑

k=0

Ψ∗2
(bd),k

)1/2( ∞
∑

k=0

Ψ∗2
(ae),k

)1/2( ∞
∑

k=0

Ψ∗2
(bf),k

)1/2

,

where κ̃∗
cdef = E∗(ε∗(c),tε

∗
(d),tε

∗
(e),tε

∗
(f),t) − σcdσef − σceσdf − σcfσde and σcd = E∗(ε∗(c),tε

∗
(d),t).

Note that |κ̃∗
cdef | = Op(1) as E∗ |ε∗t |4 = Op(1) (take a = 4 in Lemma 2). Furthermore,

∑∞
k=−∞ Γ∗

(ab)(k)2 = Op(1) through Lemma 5 and
(

∑∞
k=0 Ψ∗2

(ac),k

)1/2
= Op(1) as

∑∞
k=0 k1/2|Ψ̂k| =

Op(1), which we demonstrated in the proof of Theorem 2, equation (30). Now equation (44)

follows straightforwardly.

Next, partition Γ∗(k) conformably with yt and xt as

Γ∗(k) =

[

Γ∗
11(k) Γ∗

12(k)

Γ∗
21(k) Γ∗

22(k)

]

and define Γ∗
2·(k) = [Γ∗

21(k),Γ∗
22(k)] and Γ∗

·2(k) = [Γ∗
12(k)′,Γ∗

22(k)′]′. Then define Ω∗
pp as

Ω∗
pp =













Γ∗
22(0) Γ∗

2·(−1) . . . Γ∗
2·(−p)

Γ∗
·2(1) Γ∗(0) . . . Γ∗(1 − p)
...

...
. . .

...

Γ∗
·2(p) Γ∗(p − 1) · · · Γ∗(0)













.
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As for any matrix M , ||M ||2 ≤
∑

i,j ||Mij ||2,11 we can write

E∗

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

n

n
∑

t=1

w∗
p,tw

∗′
p,t − Ω∗

pp

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

≤ E∗





∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

n

n
∑

t=1

u∗
2,tu

∗′
2,t − Γ∗

22(0)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

+

p
∑

j=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

n

n
∑

t=1

u∗
2,tu

∗′
t−j − Γ∗

2·(−j)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

+

p
∑

i=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

n

n
∑

t=1

u∗
t−iu

∗′
2,t − Γ∗

·2(i)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

+

(p,p)
∑

(i=1,j=1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

n

n
∑

t=1

u∗
t−iu

∗′
t−j − Γ∗(j − i)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2




= Op(n
−1) + Op(n

−1p) + Op(n
−1p) + Op(n

−1p2) = Op(n
−1p2).

Next we need to show that

∣

∣

∣

∣Ω∗−1
pp

∣

∣

∣

∣ ≤
[

2π

(

inf
λ

f∗(λ)

)]−1

= Op(1).

Let us consider an “extended” Ω∗
pp matrix, i.e.

Ω̃∗
pp =



















Γ∗
11(0) Γ∗

12(0) Γ∗
1·(−1) . . . Γ∗

1·(−p)

Γ∗
21(0)

Γ∗
·1(1) Ω∗

pp
...

Γ∗
·1(p)



















=













Γ∗(0) Γ∗(−1) . . . Γ∗(−p)

Γ∗(1) Γ∗(0) . . . Γ∗(1 − p)
...

...
. . .

...

Γ∗(p) Γ∗(p − 1) · · · Γ∗(0)













.

Let λ∗ = (λ∗
1, . . . , λ

∗
(l+1)p)

′ be the eigenvalues of Ω̃∗
pp and define 0 < F ∗

1 = infλ ||f∗(λ)||. Then

as a direct consequence of Lemma A.2 of Chang et al. (2006) we have that

∣

∣

∣

∣Ω∗−1
pp

∣

∣

∣

∣ ≤ (2πF ∗
1 )−1 = Op(1).

11We let Mij denote submatrices into which one can partition M .
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As
∣

∣

∣

∣Ω∗−1
pp

∣

∣

∣

∣ ≤
∣

∣

∣

∣

∣

∣Ω̃∗−1
pp

∣

∣

∣

∣

∣

∣,12 we know that
∣

∣

∣

∣Ω∗−1
pp

∣

∣

∣

∣ = Op(1) as well. Then

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

1

n

n
∑

t=1

w∗
p,tw

∗′
p,t

)−1
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣Ω∗−1
pp

∣

∣

∣

∣+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

1

n

n
∑

t=1

w∗
p,tw

∗′
p,t

)−1

− Ω∗−1
pp

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
∣

∣

∣

∣Ω∗−1
pp

∣

∣

∣

∣+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Ω∗−1
pp

(

Ω∗
pp −

1

n

n
∑

t=1

w∗
p,tw

∗′
p,t

)(

1

n

n
∑

t=1

w∗
p,tw

∗′
p,t

)−1
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣Ω∗−1
pp

∣

∣

∣

∣+
∣

∣

∣

∣Ω∗−1
pp

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

n

n
∑

t=1

w∗
p,tw

∗′
p,t − Ω∗

pp

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

1

n

n
∑

t=1

w∗
p,tw

∗′
p,t

)−1
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

which implies that

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

1

n

n
∑

t=1

w∗
p,tw

∗′
p,t

)−1
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣Ω∗−1
pp

∣

∣

∣

∣

1 −
∣

∣

∣

∣Ω∗−1
pp

∣

∣

∣

∣

∣

∣

∣

∣

1
n

∑n
t=1 w∗

p,tw
∗′
p,t − Ω∗

pp

∣

∣

∣

∣

holds for large n with probability 1 as
∣

∣

∣

∣

1
n

∑n
t=1 w∗

p,tw
∗′
p,t − Ω∗

pp

∣

∣

∣

∣ = O∗
p(n

−1/2p). As
∣

∣

∣

∣Ω∗−1
pp

∣

∣

∣

∣ =

Op(1), the result in (42) follows.

For d) we want to show that

E∗

∣

∣

∣

∣

∣

n
∑

t=1

z∗t−1w
∗′
p,t

∣

∣

∣

∣

∣

= Op(np1/2).

Following Chang and Park (2002, Proof of Lemma 3.2), we write

n
∑

t=1

z∗t−1u
∗′
t−j =

n
∑

t=1

z∗t−1u
∗′
t +

n
∑

t=1

z∗t−1u
∗′
t−j −

n
∑

t=1

z∗t−1u
∗′
t =

n
∑

t=1

z∗t−1u
∗′
t + R∗

n

and we want to show that R∗
n = O∗

p(n) uniformly in j = 1, . . . , p.

12Suppose we have a matrix M and a vector v that we can write as

M =

[

M11 M12

M21 M22

]

v =

[

v1

v2

]

.

Then we have that

||M ||2 = max
v

|Mv|2 / |v|2 = max
v1,v2

∣

∣

∣

∣

M11v1 + M12v2

M21v1 + M22v2

∣

∣

∣

∣

2
/

∣

∣

∣

∣

v1

v2

∣

∣

∣

∣

2

= max
v1,v2

|M11v1 + M12v2|
2 + |M21v1 + M22v2|

2

|v1|
2 + |v2|

2 ≥ max
v1,v2

|M11v1|
2 + |M12v2|

2 + |M21v1|
2 + |M22v2|

2

|v1|
2 + |v2|

2

≥ max
v2(v1=0)

|M12v2|
2 + |M22v2|

2

|v2|
2 ≥ max

v2

|M22|
2

|v2|
2 = ||M22||

2 .
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First, write

n
∑

t=1

z∗t−1u
∗′
t =

n−j
∑

t=1

z∗t−1u
∗′
t +

n
∑

t=n−j+1

z∗t−1u
∗′
t =

n
∑

t=1

z∗t−j−1u
∗′
t−j +

n
∑

t=n−j+1

z∗t−1u
∗′
t

(as u∗
t = 0 for t = 0, . . . ,−p) and rewrite R∗

n as

n
∑

t=1

(z∗t−1 − z∗t−j−1)u
∗′
t−j −

n
∑

t=n−j+1

z∗t−1u
′
t = R∗

1n − R∗
2n.

Then

R∗
1n =

n
∑

t=1

(z∗t−1 − z∗t−j−1)u
∗′
t−j =

n
∑

t=1

(

j
∑

i=1

u∗
t−i

)

u∗′
t−j =

j
∑

i=1

n
∑

t=1

u∗
t−iu

∗′
t−j

= n

j
∑

i=1

Γ∗(i − j) +

j
∑

i=1

[

n
∑

t=1

(u∗
t−iu

∗′
t−j − Γ∗(i − j))

]

= Op(n) + O∗
p(n

1/2p)

as 1 ≤ j ≤ p, the result in equation (43), and the fact that
∑∞

k=−∞ Γ∗(k) = Op(1) by

Assumption 2 and Lemma 5. We can write R∗
2n as

R∗
2n =

n
∑

t=n−j+1

t−1
∑

i=1

u∗
t−iu

∗′
t =

n
∑

t=n−j+1





n−j
∑

i=1

u∗
t−i +

t−1
∑

i=n−j+1

u∗
t−i



u∗′
t

=

n
∑

t=n−j+1

n−j
∑

i=1

u∗
t−iu

∗′
t +

n
∑

t=n−j+1

t−1
∑

i=n−j+1

u∗
t−iu

∗′
t = Ra∗

2n + Rb∗
2n.

Then we have

Ra∗
2n = j

n−j
∑

i=1

Γ∗(i) +

n
∑

t=n−j+1

[

n−j
∑

i=1

(u∗
t−iu

∗′
t − Γ(i)∗)

]

= Op(p) + O∗
p(n

1/2p)

and

Rb∗
2n = j

t−j
∑

i=n−j+1

Γ∗(i) +

n
∑

t=n−j+1





t−1
∑

i=n−j+1

(u∗
t−iu

∗′
t − Γ(i)∗)



 = Op(p) + O∗
p(p

3/2),

33



as

n
∑

t=n−j+1





t−1
∑

i=n−j+1

(u∗
t−iu

∗′
t − Γ(i)∗)



 =

n
∑

t=n−j+1





t−(n−j)−1
∑

i=1

(u∗
t−n+j−iu

∗′
t − Γ(i − n + j)∗)





=
n
∑

t=n−j+1

O∗
p((t − n + j)1/2) =

n
∑

t=n−j+1

O∗
p(j

1/2)

=

n
∑

t=n−j+1

O∗
p(p

1/2) = jO∗
p(p

1/2) = O∗
p(p

3/2).

Hence,

n
∑

t=1

z∗t−1u
∗′
t−j =

n
∑

t=1

z∗t−1u
∗′
t + R∗

n =
n
∑

t=1

z∗t−1u
∗′
t + Op(n) + O∗

p(n
1/2p).

Note that

∣

∣

∣

∣

∣

n
∑

t=1

z∗t−1u
∗′
t

∣

∣

∣

∣

∣

= O∗
p(n),

by Phillips (1988), and

∣

∣

∣

∣

∣

n
∑

t=1

z∗t−1u
∗′
2,t

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

n
∑

t=1

z∗t−1u
∗′
t

∣

∣

∣

∣

∣

+ O∗
p(n).

Then

E∗

∣

∣

∣

∣

∣

n
∑

t=1

z∗t−1w
∗′
p,t

∣

∣

∣

∣

∣

= E∗

∣

∣

∣

∣

∣

n
∑

t=1

[

z∗t−1u
∗′
2,t z∗t−1u

∗′
t−1 . . . z∗t−1u

∗′
t−p

]

∣

∣

∣

∣

∣

= E∗





∣

∣

∣

∣

∣

n
∑

t=1

z∗t−1u
∗′
2,t

∣

∣

∣

∣

∣

2

+

p
∑

j=1

∣

∣

∣

∣

∣

n
∑

t=1

z∗t−1u
∗′
t−j

∣

∣

∣

∣

∣

2




1/2

= E∗





∣

∣

∣

∣

∣

n
∑

t=1

z∗t−1u
∗′
2,t

∣

∣

∣

∣

∣

2

+

p
∑

j=1

(∣

∣

∣

∣

∣

n
∑

t=1

z∗t−1u
∗′
t

∣

∣

∣

∣

∣

+ Op(n) + O∗
p(n

1/2p)

)2




1/2

= E∗





(∣

∣

∣

∣

∣

n
∑

t=1

z∗t−1u
∗′
t

∣

∣

∣

∣

∣

+ O∗
p(n)

)2

+ p

(∣

∣

∣

∣

∣

n
∑

t=1

z∗t−1u
∗′
t

∣

∣

∣

∣

∣

+ Op(n) + O∗
p(n

1/2p)

)2




1/2

= Op(np1/2).
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Finally, we look at e). We want to show that

∣

∣

∣

∣

∣

n
∑

t=1

w∗
p,tξ

∗′
p,t

∣

∣

∣

∣

∣

= O∗
p(n

1/2p1/2).

Write

n
∑

t=1

w∗
p,tξ

∗
p,t =

n
∑

t=1

w∗
p,tξ

∗
t +

n
∑

t=1

w∗
p,t

(

ξ∗p,t − ξ∗t
)

.

We first show that

n
∑

t=1

u∗
t−j

(

ξ∗p,t − ξ∗t
)

= o∗p(n
1/2)

uniformly in 1 ≤ j ≤ p. We have that

∣

∣

∣

∣

∣

n
∑

t=1

u∗
t−j

(

ξ∗p,t − ξ∗t
)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

n
∑

t=1

u∗
t−j





∞
∑

k=p+1

Ψ̂p,kε
∗
t−k





∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

n
∑

t=1

(

∞
∑

m=0

Ψ̂mεt−j−m

)





∞
∑

k=p+1

Ψ̂p,kε
∗
t−k





∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∞
∑

k=p+1

n
∑

t=1

∞
∑

m=0

Ψ̂mε∗t−j−mε∗′t−kΨ̂
′
p,k

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

n

n−1
∑

k=p+1

Ψ̂kΣΨ̂′
p,k +

∞
∑

k=p+1

∞
∑

m=0

Ψ̂m

n
∑

t=1

(

ε∗t−j−mε∗′t−k − δ(j+m)kΣ
)

Ψ̂′
p,k

∣

∣

∣

∣

∣

∣

=
∞
∑

k=p+1

|Ψ̂k||Ψ̂p,k|O∗
p(n) +

∞
∑

m=0

∞
∑

k=p+1

|Ψ̂m||Ψ̂p,k|O∗
p(n

1/2) = o∗p(n
1/2),

as in Chang et al. (2006, Proof of Lemma A.6), such that

n
∑

t=1

u∗
t−jξ

∗
p,t =

n
∑

t=1

u∗
t−jξ

∗
t + o∗p(n

1/2).

Furthermore,

E∗

∣

∣

∣

∣

∣

n
∑

t=1

u∗
t−jξ

∗
t

∣

∣

∣

∣

∣

2

= E∗

(

n
∑

s=1

u∗
s−jξ

∗
s

)′( n
∑

t=1

u∗
t−jξ

∗
t

)

=
n
∑

s=1

n
∑

t=1

E∗ u∗′
s−ju

∗
t−jξ

∗
sξ∗t =

n
∑

s=1

n
∑

t=1

E∗ u∗′
s−ju

∗
t−j E∗ ξ∗sξ∗t

=

n
∑

t=1

E∗ u∗′
t−ju

∗
t−j E∗ ξ∗2t = Op(n).
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Then

∣

∣

∣

∣

∣

n
∑

t=1

w∗
p,tξ

∗
p,t

∣

∣

∣

∣

∣

=





p
∑

j=1

∣

∣

∣

∣

∣

n
∑

t=1

u∗
t−jξ

∗
p,t

∣

∣

∣

∣

∣

2




1/2

= O∗
p(n

1/2p1/2),

which concludes the proof.

The following lemma shows the consistency of the bootstrap variance estimator.

Lemma 7. Let ω̂∗2 be the estimator of the variance of the bootstrap errors ξ∗p,t in regression

(11), i.e.

ω̂∗2 =
1

n
(∆y∗ − Z∗

−1δ̂
∗)′(I − W ∗

p (W ∗′
p W ∗

p )−1W ∗′
p )(∆y∗ − Z∗

−1δ̂
∗).

Then ω̂∗2 p∗−→ ω2 under Assumptions 2, 3, 4′ and 5.

Proof of Lemma 7. Note that

nω̂∗2 = (∆y∗ − Z∗
−1δ̂

∗)′(I − W ∗
p (W ∗′

p W ∗
p )−1W ∗′

p )(∆y∗ − Z∗
−1δ̂

∗)

= ∆y∗′(I − W ∗
p (W ∗′

p W ∗
p )−1W ∗′

p )∆y∗ − ∆y∗′(I − W ∗
p (W ∗′

p W ∗
p )−1W ∗′

p )Z∗
−1δ̂

∗

− δ̂∗′Z∗′
−1(I − W ∗

p (W ∗′
p W ∗

p )−1W ∗′
p )∆y∗ + δ̂∗′Z∗′

−1(I − W ∗
p (W ∗′

p W ∗
p )−1W ∗′

p )Z∗
−1δ̂

∗

= Ξ∗′
p (I − W ∗

p (W ∗′
p W ∗

p )−1W ∗′
p )Ξ∗

p − Ξ∗′
p (I − W ∗

p (W ∗′
p W ∗

p )−1W ∗′
p )Z∗

−1δ̂
∗

− δ̂∗′Z∗′
−1(I − W ∗

p (W ∗′
p W ∗

p )−1W ∗′
p )Ξ∗

p + δ̂∗′Z∗′
−1(I − W ∗

p (W ∗′
p W ∗

p )−1W ∗′
p )Z∗

−1δ̂
∗.

which we write as

ω̂∗2 = C∗
n − 2D∗

n + E∗
n

We first look at C∗
n. Write

C∗
n = n−1Ξ∗′

p Ξ∗
p − n−1Ξ∗′

p W ∗
p (W ∗′

p W ∗
p )−1W ∗′

p Ξ∗
p.

Using that δ̂∗ = Op(n
−1) and the results from Lemma 6, we have that

n−1
∣

∣Ξ∗′
p W ∗

p (W ∗′
p W ∗

p )−1W ∗′
p Ξ∗

p

∣

∣ ≤ n−1
∣

∣n−1Ξ∗′
p W ∗

p

∣

∣

∣

∣

∣

∣(W ∗′
p W ∗

p )−1
∣

∣

∣

∣

∣

∣W ∗′
p Ξ∗

p

∣

∣

= n−1O∗
p(n

1/2p1/2)O∗
p(n

−1)O∗
p(n

1/2p1/2) = o∗p(n
−1/2).

Hence,

C∗
n = n−1Ξ∗′

p Ξ∗
p + o∗p(1).
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Next we turn to D∗
n. We can write D∗

n as

D∗
n = n−1Ξ∗′

p Z∗
−1δ̂

∗ − n−1Ξ∗′
p W ∗

p (W ∗′
p W ∗

p )−1W ∗′
p Z∗

−1δ̂
∗.

Again using Lemma 6 and δ̂∗ = O∗
p(n

−1), we have

|D∗
n| ≤

∣

∣Ξ∗′
p Z∗

−1

∣

∣

∣

∣

∣
δ̂∗
∣

∣

∣
+
∣

∣Ξ∗′
p W ∗

p

∣

∣

∣

∣

∣

∣(W ∗′
p W ∗

p )−1
∣

∣

∣

∣

∣

∣W ∗′
p Z∗

−1

∣

∣

∣

∣

∣
δ̂∗
∣

∣

∣

= n−1O∗
p(n)O∗

p(n
−1) + n−1O∗

p(n
1/2p1/2)O∗

p(n
−1)O∗

p(np1/2)O∗
p(n

−1) = O∗
p(n

−1).

Finally we look at E∗
n:

E∗
n = δ̂∗′Z∗′

−1Z
∗
−1δ̂

∗ − δ̂∗′Z∗′
−1W

∗
p (W ∗′

p W ∗
p )−1W ∗′

p Z∗
−1δ̂

∗.

As before, we use the results from Lemma 6 and δ̂∗ = O∗
p(n

−1) to obtain

|E∗
n| ≤ n−1

∣

∣

∣δ̂∗′
∣

∣

∣

∣

∣

∣

∣Z∗′
−1Z

∗
−1

∣

∣

∣

∣

∣

∣

∣δ̂∗
∣

∣

∣+ n−1
∣

∣

∣δ̂∗′
∣

∣

∣

∣

∣Z∗′
−1W

∗
p

∣

∣

∣

∣

∣

∣(W ∗′
p W ∗

p )−1
∣

∣

∣

∣

∣

∣W ∗′
p Z∗

−1

∣

∣

∣

∣

∣δ̂∗
∣

∣

∣

= n−1O∗
p(n

−1)O∗
p(n

2)O∗
p(n

−1) + n−1O∗
p(n

−1)O∗
p(np1/2)O∗

p(n
−1)O∗

p(np1/2)O∗
p(n

−1)

= O∗
p(n

−1).

Therefore, we have that

ω̂∗2 =
1

n

n
∑

t=1

ξ∗2p,t + o∗p(1).

Next we wish to show that 1
n

∑n
t=1 ξ∗2p,t = 1

n

∑n
t=1 ξ∗2t +o∗p(1), for which our proof is similar

as Chang and Park (2002, Proof of Lemma 3.1(c)). Note that

1

n

n
∑

t=1

(

ξ∗p,t − ξ∗t
)2

=
1

n

n
∑

t=1





∞
∑

j=p+1

Ψ̂p,jε
∗
t−j





2

=
∞
∑

j=p+1

∞
∑

i=p+1

Ψ̂p,j

(

1

n

n
∑

t=1

ε∗t−jε
∗′
t−i

)

Ψ̂′
p,i

=

∞
∑

j=p+1

Ψ̂p,jΣ
∗Ψ̂′

j +

∞
∑

j=p+1

∞
∑

i=p+1

(

Ψ̂p,j

(

1

n

n
∑

t=1

ε∗t−jε
∗′
t−i

)

Ψ̂′
p,i − δijΣ

)

=
∞
∑

j=p+1

∣

∣

∣
Ψ̂p,j

∣

∣

∣

2
O∗

p(1) +
∞
∑

j=p+1

∞
∑

i=p+1

∣

∣

∣
Ψ̂p,j

∣

∣

∣

∣

∣

∣
Ψ̂p,i

∣

∣

∣
O∗

p(n
−1/2) = o∗p(1).

Then, as

∣

∣

∣

∣

∣

∣

(

1

n

n
∑

t=1

ξ∗2p,t

)1/2

−
(

1

n

n
∑

t=1

ξ∗2t

)1/2
∣

∣

∣

∣

∣

∣

≤
(

1

n

n
∑

t=1

(

ξ∗p,t − ξ∗t
)2

)1/2
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as a consequence from the triangle inequality it follows that

1

n

n
∑

t=1

ξ∗2p,t =
1

n

n
∑

t=1

ξ∗2t + o∗p(1)

which concludes this step.

For the final step we show that

∣

∣

∣

∣

∣

1

n

n
∑

t=1

ξ∗2t − ω2

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

1

n

n
∑

t=1

ξ∗2t − ω∗2

∣

∣

∣

∣

∣

+
∣

∣ω∗2 − ω2
∣

∣ = o∗p(1),

where ω∗2 = E∗(ξ∗2t ). First, we show that
∣

∣

1
n

∑n
t=1 ξ∗2t − ω∗2

∣

∣ = op(1). Note that

P∗

(∣

∣

∣

∣

∣

1

n

n
∑

t=1

ξ∗2t − ω∗2

∣

∣

∣

∣

∣

> ǫ

)

≤ ǫ−2 E∗

(

1

n

n
∑

t=1

ξ∗2t − ω∗2

)2

= ǫ−2 E∗

(

1

n

n
∑

t=1

(

ξ∗2t − E∗(ξ∗2t )
)

)2

= ǫ−2 1

n2

n
∑

s=1

n
∑

t=1

E∗
(

ξ∗2s − E∗(ξ∗2s )
) (

ξ∗2t − E∗(ξ∗2t )
)

= ǫ−2 1

n2

n
∑

s=1

n
∑

t=1

(

E∗
(

ξ∗2s ξ∗2t

)

− E∗(ξ∗2s ) − E∗(ξ∗2t )
)

= ǫ−2 1

n2

n
∑

t=1

(

E∗(ξ∗4t ) −
(

E∗(ξ∗2t )
)2
)

= Op(n
−1).

Next, we next show that ω∗2 p−→ ω2. As

ω∗2 = σ∗
11 − Σ∗

12Σ
∗−1
22 Σ∗

21 and ω2 = σ11 − Σ12Σ
−1
22 Σ21,

and Σ∗ p−→ Σ by Lemma 3, the result follows. This completes the proof.

Proof of Theorem 3. Note that

T ∗
wald = nδ̂∗′

(

n2 ̂Var∗(δ̂∗)

)−1

nδ̂∗.

We first look at δ̂∗. We can write nδ̂∗ as

nδ̂∗ = n[Z∗′
−1(I − W ∗

p (W ∗′
p W ∗

p )−1W ∗′
p )Z∗

−1]
−1Z∗′

−1(I − W ∗
p (W ∗′

p W ∗
p )−1W ∗′

p )Ξ∗
p

= [n−2Z∗′
−1Z

∗
−1 − A∗

n]−1(n−1Z∗′
−1Ξ

∗
p − B∗

n),
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where

A∗
n = n−2Z∗

−1W
∗
p (W ∗′

p W ∗
p )−1W ∗′

p Z∗
−1 and B∗

n = n−1Z∗
−1W

∗
p (W ∗′

p W ∗
p )−1W ∗′

p Ξ∗
p.

Using Lemma 6 c), d) and e), we have

|A∗
n| ≤ n−3

∣

∣Z∗
−1W

∗
p

∣

∣

∣

∣

∣

∣(n−1W ∗′
p W ∗

p )−1
∣

∣

∣

∣

∣

∣W ∗′
p Z∗

−1

∣

∣

= n−3O∗
p(np1/2)O∗

p(1)O
∗
p(np1/2) = O∗

p(n
−1p)

and

|B∗
n| ≤ n−2

∣

∣Z∗
−1W

∗
p

∣

∣

∣

∣

∣

∣(n−1W ∗′
p W ∗

p )−1
∣

∣

∣

∣

∣

∣W ∗′
p Ξ∗

p

∣

∣

= n−2O∗
p(np1/2)O∗

p(1)O
∗
p(n

1/2p1/2) = O∗
p(n

−1/2p).

Hence, as p = o(n1/2) (Assumption 3), we have that

A∗
n = o∗p(1) and B∗

n = o∗p(1).

Then by Lemma 6 a) and b), we have

nδ̂∗ = (n−2Z ′
−1Z−1)

−1n−1Z ′
−1Ξp + o∗p(1)

d∗−→
[∫ 1

0
B(r)B(r)′dr

]−1 ∫ 1

0
B(r)dBξ(r).

(45)

The estimated variance of δ̂∗, is defined as

̂Var∗(δ̂∗) = ω̂∗2[Z∗′
−1(I − W ∗

p (W ∗′
p W ∗

p )−1W ∗′
p )Z∗

−1]
−1.

Using Lemma 6 and Lemma 7, we have that

n2 ̂Var∗(δ̂∗)
d∗−→ ω2

[
∫ 1

0
B(r)B(r)′dr

]−1

. (46)
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Finally, using equations (45) and (46) we can derive that

T ∗
wald

d∗−→
(

∫ 1

0
dBξ(r)B(r)′

[∫ 1

0
B(r)B(r)′dr

]−1
)(

ω2

[∫ 1

0
B(r)B(r)′dr

]−1
)−1

×
(

[∫ 1

0
B(r)B(r)′dr

]−1 ∫ 1

0
B(r)dBξ(r)

)

= ω−2

∫ 1

0
dBξ(r)B(r)′

[
∫ 1

0
B(r)B(r)′dr

]−1 ∫ 1

0
B(r)dBξ(r)

= ω−2

∫ 1

0
dW1(r)ωW (r)′L′Ψ(1)′

[∫ 1

0
Ψ(1)LW (r)W (r)′L′Ψ(1)′dr

]−1

×
∫ 1

0
Ψ(1)LW (r)dW1(r)ω

=

∫ 1

0
dW1(r)W (r)′

[∫ 1

0
W (r)W (r)′dr

]−1 ∫ 1

0
W (r)dW1(r)

as B(r) = Ψ(1)LW (r) and Bξ(r) = ωW1(r). This completes the proof.
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Table 1: Parameter combinations used in the simulation DGP

Φ Θ r c
[

0 0
0 0

] [

0 0
0 0

]

0,
√

0.3,
√

0.7 0,-5,-10,-20
[

0.2 0
0 0.2

] [

0 0
0 0

] √
0.3 0

[

0.8 0
0 0.8

] [

0 0
0 0

] √
0.3 0

[

0.2 0.5
0.5 0.2

] [

0 0
0 0

] √
0.3 0,-5,-10,-20

[

0 0
0 0

] [

0.2 0
0 0.2

] √
0.3 0

[

0 0
0 0

] [

0.8 0
0 0.8

] √
0.3 0

[

0 0
0 0

] [

0.2 0.5
0.5 0.2

] √
0.3 0,-5,-10,-20

[

0 0
0 0

] [

−0.8 0
0 −0.8

] √
0.3 0
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Table 2: Size and power for white noise errors

r c T ∗
v,n T ∗

v,a T ∗
c,n T ∗

c,a Tas Tsc

n = 50

0 0 0.042 0.042 0.043 0.040 0.072 0.050
-5 0.102 0.109 0.105 0.103 0.163 0.121

-10 0.281 0.283 0.284 0.283 0.414 0.322
-20 0.831 0.839 0.829 0.835 0.918 0.866

√
0.3 0 0.052 0.050 0.052 0.051 0.085 0.050

-5 0.163 0.159 0.160 0.162 0.243 0.163
-10 0.521 0.523 0.522 0.522 0.661 0.524
-20 0.949 0.961 0.950 0.960 0.984 0.964

√
0.7 0 0.052 0.051 0.051 0.052 0.079 0.050

-5 0.501 0.505 0.498 0.503 0.618 0.488
-10 0.898 0.901 0.898 0.903 0.935 0.898
-20 0.983 0.996 0.985 0.997 0.999 0.998

n = 100

0 0 0.048 0.048 0.048 0.049 0.059 0.050
-5 0.108 0.107 0.108 0.109 0.133 0.113

-10 0.317 0.320 0.315 0.314 0.381 0.334
-20 0.868 0.859 0.865 0.861 0.906 0.875

√
0.3 0 0.061 0.057 0.061 0.059 0.072 0.050

-5 0.180 0.187 0.181 0.185 0.225 0.160
-10 0.541 0.545 0.535 0.541 0.601 0.501
-20 0.960 0.961 0.963 0.963 0.978 0.952

√
0.7 0 0.056 0.056 0.053 0.058 0.071 0.050

-5 0.545 0.543 0.538 0.539 0.597 0.524
-10 0.936 0.936 0.938 0.933 0.949 0.933
-20 0.999 1.000 1.000 1.000 1.000 1.000
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Table 3: Size for serially correlated errors

Φ Θ T ∗
v,n T ∗

v,a T ∗
c,n T ∗

c,a Tas

n = 50

[

0.2 0
0 0.2

] [

0 0
0 0

]

0.060 0.057 0.059 0.058 0.095
[

0.8 0
0 0.8

] [

0 0
0 0

]

0.049 0.045 0.045 0.046 0.158
[

0.2 0.5
0.5 0.2

] [

0 0
0 0

]

0.059 0.088 0.055 0.088 0.214
[

0 0
0 0

] [

0.2 0
0 0.2

]

0.063 0.061 0.065 0.058 0.103
[

0 0
0 0

] [

0.8 0
0 0.8

]

0.050 0.055 0.050 0.055 0.186
[

0 0
0 0

] [

0.2 0.5
0.5 0.2

]

0.075 0.092 0.075 0.095 0.188
[

0 0
0 0

] [

−0.8 0
0 −0.8

]

0.459 0.625 0.453 0.625 0.677

n = 100

[

0.2 0
0 0.2

] [

0 0
0 0

]

0.063 0.065 0.059 0.064 0.084
[

0.8 0
0 0.8

] [

0 0
0 0

]

0.051 0.047 0.050 0.049 0.091
[

0.2 0.5
0.5 0.2

] [

0 0
0 0

]

0.056 0.056 0.056 0.052 0.107
[

0 0
0 0

] [

0.2 0
0 0.2

]

0.059 0.059 0.059 0.058 0.080
[

0 0
0 0

] [

0.8 0
0 0.8

]

0.057 0.067 0.058 0.066 0.120
[

0 0
0 0

] [

0.2 0.5
0.5 0.2

]

0.070 0.075 0.067 0.078 0.140
[

0 0
0 0

] [

−0.8 0
0 −0.8

]

0.485 0.518 0.481 0.525 0.611
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Table 4: Power for serially correlated errors

dynamics c T ∗
v,n T ∗

v,a T ∗
c,n T ∗

c,a Tas Tsc

n = 50

-5 0.624 0.538 0.625 0.539 0.819 0.485

Φ =

[

0.2 0.5
0.5 0.2

]

-10 0.857 0.844 0.856 0.845 0.964 0.735

-20 0.929 0.978 0.930 0.978 0.996 0.899

-5 0.401 0.301 0.411 0.298 0.604 0.259

Θ =

[

0.2 0.5
0.5 0.2

]

-10 0.810 0.749 0.818 0.753 0.939 0.650

-20 0.940 0.968 0.942 0.969 0.994 0.957

n = 100

-5 0.893 0.895 0.898 0.896 0.948 0.891

Φ =

[

0.2 0.5
0.5 0.2

]

-10 0.993 0.989 0.993 0.988 0.996 0.987

-20 0.999 1.000 0.999 1.000 1.000 1.000

-5 0.493 0.470 0.491 0.473 0.681 0.416

Θ =

[

0.2 0.5
0.5 0.2

]

-10 0.907 0.889 0.905 0.884 0.973 0.851

-20 0.998 0.998 0.996 0.996 1.000 0.996
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Table 5: Size and power for tests with deterministic trends

µ1

µ2

τ1

τ2
D

(r)
t T ∗

v,n T ∗

v,a Tas T ∗

v,n T ∗

v,a Tas T ∗

v,n T ∗

v,a Tas

Φ = Θ = 0 Φ =

[

0.2 0.5
0.5 0.2

]

Θ =

[

0.2 0.5
0.5 0.2

]

c = 0

0 0
0 0

Dr
t = 1 0.051 0.051 0.106 0.050 0.104 0.291 0.059 0.095 0.253

Dt = 1 0.052 0.048 0.093 0.039 0.102 0.244 0.073 0.121 0.254
Dr

t = t 0.046 0.043 0.133 0.050 0.135 0.372 0.064 0.105 0.342
D′

t = 1, t 0.046 0.046 0.132 0.036 0.126 0.327 0.055 0.117 0.331

1 0
1 0

Dr
t = 1 0.046 0.049 0.102 0.047 0.108 0.282 0.061 0.093 0.239

Dt = 1 0.045 0.045 0.086 0.042 0.099 0.241 0.068 0.096 0.221
Dr

t = t 0.059 0.051 0.134 0.042 0.131 0.373 0.063 0.107 0.358
D′

t = 1, t 0.035 0.034 0.114 0.031 0.114 0.346 0.075 0.130 0.344

1 0
1 1

Dr
t = t 0.051 0.053 0.154 0.034 0.116 0.358 0.057 0.101 0.339

D′

t = 1, t 0.050 0.053 0.125 0.029 0.121 0.333 0.065 0.126 0.334

1 1
1 1

Dr
t = t 0.048 0.046 0.128 0.043 0.122 0.379 0.063 0.108 0.350

D′

t = 1, t 0.044 0.041 0.131 0.037 0.117 0.320 0.065 0.118 0.313

c = −10

0 0
0 0

Dr
t = 1 0.244 0.249 0.420 0.667 0.612 0.902 0.552 0.436 0.796

Dt = 1 0.281 0.290 0.450 0.672 0.626 0.889 0.569 0.470 0.801
Dr

t = t 0.166 0.159 0.387 0.514 0.356 0.859 0.363 0.191 0.719
D′

t = 1, t 0.173 0.170 0.384 0.497 0.344 0.801 0.360 0.209 0.707

1 0
1 0

Dr
t = 1 0.247 0.245 0.428 0.682 0.624 0.906 0.548 0.452 0.818

Dt = 1 0.289 0.288 0.464 0.679 0.638 0.886 0.563 0.458 0.800
Dr

t = t 0.131 0.132 0.343 0.499 0.352 0.846 0.367 0.211 0.725
D′

t = 1, t 0.158 0.157 0.365 0.477 0.322 0.784 0.374 0.215 0.711

1 0
1 1

Dr
t = t 0.133 0.140 0.355 0.508 0.334 0.855 0.356 0.191 0.707

D′

t = 1, t 0.166 0.159 0.391 0.484 0.332 0.819 0.369 0.221 0.717

1 1
1 1

Dr
t = t 0.156 0.153 0.370 0.501 0.327 0.843 0.364 0.201 0.728

D′

t = 1, t 0.162 0.170 0.383 0.481 0.318 0.809 0.366 0.213 0.700
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