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Al

 Artificial Intelligence (Al) is the branch of computer science that deals with
automating tasks that typically require human intelligence.

* |n the past years Al has been widely applied across different domains.
E.Q., health care, transportation, finance.

* Jo deploy Al systems, we test them against benchmarks (or validation sets).
 The goal is to outperform the previous existing models.

* E.g., In Machine Learning we usually resort to accuracy metrics. The
highest the accuracy, the better the model.



Since 2012, the amount of computing used for Al
training has been doubling every 3.4 months

e https://openai.com/blog/ai-and-compute/
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* o create better Al systems we are currently adding
* More data
* More experiments

 Larger models



The Equation of Red Al

Cost(R) x E-D-H

Cost of a single (E)xample Number of (H)yperparameters

Size of (D)ataset

By Schwartz et al. (2020)



Issues of Red Al

 High costs (hardware, electricity, data access, etc.)
* Limited reproducibllity.

 Energy consumption.

» Carbon emissions.

« SMEs can hardly be competitive.

* Groundbreaking Al research is mostly done by tech giants.



A few examples of Red Al

 Google’s BERT-large

* 350 million features

* Trained for 2.5 days using 512 TPU chips, costing $60K+
* Open-GPT3 (how GPT-3.5)

* 550 Billion CO2-eq (Patterson, 2021)

* 175 billion features

* APl is open but no-pretrained model is available
» AlphaGo

e 1920 CPUs, 280 GPUs, costing $35M



Red Al in Large Language Models (LLMs)

* New Moore’s law
* [here are some good news:

» OPT by Meta reports 75 tons CO2-eq (1/7 of OpenGPT’s footprint).
(Also 175billion params)

 Open science: release includes both the pretrained models and the code
needed to train and use them.

 Bloom by Huggingface reports 25 tons, 51 when considering embodied
and operational carbon footprint. (176billion params)



Red Al Green Al

 Energy

e Time

* Reproducibility
 Reusage

Accuracy: 0.999999999



Research on Green Al
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Publications in Green Al over the years
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How can we adopt Green Al

e Check whether Al is needed.

* Select green datacenters.

* Run on low carbon intensity hours.
* Opt for GPU-optimised solutions
* Opt for low-power hardware (e.g., Nvidia Jetson boards)
* Or GPUs that provide energy metrics (e.g., NVIDIA GPUs via the nvidia-smi tool)
* Report energy/carbon metrics (e.g., embed in MLFlow?)
* Use pre-trained models (Transfer Learning)
* Preprocess dataset to reduce size.

* Improve parameter-tuning strategy.

14



Reporting energy/carbon footprint

e We need benchmarks.

* AllenAl leaderboard
https://leaderboard.allenai.org

* No carbon metrics, yet

 Report comparable proxies for energy Q) o:erzoconomcnn
consumption. @ oo
o ‘Lf")etl:ES'%'l’.’a-V2-)()(L-MNLI
« A Learning algorithms behave in a non- LT

deterministic

» A\ Different data-points lead to different
energy consumption

15
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Reporting energy/carbon footprint

* Reporting measured energy consumption
* + Accurate
* + Easy to map to carbon emissions
- Hard to measure
* - Low replicabillity

* Reporting time / estimation based on time & hardware
* + Easy to measure
* + Correlates with energy consumption in most cases.
e - Difficult to compare with measurements from other setups

* E.g., floating point operations (FPOs) (?7)
* + comparable across different setups
* + cheap
e - does not factor in memory energy consumption
e - does not reflect carbon emissions

16



Data-centric Al



Data-centric Al

 Emerging discipline that deals with systematically engineering data to build Al
systems.

e Shift from improving the training strategy to improving the data.

* |t is better to have small but reliable datasets than large but noisy
datasets.

* =>|mprove data collection, data labelling, and data preprocessing.

 More about data-centric Al by Andrew Ng:
https://www.youtube.com/watch?v=06-AZXmwH|o

18
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: Clean vs. noisy data
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Green Data-centric Al

 How do different ML algorithms compare
in terms of energy consumption?

« How does number of rows relate to the
energy consumption of ML models?

» How does number of features relate to
the energy consumption of ML models?

 What is the impact of reducing data in the
performance of the model?

e Method -> results -> discussion

20

Data-Centric Green Al
An Exploratory Empirical Study
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Abstract—With the growing avallability of large-scale datasets,
and the popularization of affordable storage and computational
capabilities, the energy consumed by Al is becoming a growing
concern. To address this issue, in recent years, studies have
focused on demonstrating how Al energy efficlency can be
improved by tuning the model training strategy. Nevertheless,
how modifications applied to datasets can impact the energy
consumption of Al is still an open guestion.

To GBI this gap, in this exploratory research, we evaluate if
data-centric approaches can be utilized to improve Al energy
efficiency. To achieve our goal, we conduct an empirical experi-
ment, executed by considering 6 different Al algorithms, a dataset
comprising 5574 data points, and two dataset modifications
(number of data points and number of features).

Our results show evidence that, by exclusively conducting
modifications on datasets, energy consumption can be drastically
reduced (up to 92.16%), often at the cost of a negligible or even
absent accuracy decline. As additional introductory results, we
demonstrate how, by exclusively changing the algorithm used,
energy savings up to two orders of magnitude can be achieved,

In conclusion, this exploratory investigation empirically
demonstrates the importance of applying data-centric techniques
to improve Al energy efficiency. Our results call for a research
agenda that focuses on data-centric techniques, to further enable
and democratize Green-AL

Index Terms—Energy Efficiency, Artificial Intelligence, Green
Al, Data-centric, Empirical Experiment

I. INTRODUCTION

We live in the era of artificial intelligence (Al): new intelli-
gent technologies are emerging every day to change people’s
lives. Many organizations identified the massive potential of
using intelligent solutions to create business value. Hence, in
the past years, the modus operandi is collecting as much data
as possible so that no opportunity is missed. Data science
teams are constantly looking for problems where Al can
be applied to existing data to train models that can provide
more personalized and optimized solutions to their operations
customers and operations [1].

Nevertheless, the energy consumption of developing Al ap-
plications is starting to be a concern. Previous studies observed
that Al-related tasks are particularly energy-greedy [2), [3]. In
fact, since 2012, the amount of computing used for Al training
has been doubling every 3.4 months [4]). Hence, a new sub-
field is emerging to make the development and application of
Al technologies environmentally sustainable: Green Al [5).

On a related note, Al practitioners have realised that the
current trend of collecting massive amounts of data is not

.» AuthorN} @....com

necessanily yielding better models. Being able to collect high-
quality data is more important than collecting big data - a
trend coined as Data-centric Al'| Instead of creating leaming
techniques that squecze every bit of performance, data-centric
Al focuses on leveraging systematic, reliable, and efficient
practices to collect high-quality data.

Therefore, in this study, we conduct an exploratory empir-
ical study on the intersection of Green Al and Data-centric
Al We investigate the potential impact of modifying datasets
to improve the energy consumption of training Al models. In
particular, we focus on machine learning, the branch of Al that
deals with the automatic generation of models based on sample
data — machine learning and Al are used interchangeably
throughout this paper. In addition to investigate the energy
impact of dataset modifications, we also analyze the inherent
trade-offs between energy consumption and performance when
reducing the size of the dataset — cither in the number of
data points or features, Moreover, the analysis 1s performed
in six state-of-the-art machine leaming model applied in the
detection of Spam messages.

Our results show that feature selection can reduce energy
consumption up to 76% while preserving the performance of
the model. The improvement in energy efficiency is more
impressive when reducing the number of data points: up to
92% in the case of Random Forrest. However, in this case, it
is not cost-free: the trade-off between energy and performance
needs to be considered. Finally, we also show that KNN
tends to be the most energy-efficient algorithm while ensemble
classifiers tend to be the most energy greedy.

This paper provides insights to define the most relevant
and energy-efficient modifications of datasets used during the
elaboration of the Al models while ensuring minimal accuracy
loss. We argue that more research in Data-centric Al will help
more practitioners in developing green Al models. To the best
of our knowledge, this is the first study to explore the potential
of preprocessing data to reduce the energy consumption of AL

The entirety of our experimental scripts and results are made
available with an open-source license, to enable the indepen-
dent venfication and replication of the results presented in this
study: hups://github.com/GreenAlproject/ICT4522,

The remainder of this paper is structured as follows. Sec-
tion Il presents the related work on the energy consumption

'Understanding  Data-Centric AL hups/Manding. ai/dsta-cemric-al.  Ac-
cessed 24ty Janusry 2022,




Method

» Single object of study: natural language model to detect spam messages.

* 6 machine learning algorithms: SVM, Decision Tree, KNN, Random Forrest,
AdaBoost, Bagging Classifier.

* Reduce the number of rows. 10%, 20%, .., 100%
o Stratified random sampling (?)
* Reduce the number of features. 10%, 20%, .., 100%
 Feature importance metric based on the Chi-Square Test (Chi2)

* Estimate energy consumption using a RAPL-based tool. (?)
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Repeat 30 times

FiXx random seeds

v,
Data was not Normal => tailed Normal distribution.
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Results: energy consumption of algorithms
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Results: energy vs data shape
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Results: performance vs data shape
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Discussion

* Other data properties should be investigated.
 E.g., data types

 Reporting energy data is essential. It can lead to different model selection
without hindering model performance.

* There is a big opportunity in Model and Data Simplification.
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Data/Model Simplification
* (?) [

e Data selection

 Data quantisation. Posit?

e Data distillation

» Coreset extraction (?)

e Model distillation Original Model Pruned Model
 Model quantisation

 Model pruning
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Posit vs Float

Better for DL use cases
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More about this: https://spectrum.ieee.org/floating-point-numbers-posits-processor



https://spectrum.ieee.org/floating-point-numbers-posits-processor

Abel ’s thesis, 2023

Model simplification out of the box

 Can we apply model simplification to a given model with minimal domain
expertise?

 What would be the free gains from applying it to existing open access
models? E.g.: http://modelhub.ai/
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Tim's MSc Thesis, 2022
Accepted at CAIN’23

Hyper parameter tuning

 When training an ML model, there are several parameters that need to be
tuned.

 E.g., In SVM we have the Reqularization parameter C, the kernel function,
the degree of the kernel function, and depending on the case, many other.

 The common approach revolves around grid search. The user provides a

sequence of possible values for each parameter and the pipeline runs all
possible combinations.

 Our question: Can we save energy with alternative approaches?

 We studied Random Search and Bayesian Optimisation.
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Random Search

Grid Search




Case Selection

Experimental Tooling

>

DensePolyNN

3

SimpleCNN

DenseLinearNN

A

Automated
Experimentation with
a Python testbed

Data Collection

—>

FashionMNIST
CIFAR-10

b/

Optimization
round

Energy + Test score

Repetition

Data Analysis

Kruskal-Wallis
+

Effect size evaluation
using Cohen'’s F




Conclusions?

* Bayesian converges faster.

Resu ItS * No clear winner between Grid and Random
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Which one to choose?

Grid Search Random Search
ot




Processing inference requests

* Imagine an API for an Al model that allows users to make inference requests.
E.g., a license plate reader.

 What is the most energy-efficient way to bundle these requests?
 No bundling? (Greedy)
 Batches of 167 327...
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Experiment Design
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Green Al at FacebookMeta

Sustainable Al: Environmental Implications,
Challenges and Opportunities (2022)
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Fuccbouk Al

Abstract—This paper explores the enviranmental Impact of
the super-linear growth trends for AT from a holistie perspective,
spunning Date, Algurithmy, und Swiem Hardware. We churseler-
ize the carbon footprint of AL computing by examining the model
devdopment cycle across industry-scale machince learning use
cases anily sl Lhe sime Gme, insadering the life oycle of sysdem
hardware, Taking a step further, we caplure the aperaliona] and
manufacturing carban footprint of Al computing and present an
cnd-w-vad wnalysis [or whad umd Ao hurdware-sollware design
and at-scale optimization cam help reduce the overall carbon
foalprint of Al Baved on the indusdry evperience and lessing
learmed, we share the key challenges and chart oul importani
devdopment dircctions across the many dimensions of AL We
hopc the key micssages and msights prescmted in this paper
can Inspire the community to advance the Aeld of AL In an
environmentally-responsible manner,

1. INTRODUCTION

Artificial Tmelligence (Al is onc of the fastesr grawing
domuing spamming rescarch and product development snd
signficunt wvestment m Al 1s taking plece acruss nearly every
industry, policy, and scudemic rescarch, This iovestment in
Al has also stimulated novel upplicutions in domains such s
science, medicine, finance, and education. anure] analyzes
the number nf papers published within the scientitic disciplings,
illustrating the growth trend in tecent veard.

Al plays an instmmental rale tn pash the boundarics af
knowledge and sparks novel, more efficient approaches wo
conventional tasks. Al is appliad to predict protein stoucturss
radically hetter than previous mcthads. Tt has the patential 1o
revulutionize bivlogical sciences by providing in-silico methods
for tasks only possible in a phveical laberatory setting [1]. Al
is demonsrrated o achicve homan-level conversatinn tasks,
such as the Dlender Bot |21, and play games at superhuman
levels, such as AlphaZero [3]. AT is used ta discover new
clectrocatalysts tor offivient and sculuble wavs o store and
ulilize renewable energy [4], predicling renewable energy
availability in advance 10 imprmve enaigy urilization [§],
aoperating hypemseale dats centers efficienty [A], mowing plants
using less natural resources [7], and, at the same tme, bemg
wscel to tackle climate changes [#], [9]. Tt is pmijected that, in
the next five years, the market for Al will increase by 10x 1nto
hundreds of hillions nf dollars [10]. All of these invesiments

'Busad an sy cuunls, F.gu:el; eslicales be cupulotive number of
papas publshed p culewony un e sy dalulxase,

Sl LI farant 1JIsn b 1mas

Compuierdclance
Mall

= Loaunte

*Mudarw veenae

o ligana

oM At e

UM N N

Fiz. 1. Ihe povsm of ML g execodieg, tar of marey ather acenibe disaiplines
Siznifcanw research zromth in rachice learning i< obsarved ie recenr years a5
lzarwed by fac inercaw ng ssmiatne simiee of papss pulligsst in mashme
learning with respact m arher schenvife dicciplinas hased e the wamtbly connr
1y axs rreaseres the comnlative nombear of srticles on 2rXwv.

in rescarch, development, and deployment hase lod ta a soper-
linear growah in Al datw, models, and infrastrecture capacity.
With the dramatic growth of Al it is imperative o anderstand
the cnvironmental implications, challenges, and opportunites
of this nascent technology. This 15 because technologzies tend to
create a sclf-aceclerating growth cyele, potting new demands
un the emvircenment.

Thiz work cxplores the environmental impact of AT from
u holisie perspective. More gpecifically, we present the
challenges and opportunitics o designing sustainable Al
computing acress the key phases of the machine learning (ML)
development process — Dava, Lxpenimentation, Tramng, und
Inference — for a variery of’ Al use cases at Facabook, such
as vision, language. specch, reeommendation and ranking. The
solubion space spans acrvss our feet of datacenters and on-
device computing, Given pacticular use cases, we couswder the
impact of Al data, algorithms, and system hardware. inaly,
we conswder emissions across the life cycle of hardware systels,
fram manutactaring ta aperational usc.

AT Data Grawth. In the pacr decade, we have seen an
cxponcntial increasc in Al training data and modcl capacity.
[igure 2(b) illustrates that the amount of training data at
[acebook for two recommendation use cases — one of the
fastest growing areas of ML usage at Facebuok— has increased
by 24x and 1.9x in the last 10 vears, reaching exabyte scale.
The inercase in data size has led tao a 3.2% increase in data
ingestion tundwidth demand. Civen this increase. data storage
and the ingestion pipeline accounts for a significant portion of




Carbon footprint mapped to the Al lifecycle

)

We

Data Experimentation Training Inference

: o g

* There are 4 main overarching stages where carbon emissions need to be isolated: data
collection, experimentation, training, inference.

* At Facebook, recommendation systems split energy consumption evenly between
training and inference; text translation models have a 35%/65% split. (Operational cost)

* Operational/embodied cost split: 30%/70%
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Open issues according to Meta

* A vast portion of projects only use GPUs at 30%. |
Should be higher to attenuate embodied carbon. Based on 10K Al projects
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Federated learning

* Federated learning consists of training a ML model across multiple
decentralized edge devices holding local data samples.

 Federated-learning is a nice solution for devices with limited energy
resources. E.qg., loT.
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Is federated learning a solution for Green Al?

 Most of the carbon footprint stems from communications
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