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Booming AI

• Waymo car
– Lidar for 3D map

– Cameras scene understanding

– Radar in adverse wheather

– Ultrasonic closeby

– GPS positioning
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Sohail, Shahab, et.al. (2023). The Future of GPT: A Taxonomy of Existing ChatGPT Research, Current 

Challenges, and Possible Future Directions. 10.48550/arXiv.2307.14107. 



3 Historical Neural Network Waves
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The three historical waves of artificial neural networks research 

(GOODFELLOW; BENGIO; COURVILLE, 2016)

• ~1960

– Perceptron 

• McCulloch-Pitts ’43; Rozenblatt ‘58

– 1 layer

• ~1990 

– PDP (Rumelhart & McClelland, ’80s)

– Backpropagation, 

– 2 layer perceptrons

• ~2010

– Deep Learning

– CNNs & RNNs
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ImageNet Winners (top-5 classification error)
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2012: DL (AlexNet) beats 
all traditional methods

2015: DL beats humans !
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What to expect?

• AI Deep Learning Models

– What is learning?

– From CNN to Transformer 

• Edge Mismatch: Cloud vs Edge

• Optimizations

• Learn from the Brain

• SOTA in Edge AI computing 

• Future 

• Conclusions
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Learning
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Machine Learning

Output

Program
Data

Traditional CS Program

Data

Output

Concl: We learn 'by example'



3 key functions of a learning system

• Score function (Classifier) : Function to map input to output

• Loss Function : Evaluate quality of mapping 

• Optimization Function : Update classifier (minimizing Loss)

Classifier
(DNN or 

Bayesian model)

Loss
(measure of the 

error)

Optimization:

Improve

classifier

Class

values

Label 'cat'
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• add Regularization loss term 

(L1, L2), penalizing large wi

• later other regularization

techniques were added, e.g.:

– dropout

– data augmentation

Overfitting vs. Generalization



Deep Learning, a quick tour

5x5
convolution

2x2
pooling

3x3
convolution

2x2
pooling

7x6
convolution

Face

1x1
convolution

A Simple Task

• Detect face

Training data

• 1 M images

Network

• 6 layers

• 951 parameters

Training time

• < 1 day

Low-level features Mid-level features High-level features
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Convolutional network as a deep loop-nest

for l in layers:
for o in output_maps[l]:
for i in input_maps[l]:

for x in columns[l]:
for y in rows[l]:
for kx in kernel_widht[l]:
for ky in kernel_height[l]:

out[l][o][x][y] += in[l][i][x+kx][y+ky] * w[l][i][o][kx][ky]
fout[l][o][x][y]= f_act(out[l][o][x][y])
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Convolution in CNNs: 1 layer

• C input feature 

maps of size HxW

• M output feature 

maps of size ExF

• M filters of size 

RxS

12

One Neuron

- Can be millions per layer



Convolution layer: 1 layer with input batch 

• N = batch size

• C input feature 

maps of size HxW

• M output feature 

maps of size ExF

• M filters of size 

RxS

• Note: for  a fully 

connected layer: 

filter size = input 

size, RS = HW
13
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• Legend:

– 7x7:  filtersize

– 64:    output channels

– /2 :    stride 2

• 11.7 M weights

• Residual

– makes training easier for 

deep networks

• ResNets often used as 

backbone network

ResNet18



MobileNetv2

• Legend, e.g. 6, 64, 4, 2 :

– 6:   channel expansion before 

depth-wise conv.

– 64: output channels

– 4:   repetitions of this block

– /2:   stride

• 3.4 M weights

– cheaper alternative to ResNet18

• Depth-Wise separable convolution

– 1x1 conv combines input channels 

– allows easy scaling of #output channels
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Stateful Networks

• Neurons have state 

– inside neuron:     Spiking Neural Network: SNN

– outside neuron:   using Recurrent Connections: RNN, LSTM, GRU

• Creates a short term memory

– … and thereby the notion of time ..

16

Unfold in time



Transformer architecture: using self-attention
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Attention block
- inputs: Value V, Key K, Query Q

- h Heads

Long range

memory



What to expect?

• AI Deep Learning Models

• Edge Mismatch: 

– Cloud vs Edge

– Energy as key driver

• Optimizations

• Learn from the Brain

• SOTA in Edge AI computing 

• Future 

• Conclusions
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AI mostly in the cloud

• Pre-Cloud: 1980 – 2005

– data centers of limited scale

• Cloud transition 2006 – 2020

– AWS (Amazon Web Services), Google Cloud, etc.

• Cloud only 2021 –

– cloud optimized for many business cases, including AI

• Why AI @ Cloud

– data, memory, compute power, (electric power), …

– cost of training GPT4: ~5 months on 10,000  V100 = 7200 MWh

– trained on 10 trillion words
19

https://base10.vc/post/generative-ai-mission-critical/

AWS cluster



Smart Edge?

• Smart applications powered by AI in almost every edge device

• Edge-AI μProcessor market expected to grow beyond 70 Billion USD by 2026

• However, currently AI
mostly in the cloud:

– 95% / 5%    (2024)

– 50% / 50%  (2028) 

• Alan Lee, DAC61, 2024

SemiConductor Engineering: AI Chip Architectures Race To The Edge

• Urgent need for ultra low-power 
edge-AI processing !!

https://semiengineering.com/ai-chip-architectures-race-to-the-edge/


Cloud vs Edge
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• Google TPU v5p

• 459 TFLOPs (bf16)

• 95GB HBM2e at 2765 GBps

• NVIDIA Grace Blackwell

E.g. B100

• 700 W

• 7/3.5/1.8 PFlops (16,8,4 bit operations)

• *2 for sparse execution

• 20/10/5 TOPs/W or 50/100/200 fJ/op

• Google Edge TPUs

• 8 TOPs (int8)

• 2 TOPs/W or 500 fJ/Op

• NVIDIA Jetson Series

• 0.5 – 275 TOPs

• 5 – 60 Watts

• ~ 4 TOPs/W or 250 fJ/Op

• Distributed Training

• Compression/Encryption

• Scientific Computing 

• Data pre-processing

• On-device DNN optimization

• Federated Learning

• https://cloud.google.com/tpu/docs/v5p

• https://www.nvidia.com/en-us/data-center/gb200-nvl72/

• https://coral.ai/docs/m2-dual-edgetpu/datasheet/ =

• https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/

https://cloud.google.com/tpu/docs/v5p
https://www.nvidia.com/en-us/data-center/gb200-nvl72/
https://coral.ai/docs/m2-dual-edgetpu/datasheet/
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Assumptions:

• 2 stereo cameras @ 30 fps, 1280x720x3 (RGB)

• Resnet-50/frame (200 GOPs/frame - 32-bit batch 

size of 1, underestimation!)

• I only have 10mW!

• Note: coin cell CR2032 225 mAh x 3V => 

runs less than 3 days

Required:

• Need 60 inferences/second (2 cameras x 

30frames/second)

• (200 GOPS/frame x 60 inferences/sec.) / 0.01W = 

1200 TOPS/W  or  < 1 fJ/op

What is the Edge Budget : Smart glasses



GoogLeNet: Energy

Yang.e.a CVPR'17

• CNN layers: 21 depth, 57 in total

• FC layer: 1

• Weights: 7.0 M

• MACs: 1.43 G per input
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Where is the energy consumed? 

24

Image source: A Survey of Quantization Methods for Efficient Neural Network Inference – A. Gholami et al. 2021 / adapted from Horowitz, ISSCC 2014

45nm, 0.9V



What to expect?

• AI Deep Learning Models

• Edge Mismatch: Cloud vs Edge

• Optimizations

– Pruning, Quantization, Data reuse

• Learn from the Brain

• SOTA in Edge AI computing 

• Future 

• Conclusions
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Optimizations for high energy-efficiency

• Model transformations

• Pruning & Sparsity

• Quantization

• Data reuse (activations and weights)

• Model exploration: NAS,  HW-aware NAS 

• Mapping exploration: ZigZag, Stream, Timeloops

26



Iterative Pruning and Re-training: Alexnet 

• Re-training once to recover from pruning damage
• L2 regularization performs better

• 85% pruning of parameters 

• 6.7x model reduction

– From 61M to 9.1M Parameters

– Or 233MB to 34.7MB

• Iterative pruning even better
• Without loss of quality prune 90%

• 10x model reduction

– From 61M to 6.1M

– Or 233MB to 23.3MB

– Catch: 

• Alexnet had far too many parameters to start with !

• 10x does not translaten necessarily into energy savings!

27



Impact of data reuse: Reducing ext. memory accesses

IA 5LIL0 28

Original code
Rescheduled code

VGG16 example:

Conclusion: we need advanced loop transformation to exploit data locality (in local buffers), 

reducing external accesses



Quantization: Data formats used in NNs

Number formats Dynamic Range
Relative

Precision

8 bits 23 bits

float32 S E E E E E E E E M M M M ~ M M 1e−38 to 3e38 6e−6%

8 bits 10 bits

tensorfloat32 S E E E E E E E E M M M M ~ X X 1e−38 to 3e38 0.05%

5 bits 10 bits

float16 S E E E E E M M M M M M M M M M 6e−5 to 6e5 0.05%

8 bits 7 bits

bfloat16 S E E E E E E E E M M M M M M M 1e−38 to 3e38 0.4%

15 bits

integer16 S M M M M M M M M M M M M M M M 1 to 3e4 1 (abs.)

7 bits

integer8 S M M M M M M M 1 to 127 1 (abs.)

29

What’s next: see OCP Microscaling Formats (MX) Specification Version 1.0



How far to quantize: Accuracy vs Energy?

30

Accuracy-Energy trade-off of MobileNetV2 on Meta HW. The color represents the precision level, while the filter 

multiplier is specified above each data point. Note that INT2 data points fall outside the range of this figure.

Filter multiplier
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Another study:

• Comparing 1,2,4 and 8-

bit on ResNet-18 

variants

• With repair mechanisms 

BNNs get much closer 

to 8-bit 

– e.g. ReActNet

– https://arxiv.org/abs/2003.03488

How far to quantize? Repair BNNs

Floran de Putter e.a. Quantization, how far should we go?, DSD 2022



DSE of mappings: ZigZag (KULeuven)
Deap Learning Model

Hardware



DSE of mappings: ZigZag (KULeuven)

Mapping

Analytic model - Huge Design Space 

Technology: 65nm/40nm/28nm/…,

NVM, CIM, 3D IC, etc.

Others: Sparsity, Quantization,

Layer Fusion, etc.



What to expect?

• AI Deep Learning Models

• Edge Mismatch: Cloud vs Edge

• Optimizations

• Learn from the Brain

– 3 lessons

• SOTA in Edge AI computing 

• Future 

• Conclusions
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Diminishing returns in deep learning 

(i.e., scaling follows a power law)

Energy expensive.

Training - GPT-3:  1.29 GWh

- GPT4: 50 GWh => 40x

K. Boahen, Nature 2022

Deep Learning seems to have no limits



HW has its limits: 50 years of Microprocessors

36



Brain, any limits?

• Speed = 1000 Exa Op/s*

• Power = 20 Watt

• Energy/operation = 
Power / Speed = 
2x10-5 fJ/operation

• Compare to Frontier
– Power = 22.7 MW

– Peak = 1.206 ExaFlop/s

– 8.7 Mcores, 680 m2

– Energy/op. = 19 pJ/op

*Tim Dettmers:

"making deep learning accessible"

2015
37



Inside our brain

38

Google Research & Lichtman Lab

Harvard University

Excitatory neurons

- colored by depth

- blue=outside surface

1 neuron: 

- green excitatory

- blue inhibatory



Inside our brain
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Google Research & Lichtman Lab

Harvard University

Neuron 14 μm / 5000 axons connect to I (blue) / synapses (green)



Learn from our brain (1): Spiking Neurons



Spiking Neural Network: SNN vs ANN neuron

SNNs have 2 key properties:

1. Neurons exchange spikes

➢ Sparse spike input & 

output

2. Neurons have state (V)

➢ State evolves over time

▪ Increases when spikes enter

▪ Decreases otherwise

(exponential decay in time)

➢ Execution is time 

dependent

41

Traditional Neuron

Spiking Neuron

(L)

(L)IF = Leaky Integrate & Fire



Learn from our brain (2)
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Processing Memory

BU

SProcessing Unit

Memory

Von Neumann Architecture: energy inefficient

Bottleneck

Less than 20 W

Processing Units/Neurons

Memory/Synapses

Brain architecture: highly energy efficient

Simulating the

brain ~20 MW

Valle Solar Power Station (Spain)



Solution: Compute in Memory (CIM)

43

• Compute In-memory (CiM) 

• Enabled by emerging device 

technologies (ReRAM/FeFET)

Solving the energy efficiency bottleneck:  

• 5X don’t move data CiM/no cloud

• 5X using ReRAM/FeFET

• 2X event-driven computation

• 2X near threshold computing 

Potential Energy Gains: up to 100X

Compute in Memory architecture with memristors (ReRAM)

5 nm500nm50 um



Issues of new technologies
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Compute in memory architecture with memristors (ReRAM)

• Accuracy of computing 

• Noise, Drift

• Device’s lifetime

ReRAM/FeFET issues:

5 nm500nm50 um



Learn from our brain (3)
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Brain-inspired compute in memory architecture with self-healing at different levels

• Re-learn / Repair Synapses

• Remap functions

• Redundancy

Use Self-Healing:

500nm500 um15 mm

Synapse



Solution: Self-Healing
Compute in-memory (CiM) architecture with memristors (ReRAM/FeFET) & self-healing 

• Adapt neural network (L1)

• Remap functionality (L2)

• Exploit Redundancy (L3)
• to compensate for 

• ReRAM/FeFET issues

• Changing environments

Self-Healing is the Key; @ all design levels 

5 nm500nm50 um

L1 Self-healing algorithms  

L2 Sys. Archit. & mapping 

L3 Micro-architecture

RM DM

RM DM

RM

RMs: Recovery Mechanisms 
DMs: Detection Mechanisms 

Application 

DM



What to expect?

• AI Deep Learning Models

• Edge Mismatch: Cloud vs Edge

• Optimizations

• Learn from the Brain

• SOTA in Edge AI computing 

– Accelerator Examples 

• Future 

• Conclusions

47
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• 2000-now

Energy efficiency

From:

nicsefc.ee.tsinghua.edu.cn/project.html



SNPU

C-DNN

SOTA in Edge-AI Processor/Accelerator HW

• Models

– Mostly Artificial Neural 

Network (ANN)

– Spiking Neural Network 

(SNN)

• Weight Precision

– 8/4/Ternary/1

• Technology nodes

– from 5 – 180nm

• Note, real comparison 

should include accuracy !!

Adapted from Gomony e.a., DATE 2023, PetaOps/W edge-AI μ Processors: Myth or reality? 

Loihi 2

https://ieeexplore.ieee.org/document/10136926


SNPU

C-DNN

μBrain- Digital SNN (IMEC)
• 40 nm, 1.4mm2

• Event based architecture

• Asynchronous design (no 

clock)

– Without schedules, clocks, state 

machines

• Extreme low power, not en-eff.

Jan Stuijt e.a., Frontiers, May 2021

https://www.frontiersin.org/articles/10.3389/fnins.2021.664208/full


SNPU

C-DNN

BrainTTA - Flexible & Mixed-precision (TUE)

• TTA-based accelerator, 22nm

• Fully-programmable 

– C-compiler

• Flexible precision

– INT8, ternary, binary 

– 405 / 67 / 35 fJ/op

Molendijk e.a. ICCD 2023

https://www.computer.org/csdl/proceedings-article/iccd/2023/429100a078/1T97rQ7rWjC


Example Edge-AI accelerator: BrainTTA

• TTA-based accelerator, 22nm

– Fully-programmable (C-compiler)

– Huge vector units, 1024 bit:

• MAC: multiply accumulate

• Other operations, like ReLU

• Vector register files

• Load/Store vector units

• Large on-chip memories for

– Inputs, Output, Weights

• Flexible precision

– INT8, ternary, binary: 

– 405 / 67 / 35 fJ/op
Molendijk e.a. ICCD 2023

https://www.computer.org/csdl/proceedings-article/iccd/2023/429100a078/1T97rQ7rWjC


Where is the energy going: BrainTTA

53

Energy: 14.7 – 42.4 % in vMACs



SNPU

C-DNN

CUTIE –Ternary DNN (ETH)

• ANN: Ternary (-1,01) Inference Engine

– exploit zero surpression

– ternary compression

• 1.6 bit / symbol

– complete unrolled loops in HW

• 3x3*128 = 1152 kernel size convolution

– 22 nm, 2.5-4 fJ/op (%Sparsity dependent)

Scherer e.a. TCAD 2021, Cutie , Beyond PetaOp/s/W Ternary DNN

https://ieeexplore.ieee.org/document/9932871


SNPU

C-DNN

DIANA - Mixed-signal
• Precision-scalable digital core

– INT 8/4/2 

• Analog In-Memory Core (AIMC)

– Ternary weights, 7-b activation

– Programmable SIMD

– 22nm 1.7 fJ/Op (I/W/O= 7/1.5/6-bit)

Houshmand e.a., JSSC 2022 

https://ieeexplore.ieee.org/document/9932871


SNPU

C-DNN

Digital CIM - SRAM-based
• 12T bitcell based architecture

• Flexible precision

– INT 8/4, 5nm, 15.8 / 3.9 fJ/Op

• MAC using 1-b at a time

Fujiwara e.a., ISSCC 2022

https://ieeexplore.ieee.org/document/9731754


SNPU

C-DNN

TinyVers - Embedding MRAM
• Supports various DNN layers, 

to traditional ML models like SVM

• RISC-V + ML Acc.

• Flexible-precision scalable digital 

accelerator, max 17 TOPS/W ~ 59 fJ/Op (Int2)

– INT2/4/8 precision

Jain e.a., VLSI Symp 2022

https://arxiv.org/abs/2301.03537


SNPU

C-DNN

State-of-the-Art Summary

• ANN chips approaching 1 fJ/Op

• However:

– Requires complete unrolling (CUTIE) 

and/or AIMC (DIANA)

– System overhead often neglected

• Flexibility has its price:

– E.g. BrainTTA suffers at least one-

order in energy efficiency

– DRAM overhead not included

• SNNs have high potential, 

– However: at best in the 35 fJ/Op range

Loihi 2



What to expect?

• AI Deep Learning Models

• Edge Mismatch: Cloud vs Edge

• Optimizations

• Learn from the Brain

• SOTA in Edge AI computing 

• Future

– CONVOLVE Methodology

– Accelerator research

• Conclusions
59



CONVOLVE whole stack methodology

Improvements from all design levels, e.g.:

• Models: 

– Exploiting dynamism

– Online learning: adapt and deal with errors

• Tools:

– DSE searching huge mapping space

– Compiler

– Dynamic reconfiguration

• ULP blocks:

– Various accelerators

– CIM, ReRAM based

• Grey box compiler

• Flexible architecture

• Generic vs. Application-

specific hardware

• Coarse Grained 

Reconfigurable Array

• Run-time reconfigurabiliy

• Compute-in-Memory 

• Approximate computing

• SRAM and ReRAM based 

Compute-in-Memory

• Analog vs. Digital

• Dynamic ANN 

• Dynamic SNN

• Online learning 

Models and 

learning

Compiler & 

mapping

System 

architecture

Micro-

architecture 

& 

Circuit 



Dynamic NNs

• Exploit the 80-20 rule of life

• Multi-exiting allows confident early termination of 

computation via decision blocks

Layer 1 Layer 2 Layer 4Layer 3

Prediction

Score > THRES



Dynamic NNs; other approaches
wireless comm./Van Bolderik TUE

• Layer skipping

– skipping upto 60%, overhead 17%

• Mixture of experts

– 50% dynamic reduction (vsone big network)

– 37% power saving (incl. overhead)

62

Bram van Bolderik, TUE, e.g. VLSI-SoC 2024

Yizeng Han e.g., Dynamic NN: A Survey, https://arxiv.org/abs/2102.04906



Integration: SoC architecture

• PULP SoC (ETH)

• GF22 nm

• Many tapeouts

• Banked L1 memory

• Flexible accelator

integration support



SNAX: Heterogeneous Cluster (KULeuven)

• Seamless accelerator insertion

• Design-time parameters

– Memory sizes and interconnects

– Accelerator connections towards 
memory (narrow or wide)

– Number of accelerators

– Number of management cores

• Modules that support run-
time customization

– Data streamers for managing data 
access patterns

– Data reshufflers for re-arranging 
data layouts in memory



Digital CIM (TUE)

• Custom foundry-based SRAM

• Approximate Mul-Adder Tree

• Support 4b-8b weights/activation

• Fibbinary encoding (no ‘11’)

• 157 TOPS/W, 6.37 fJ/Op (2b*4b)

• GF22nm

Carry No Carry

               

 

 

 

 

                             

 

 

 

 

 

                

 
 
 
 
  
 
  

                   

  

 
  
 
 
  
 

                  

      

 
  
  
 

           

  

  

      

 
 
  
 
  
  
 
  
  
 
 
  
 

  

            

   

             

 
 
 
 
 

        

Example of a 32Kb SRAM DCIM 
architecture



CIM based Transformer accelerator: CIMple

• 8T bitcell based architecture

• MAC using 1-b at a time

• Standard-cell approach 

• Flexible architecture

– Encoder only

– Decoder only

– Encoder-Decoder

– Softmax support in HW

• INT8 precision

• 26.1 TOPS/W at 0.85 V or 38 fJ/op

• 2.31 TOPS/mm2 in 28nm
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Adder-free SRAM-based-CIM architecture(TUD)

• Adder-Tree-free accumulation 

for energy efficiency 

• Embedded bit wise 

multiplication for energy/area 

efficiency 

• Memory banks partitioning

for enhanced throughput 

Energy and Area Efficient SRAM-Based Digital CIM Accelerator for Edge AI



Mega: SNN accelerator

• 3x3 spiking convolution

– Event-based: operations happen when 

there is a spike

– Each PE cluster updates 32 neurons in 

parallel

• Memory hierarchy

– Small, fast memories near the PEs

– Larger memory for flexibility

• 0.501 pJ/SOP

– Post-synthesis in 22 nm

– 625 MHz @ 0.8V

68



Mega: What happens if spiking is sparse?

69

Energy and latency for a 96x48 spike map



R-Blocks CGRA: Coarse Grain Reconfigurable Array

• Separate NOC for data & Ctrl

• Flexible SIMD support by 

configuring the control NoC

• Includes approximate 

functional units 

Switch Box (SWB)



Approximate CGRA: AxC Exploration for R-Blocks

• Modular architecture

• 3 x 4KB Local Mem.

• 8 MAC Units (MUL+ALU)

– 4 MUL Tiles Utilising 2 Approx. 

Techniques

– DRUM[1]

– ROUP [2]

• 13%   Area Gain

• 21% Power Gain (67 % for a 

unit)

• MSE down to 0.15 in YOLOv6

[1] S. Hashemi, R. I. Bahar and S. Reda, "DRUM: A Dynamic Range Unbiased 

Multiplier for approximate applications," ICCAD  2015

[2] V. Leon, K. Asimakopoulos, S. Xydis, D. Soudris and K. Pekmestzi, 

"Cooperative Arithmetic-Aware Approximation Techniques for Energy-Efficient 

Multipliers," DAC 2019



What to expect?

• AI Deep Learning Models

• Edge Mismatch: Cloud vs Edge

• Optimizations

• Learn from the Brain

• SOTA in Edge AI computing 

• Future 

• Conclusions

– Flexibility of accelerators

– LEC

– Summary 72



Flexibility: tradeoff with Efficiency (energy,area)

• How to achieve flexibility?

– Heterogeneous platform

• multi-core with many dedicated 

accelerators

• dark silicon issue

– CGRA multi-domain platform

73

Markus Willems. 2019. Application-Specific Processors for High Throughput, Low Latency, 
and Flexible 5G Communication SoCs. Synopsis. https://www.synopsys.com/designware-
ip/technical-bulletin/5gasips- communication-socs.html



Flexibility metric

• Performance of 2 systems compared to a reference, RISC CPU

– Which one is 

more flexible?

74

How Flexible is Your Computing System?

Shihua Hung, Luc Waeijen, Henk Corporaal 

ACM TECS Aug ‘22

Compute system flexibility = the inverse of the geometric standard
  v        f    y    ’             p  f     c ,     gy  ff c   cy,      h  
secondary metric, within a benchmark set
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• Look at FPGAs

• and GPUs ?

• Multi-core more 

energy-eff than 

single-core

Energy-efficiency vs Flexibility



LEC: Liquid Edge-Cloud processing example

76
Floran De Putter, “CELR: Cloud Enhanced Local Reconstruction from low-dose sparse Scanning Electron Microscopy images”, DSD 2022

Orange: @Edge,  Blue in CloudElectron Microscope using NN for 

image enhancement, enabling fast scan
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• Collaborative learning by 

multiple edge devices

• Devices can

– learn with different (private) data

– learn different modalities

(like audio vs video)

– be heterogeneous, etc.

One step further: Federated Learning



AI at the Edge: hype or hope?

• SOTA: Edge-AI Processing HW:

– ANN accelerators: close to 1 fJ/Op peak efficiency

• low precision operands

• often assume idealities

– SNN (Neuromorphic) has potential, however needs to catch up

• High Sparsity / No multipliers / Low latency

– Limited on-chip storage capabilities

• Required by LLMs

– Lack of efficient end-to-end compilation flow



AI at the Edge: hype and hope! YES

• 100x energy↓ => Whole Design Stack approach:

– Online learning & NN Model level, e.g. Dynamic NNs

– Architecture and Compiler level,      e.g. New optimizations

– Implementation, e.g. Accelerators 

– SoC level: System-level modeling, SoC generation

– Device level: 

• e.g. e-DRAM, & MRAM enables large on-chip models 

• Emergent technologies, like Memristors

• Cooperation with Cloud

– but with all edge advantages

• Grey box compiler

• Flexible architecture

• Generic vs. Application-

specific hardware

• Coarse Grained 

Reconfigurable Array

• Run-time reconfigurabiliy

• Compute-in-Memory 

• Approximate computing

• SRAM and ReRAM based 

Compute-in-Memory

• Analog vs. Digital

• Dynamic ANN 

• Dynamic SNN

• Online learning 

Models and 

learning

Compiler & 

mapping

System 

architecture

Micro-

architecture 

& 

Circuit 


	Slide 1: AI at the Edge: hype or hope?
	Slide 2: Booming AI
	Slide 3: 3 Historical Neural Network Waves
	Slide 4
	Slide 5: ImageNet Winners (top-5 classification error)
	Slide 6: What to expect?
	Slide 7: Learning
	Slide 8: 3 key functions of a learning system
	Slide 9: Overfitting vs. Generalization
	Slide 10: Deep Learning, a quick tour
	Slide 11: Convolutional network as a deep loop-nest
	Slide 12: Convolution in CNNs: 1 layer
	Slide 13: Convolution layer: 1 layer with input batch 
	Slide 14: ResNet18
	Slide 15: MobileNetv2
	Slide 16: Stateful Networks
	Slide 17: Transformer architecture: using self-attention
	Slide 18: What to expect?
	Slide 19: AI mostly in the cloud
	Slide 20: Smart Edge?
	Slide 21: Cloud vs Edge
	Slide 22: What is the Edge Budget : Smart glasses
	Slide 23: GoogLeNet: Energy
	Slide 24: Where is the energy consumed? 
	Slide 25: What to expect?
	Slide 26: Optimizations for high energy-efficiency
	Slide 27: Iterative Pruning and Re-training: Alexnet 
	Slide 28: Impact of data reuse: Reducing ext. memory accesses
	Slide 29: Quantization: Data formats used in NNs
	Slide 30: How far to quantize: Accuracy vs Energy?
	Slide 31: How far to quantize? Repair BNNs
	Slide 32: DSE of mappings: ZigZag (KULeuven)
	Slide 33: DSE of mappings: ZigZag (KULeuven)
	Slide 34: What to expect?
	Slide 35: Deep Learning seems to have no limits
	Slide 36: HW has its limits: 50 years of Microprocessors
	Slide 37: Brain, any limits?
	Slide 38: Inside our brain
	Slide 39: Inside our brain
	Slide 40: Learn from our brain (1): Spiking Neurons
	Slide 41: Spiking Neural Network: SNN vs ANN neuron
	Slide 42: Learn from our brain (2)
	Slide 43: Solution: Compute in Memory (CIM)
	Slide 44: Issues of new technologies
	Slide 45: Learn from our brain (3)
	Slide 46: Solution: Self-Healing
	Slide 47: What to expect?
	Slide 48: Energy efficiency
	Slide 49: SOTA in Edge-AI Processor/Accelerator HW
	Slide 50: μBrain- Digital SNN (IMEC)
	Slide 51: BrainTTA - Flexible & Mixed-precision (TUE)
	Slide 52: Example Edge-AI accelerator: BrainTTA
	Slide 53: Where is the energy going: BrainTTA
	Slide 54: CUTIE –Ternary DNN (ETH)
	Slide 55: DIANA - Mixed-signal
	Slide 56: Digital CIM - SRAM-based
	Slide 57: TinyVers - Embedding MRAM
	Slide 58: State-of-the-Art Summary
	Slide 59: What to expect?
	Slide 60: CONVOLVE whole stack methodology
	Slide 61: Dynamic NNs
	Slide 62: Dynamic NNs; other approaches wireless comm./Van Bolderik TUE
	Slide 63: Integration: SoC architecture
	Slide 64: SNAX: Heterogeneous Cluster (KULeuven)
	Slide 65: Digital CIM (TUE)
	Slide 66: CIM based Transformer accelerator: CIMple 
	Slide 67: Adder-free SRAM-based-CIM architecture(TUD)
	Slide 68: Mega: SNN accelerator
	Slide 69: Mega: What happens if spiking is sparse?
	Slide 70: R-Blocks CGRA: Coarse Grain Reconfigurable Array
	Slide 71: Approximate CGRA: AxC Exploration for R-Blocks
	Slide 72: What to expect?
	Slide 73: Flexibility: tradeoff with Efficiency (energy,area)
	Slide 74: Flexibility metric
	Slide 75: Energy-efficiency vs Flexibility
	Slide 76: LEC: Liquid Edge-Cloud processing example
	Slide 77: One step further: Federated Learning
	Slide 78: AI at the Edge: hype or hope?
	Slide 79: AI at the Edge: hype and hope! YES

