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Introduction



Phylogenetics
- Study of evolutionary history

- Relationship between organism

- Epidemiology



Phylogenetic tree



Phylogenetic Analysis

Sequence1
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Raw data

Sequencing

Alignment

Scoring Function

Optimization algorithm

Phylogenetic Likelihood Function (PLF)
o Maximum Likelihood
o Bayesian Inference



Phylogenetic Likelihood Function Acceleration
- RAxML

o PLF takes up to 95% of analysis time

- Improved sequencing techniques

o larger phylogenetic trees

o need for acceleration

- PLF main parts:

o Matrix multiplication

o scaling

- Acceleration efforts:

o CPU

o GPU

o FPGA



Versal Adaptive SoC
- Tight integration between:
o Programmable Logic (PL)

o Array of AI Engines (AIE)

- Idea:
o AIE array: matrix multiplication

o PL: scaling and data organization



Background –
Phylogenetic Likelihood Function



Phylogenetic Likelihood Function

Nucleotide letters

Conditional Likelihood Vector (CLV)



Computational dataflow

Substitution Probability Matrix / branch matrix



Gamma rates



Scaling



If all values in a CLV entry are below threshold 𝜖,

then multiply all values in the CLV entry with E

Scaling
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Number of scaling events stored in vector U

For single precision:



Background –
Versal Adaptive SoC



Versal Adaptive SoC

Processing 
System

Programmable
Logic

Array of
AI Engines

Network On Chip



Array of AI Engines
Array
o AI Engine Tiles

o Stream connection
◦ 2rd/2wr 32-bit

oMemory connection
◦ 2rd 1wr 256-bit

Tile
o AI Engine

o Local Memory

AI Engine
o Very Long Instruction Word ( 7 instructions per cycle)

o Single Instruction Multiple Data (8 floating point operations per cycle)



Interface tiles

Processing 
System

Programmable
Logic

Array of
AI Engines

Network On Chip

PCIe interface
DDR off-chip

memory interface

x PLIO channels to AIE
y PLIO channels to PL



Versal Datacenter Card

Processing 
System

Programmable
Logic

Array of
AI Engines

Network On Chip

PCIe interface
DDR off-chip

memory interface

DDR4 memory modules

PCIe connector

AMD Versal 
VCK5000



System Architecture



General mapping



PL kernels



Detailed overview

16 AIE kernels



Host program

●Moves data between
host and device memory

●Controls platform execution
○ Kernel parameters

○ Start/stop kernels

●Only control over
PL kernels



Implementation



Hardware platform

4x 4GB DDR4 modules
3 available (12GB)

8 lanes PCIe Gen 4.0

Max 512-bit 39 interface tiles
78 PLIO to AIE
58 PLIO to PL
128-bit channels

400 AIE tiles
8 rows
50 columns



PLIO layouts
SEPARATE

●Max 78/17 = 4 instances (87% PLIO utilization)

COMBINED

●Max 78/8 = 9 instances (92% PLIO utilization)

Each matrix via separate PLIO Matrices share PLIO with left/right CLVs

●16 tiles x 9 instances = 144 tiles total

●144/400 = 36% used of AIE array

●16 tiles x 4 instances = 64 tiles total

●64/400 = 16% used of AIE array



inter-AIE kernel communication

● Stream connections (stream)
○ operates as FIFO of certain length

● Memory connections (window)
○ fixed size memory blocks

■ 1 KiB

■ 8 KiB

■ 16 KiB

AIE tile utilization with windows



Programmable Logic utilization

●Limited to 250MHz

●<4.5% of the PL resources
per instance

●for 9 instances:

○ < 41% of PL resources used



Evaluation



Experimental Setup
- Heterogeneous Accelerated Compute Cluster (HACC) at ETH Zürich
o 2 AMD EPYC CPUs (total 128 cores)
o 2 AMD Versal VCK5000 cards (1 used)

- design exploration variables
o number of instances: 1,2,4,8 and 9 instances
o CLV lengths: 100 to 10M sites
o AIE communication methods: Stream, window (1, 8, 16 KiB)
o PLIO layout: Separate, combined

- Evaluation metric

o Throughput in CLV entries per second (CLVES)
o 1 CLV entry = 16 single precision floating point values



Design Space Exploration

1) Chip performance
o Custom PL kernels generating test data

o PLF on AIE

oMeasure PL-AIE throughput

2) Platform/system performance
o complete functionality

oMeasure platform throughput (excludes pcie transfers)

oMeasure system throughput (includes pcie transfers)

platform

system

chip



Stream vs Window
(Separate Layout)

Take away:

Window-based 
communication 
outperforms streams

● Stream:
○ operates as FIFO 

of certain length
○ only needs 

matrices once

● Window:
○ fixed size memory 

blocks
○ needs to resend 

matrices for each 
block



Varying window sizes
(Separate layout)

● window sizes:
○ 1 KiB
○ 8 KiB
○ 16 KiB



Varying window sizes
(Separate layout, 4 instances)

● window sizes:
○ 1 KiB
○ 8 KiB
○ 16 KiB Take away:

marginal difference 
window sizes

1 KiB and 8 KiB
seem fastest for
Separate layout



Varying window sizes
(Combined layout, 1 instance)

● window sizes:
○ 1 KiB
○ 8 KiB
○ 16 KiB



Varying window sizes
(Combined layout, 4 instances)

● window sizes:
○ 1 KiB
○ 8 KiB
○ 16 KiB Take away:

marginal difference 
window sizes

8KiB seems generally 
fastest for the 
Combined layout



Separate vs Combined layout
(8KiB window, 1instance)

● Separate Layout:
○ each matrix send 

over individual 
PLIO channel

○ max 4 instances 
limited by PLIO

● Combined Layout:
○ Matrices share 

PLIO channels with 
CLV data

○ max 9 instances 
limited by PLIO



Separate vs Combined layout
(8KiB window, 4 instances)

● Separate Layout:
○ each matrix send 

over individual 
PLIO channel

○ max 4 instances 
limited by PLIO

● Combined Layout:
○ Matrices share 

PLIO channels with 
CLV data

○ max 9 instances 
limited by PLIO

Take away:

marginal difference 
between layouts

Combined seems 
slightly faster

Combined preferred 
over Separate



System performance
(8KiB window, Combined, 1 instance)

● Fastest configuration:
○ window based
○ 8 KiB window
○ Combined PLIO

● PCIe optimizations:
○ Double buffering
○ caching
○ performance model:

3.45x speedup

Take away:

PCIe bandwidth 
limits system 
performance

Optimizations may 
improve system 
performance



Scalability

● Chip:
○ PL - AIE bandwidth

● Platform:
○ includes device 

memory access

● System:
○ includes host-device 

transfers over PCIe

Take away:

chip/platform scale 
linearly with 
increasing instances 
(almost 1:1)

System can’t scale 
due to PCIe 
bandwidth limit



CPU comparison
1 core vs system (sequential)

1.5x 3.0x

● system sequential:
○ no reuse of data
○ no overlap between 

movement and 
computation

● High-end server CPUs
○ AVX2 vector extensions
○ highly optimized CPU 

implementation of PLF



CPU comparison
1 core vs system (optimized)

● system sequential:
○ no reuse of data
○ no overlap between 

movement and 
computation

● High-end server CPUs
○ AVX2 vector extensions
○ highly optimized CPU 

implementation of PLF

● system optimized:
○ data reuse from caching
○ double buffering overlaps 

movement and 
computation

5.3x 10.6x



CPU comparison
8 cores vs system (optimized)

● system sequential:
○ no reuse of data
○ no overlap between 

movement and 
computation

● High-end server CPUs
○ AVX2 vector extensions
○ highly optimized CPU 

implementation of PLF

● system optimized:
○ data reuse from caching
○ double buffering overlaps 

movement and 
computation

1.3x 0.7x



CPU comparison
8 cores vs platform

● platform
○ no pcie transfer
○ indication of 

performance when 
host program on on-
chip ARM CPU

● High-end server CPUs
○ AVX2 vector extensions
○ highly optimized CPU 

implementation of PLF 3.7x5.9x

● impractical use of hw 
acceleration for short CLV 
lengths



FPGA comparison
System 1 - AWS EC2 F1

● AWS EC2 F1
○ Cloud-based FPGA
○ moves data between 

host and device over 
PCIe

○ Uses optimizations
2.7x - 4.6x

15.9x

Malakonakis, P., Brokalakis, A., Alachiotis, N., Sotiriades, E., & Dollas, A. (2020, October). Exploring modern FPGA platforms for faster phylogeny reconstruction 
with RAxML. In 2020 IEEE 20th International Conference on Bioinformatics and Bioengineering (BIBE) (pp. 97-104). IEEE.



FPGA comparison
System 2 - ZCU102

● AWS EC2 F1
○ Cloud-based FPGA
○ moves data between 

host and device over 
PCIe

○ Uses optimizations

● ZCU102
○ Development board
○ Host and device are on 

same SoC and share 
memory 

○ no PCIe transfers 
needed

2.7x - 4.6x

15.9x

21.9x

Malakonakis, P., Brokalakis, A., Alachiotis, N., Sotiriades, E., & Dollas, A. (2020, October). Exploring modern FPGA platforms for faster phylogeny reconstruction 
with RAxML. In 2020 IEEE 20th International Conference on Bioinformatics and Bioengineering (BIBE) (pp. 97-104). IEEE.



GPU Performance

No direct comparison possible
o Up to 1.8x speedup for 100K

o Compared to one Intel i5-3550 core with AVX intrinsics

Our implementation
o Up to 8.9x speedup for 100K

o Compared to one Intel Xeon Silver 4216 core with AVX2 intrinsics 1.8x

Izquierdo-Carrasco, F., Alachiotis, N., Berger, S., Flouri, T., Pissis, S. P., & Stamatakis, A. (2013, May). A generic vectorization scheme and a GPU kernel for the 
phylogenetic likelihood library. In 2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum (pp. 530-538). IEEE.



Conclusion



Conclusion

●Design-space exploration takeaways:

○ windows preferred over streams

○ Use PLIO channels sparingly

○ System limited by PCIe data movement

○ Hardware acceleration impractical for CLV lengths < 50K

●Achieved performance

○ Our design vs single high-end CPU core + AVX2: 1.5 - 3x (potentially up to 

10x)

○ Our design vs eight high-end CPU cores + AVX2: similar performance 

○ Our design vs modern FPGA + host CPU over PCIe: up to 4.6x (potentially up to 16x)

○ Our design vs modern FPGA + integrated CPU: potentially up to 22x

● We presented an accelerator architecture for the Phylogenetic Likelihood Function informed by a 
design space exploration of the AMD Versal Adaptive SoCs



Future work
●implement Protein-based implementation (5x higher arithmetic intensity than DNA)

●Redesign Programmable logic kernels (Monolithic design, explorer 100 Gbit ethernet ports)

●Porting RAxML to Versal ARM cores (eliminating PCIe transfers)



Questions



AIE configurations

WindowStream

Separate

Combined





Results  - multiple instances

Combined and separate 
scale similarly

Combined can scaler 
further with 9 instances

Short CLVs see 
slowdown for more 
instances



Window size effect on execution time



Host Program



RAxML PLF on CPU



Performance comparison - CPU

System (optimized)
-Up to 5.6x (1 EPYC)
-Up to 10.6x (1 Xeon)

Platform
-Up to 23.8x (1 EPYC)
-Up to 47x (1 Xeon)

-Up to 2x (16 EPYC)
-Up to 4x (16x Xeon)



FPGA Performance comparison

Malakonakis, P., Brokalakis, A., Alachiotis, N., Sotiriades, E., & Dollas, A. (2020, October). Exploring modern FPGA platforms for faster phylogeny reconstruction 
with RAxML. In 2020 IEEE 20th International Conference on Bioinformatics and Bioengineering (BIBE) (pp. 97-104). IEEE.

1.9x 5.2x

21.9x
2.7x - 4.6x
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