
Accelerating the
Phylogenetic Likelihood Function
using Versal Adaptive SoCs
Geert Roks, Mario Ruiz Noguera (AMD), Nikolaos Alachiotis (UT)

University of Twente

Contents

- Introduction

- Background

oPhylogenetic Likelihood Function

oVersal Adaptive SoC

- System Architecture

- Implementation

- Evaluation

- Conclusion

Introduction

Phylogenetics
- Study of evolutionary history

- Relationship between organism

- Epidemiology

Phylogenetic tree

Phylogenetic Analysis

Sequence1

Sequence 2

Sequence 3

Sequence 4

Sequence 1
Sequence 2
Sequence 3
Sequence 4

Raw data

Sequencing

Alignment

Scoring Function

Optimization algorithm

Phylogenetic Likelihood Function (PLF)
o Maximum Likelihood
o Bayesian Inference

Phylogenetic Likelihood Function Acceleration
- RAxML

o PLF takes up to 95% of analysis time

- Improved sequencing techniques

o larger phylogenetic trees

o need for acceleration

- PLF main parts:

o Matrix multiplication

o scaling

- Acceleration efforts:

o CPU

o GPU

o FPGA

Versal Adaptive SoC
- Tight integration between:
o Programmable Logic (PL)

o Array of AI Engines (AIE)

- Idea:
o AIE array: matrix multiplication

o PL: scaling and data organization

Background –
Phylogenetic Likelihood Function

Phylogenetic Likelihood Function

Nucleotide letters

Conditional Likelihood Vector (CLV)

Computational dataflow

Substitution Probability Matrix / branch matrix

Gamma rates

Scaling

If all values in a CLV entry are below threshold 𝜖,

then multiply all values in the CLV entry with E

Scaling
< 𝜖
< 𝜖
< 𝜖
< 𝜖
< 𝜖
< 𝜖
< 𝜖
< 𝜖
< 𝜖
< 𝜖
< 𝜖
< 𝜖
< 𝜖
< 𝜖
< 𝜖
< 𝜖

Number of scaling events stored in vector U

For single precision:

Background –
Versal Adaptive SoC

Versal Adaptive SoC

Processing
System

Programmable
Logic

Array of
AI Engines

Network On Chip

Array of AI Engines
Array
o AI Engine Tiles

o Stream connection
◦ 2rd/2wr 32-bit

oMemory connection
◦ 2rd 1wr 256-bit

Tile
o AI Engine

o Local Memory

AI Engine
o Very Long Instruction Word (7 instructions per cycle)

o Single Instruction Multiple Data (8 floating point operations per cycle)

Interface tiles

Processing
System

Programmable
Logic

Array of
AI Engines

Network On Chip

PCIe interface
DDR off-chip

memory interface

x PLIO channels to AIE
y PLIO channels to PL

Versal Datacenter Card

Processing
System

Programmable
Logic

Array of
AI Engines

Network On Chip

PCIe interface
DDR off-chip

memory interface

DDR4 memory modules

PCIe connector

AMD Versal
VCK5000

System Architecture

General mapping

PL kernels

Detailed overview

16 AIE kernels

Host program

●Moves data between
host and device memory

●Controls platform execution
○ Kernel parameters

○ Start/stop kernels

●Only control over
PL kernels

Implementation

Hardware platform

4x 4GB DDR4 modules
3 available (12GB)

8 lanes PCIe Gen 4.0

Max 512-bit 39 interface tiles
78 PLIO to AIE
58 PLIO to PL
128-bit channels

400 AIE tiles
8 rows
50 columns

PLIO layouts
SEPARATE

●Max 78/17 = 4 instances (87% PLIO utilization)

COMBINED

●Max 78/8 = 9 instances (92% PLIO utilization)

Each matrix via separate PLIO Matrices share PLIO with left/right CLVs

●16 tiles x 9 instances = 144 tiles total

●144/400 = 36% used of AIE array

●16 tiles x 4 instances = 64 tiles total

●64/400 = 16% used of AIE array

inter-AIE kernel communication

● Stream connections (stream)
○ operates as FIFO of certain length

● Memory connections (window)
○ fixed size memory blocks

■ 1 KiB

■ 8 KiB

■ 16 KiB

AIE tile utilization with windows

Programmable Logic utilization

●Limited to 250MHz

●<4.5% of the PL resources
per instance

●for 9 instances:

○ < 41% of PL resources used

Evaluation

Experimental Setup
- Heterogeneous Accelerated Compute Cluster (HACC) at ETH Zürich
o 2 AMD EPYC CPUs (total 128 cores)
o 2 AMD Versal VCK5000 cards (1 used)

- design exploration variables
o number of instances: 1,2,4,8 and 9 instances
o CLV lengths: 100 to 10M sites
o AIE communication methods: Stream, window (1, 8, 16 KiB)
o PLIO layout: Separate, combined

- Evaluation metric

o Throughput in CLV entries per second (CLVES)
o 1 CLV entry = 16 single precision floating point values

Design Space Exploration

1) Chip performance
o Custom PL kernels generating test data

o PLF on AIE

oMeasure PL-AIE throughput

2) Platform/system performance
o complete functionality

oMeasure platform throughput (excludes pcie transfers)

oMeasure system throughput (includes pcie transfers)

platform

system

chip

Stream vs Window
(Separate Layout)

Take away:

Window-based
communication
outperforms streams

● Stream:
○ operates as FIFO

of certain length
○ only needs

matrices once

● Window:
○ fixed size memory

blocks
○ needs to resend

matrices for each
block

Varying window sizes
(Separate layout)

● window sizes:
○ 1 KiB
○ 8 KiB
○ 16 KiB

Varying window sizes
(Separate layout, 4 instances)

● window sizes:
○ 1 KiB
○ 8 KiB
○ 16 KiB Take away:

marginal difference
window sizes

1 KiB and 8 KiB
seem fastest for
Separate layout

Varying window sizes
(Combined layout, 1 instance)

● window sizes:
○ 1 KiB
○ 8 KiB
○ 16 KiB

Varying window sizes
(Combined layout, 4 instances)

● window sizes:
○ 1 KiB
○ 8 KiB
○ 16 KiB Take away:

marginal difference
window sizes

8KiB seems generally
fastest for the
Combined layout

Separate vs Combined layout
(8KiB window, 1instance)

● Separate Layout:
○ each matrix send

over individual
PLIO channel

○ max 4 instances
limited by PLIO

● Combined Layout:
○ Matrices share

PLIO channels with
CLV data

○ max 9 instances
limited by PLIO

Separate vs Combined layout
(8KiB window, 4 instances)

● Separate Layout:
○ each matrix send

over individual
PLIO channel

○ max 4 instances
limited by PLIO

● Combined Layout:
○ Matrices share

PLIO channels with
CLV data

○ max 9 instances
limited by PLIO

Take away:

marginal difference
between layouts

Combined seems
slightly faster

Combined preferred
over Separate

System performance
(8KiB window, Combined, 1 instance)

● Fastest configuration:
○ window based
○ 8 KiB window
○ Combined PLIO

● PCIe optimizations:
○ Double buffering
○ caching
○ performance model:

3.45x speedup

Take away:

PCIe bandwidth
limits system
performance

Optimizations may
improve system
performance

Scalability

● Chip:
○ PL - AIE bandwidth

● Platform:
○ includes device

memory access

● System:
○ includes host-device

transfers over PCIe

Take away:

chip/platform scale
linearly with
increasing instances
(almost 1:1)

System can’t scale
due to PCIe
bandwidth limit

CPU comparison
1 core vs system (sequential)

1.5x 3.0x

● system sequential:
○ no reuse of data
○ no overlap between

movement and
computation

● High-end server CPUs
○ AVX2 vector extensions
○ highly optimized CPU

implementation of PLF

CPU comparison
1 core vs system (optimized)

● system sequential:
○ no reuse of data
○ no overlap between

movement and
computation

● High-end server CPUs
○ AVX2 vector extensions
○ highly optimized CPU

implementation of PLF

● system optimized:
○ data reuse from caching
○ double buffering overlaps

movement and
computation

5.3x 10.6x

CPU comparison
8 cores vs system (optimized)

● system sequential:
○ no reuse of data
○ no overlap between

movement and
computation

● High-end server CPUs
○ AVX2 vector extensions
○ highly optimized CPU

implementation of PLF

● system optimized:
○ data reuse from caching
○ double buffering overlaps

movement and
computation

1.3x 0.7x

CPU comparison
8 cores vs platform

● platform
○ no pcie transfer
○ indication of

performance when
host program on on-
chip ARM CPU

● High-end server CPUs
○ AVX2 vector extensions
○ highly optimized CPU

implementation of PLF 3.7x5.9x

● impractical use of hw
acceleration for short CLV
lengths

FPGA comparison
System 1 - AWS EC2 F1

● AWS EC2 F1
○ Cloud-based FPGA
○ moves data between

host and device over
PCIe

○ Uses optimizations
2.7x - 4.6x

15.9x

Malakonakis, P., Brokalakis, A., Alachiotis, N., Sotiriades, E., & Dollas, A. (2020, October). Exploring modern FPGA platforms for faster phylogeny reconstruction
with RAxML. In 2020 IEEE 20th International Conference on Bioinformatics and Bioengineering (BIBE) (pp. 97-104). IEEE.

FPGA comparison
System 2 - ZCU102

● AWS EC2 F1
○ Cloud-based FPGA
○ moves data between

host and device over
PCIe

○ Uses optimizations

● ZCU102
○ Development board
○ Host and device are on

same SoC and share
memory

○ no PCIe transfers
needed

2.7x - 4.6x

15.9x

21.9x

Malakonakis, P., Brokalakis, A., Alachiotis, N., Sotiriades, E., & Dollas, A. (2020, October). Exploring modern FPGA platforms for faster phylogeny reconstruction
with RAxML. In 2020 IEEE 20th International Conference on Bioinformatics and Bioengineering (BIBE) (pp. 97-104). IEEE.

GPU Performance

No direct comparison possible
o Up to 1.8x speedup for 100K

o Compared to one Intel i5-3550 core with AVX intrinsics

Our implementation
o Up to 8.9x speedup for 100K

o Compared to one Intel Xeon Silver 4216 core with AVX2 intrinsics 1.8x

Izquierdo-Carrasco, F., Alachiotis, N., Berger, S., Flouri, T., Pissis, S. P., & Stamatakis, A. (2013, May). A generic vectorization scheme and a GPU kernel for the
phylogenetic likelihood library. In 2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum (pp. 530-538). IEEE.

Conclusion

Conclusion

●Design-space exploration takeaways:

○ windows preferred over streams

○ Use PLIO channels sparingly

○ System limited by PCIe data movement

○ Hardware acceleration impractical for CLV lengths < 50K

●Achieved performance

○ Our design vs single high-end CPU core + AVX2: 1.5 - 3x (potentially up to

10x)

○ Our design vs eight high-end CPU cores + AVX2: similar performance

○ Our design vs modern FPGA + host CPU over PCIe: up to 4.6x (potentially up to 16x)

○ Our design vs modern FPGA + integrated CPU: potentially up to 22x

● We presented an accelerator architecture for the Phylogenetic Likelihood Function informed by a
design space exploration of the AMD Versal Adaptive SoCs

Future work
●implement Protein-based implementation (5x higher arithmetic intensity than DNA)

●Redesign Programmable logic kernels (Monolithic design, explorer 100 Gbit ethernet ports)

●Porting RAxML to Versal ARM cores (eliminating PCIe transfers)

Questions

AIE configurations

WindowStream

Separate

Combined

Results - multiple instances

Combined and separate
scale similarly

Combined can scaler
further with 9 instances

Short CLVs see
slowdown for more
instances

Window size effect on execution time

Host Program

RAxML PLF on CPU

Performance comparison - CPU

System (optimized)
-Up to 5.6x (1 EPYC)
-Up to 10.6x (1 Xeon)

Platform
-Up to 23.8x (1 EPYC)
-Up to 47x (1 Xeon)

-Up to 2x (16 EPYC)
-Up to 4x (16x Xeon)

FPGA Performance comparison

Malakonakis, P., Brokalakis, A., Alachiotis, N., Sotiriades, E., & Dollas, A. (2020, October). Exploring modern FPGA platforms for faster phylogeny reconstruction
with RAxML. In 2020 IEEE 20th International Conference on Bioinformatics and Bioengineering (BIBE) (pp. 97-104). IEEE.

1.9x 5.2x

21.9x
2.7x - 4.6x

	Slide 1: Accelerating the Phylogenetic Likelihood Function using Versal Adaptive SoCs
	Slide 2: Contents
	Slide 3: Introduction
	Slide 4: Phylogenetics
	Slide 5: Phylogenetic tree
	Slide 6: Phylogenetic Analysis
	Slide 7: Phylogenetic Likelihood Function Acceleration
	Slide 8: Versal Adaptive SoC
	Slide 9: Background – Phylogenetic Likelihood Function
	Slide 10: Phylogenetic Likelihood Function
	Slide 11: Computational dataflow
	Slide 12: Gamma rates
	Slide 13: Scaling
	Slide 14: Scaling
	Slide 15: Background – Versal Adaptive SoC
	Slide 16: Versal Adaptive SoC
	Slide 17: Array of AI Engines
	Slide 18: Interface tiles
	Slide 19: Versal Datacenter Card
	Slide 20: System Architecture
	Slide 21: General mapping
	Slide 22: PL kernels
	Slide 23: Detailed overview
	Slide 24: Host program
	Slide 25: Implementation
	Slide 26: Hardware platform
	Slide 27: PLIO layouts
	Slide 28: inter-AIE kernel communication
	Slide 29: Programmable Logic utilization
	Slide 30: Evaluation
	Slide 31: Experimental Setup
	Slide 32: Design Space Exploration
	Slide 33: Stream vs Window (Separate Layout)
	Slide 34: Varying window sizes (Separate layout)
	Slide 35: Varying window sizes (Separate layout, 4 instances)
	Slide 36: Varying window sizes (Combined layout, 1 instance)
	Slide 37: Varying window sizes (Combined layout, 4 instances)
	Slide 38: Separate vs Combined layout (8KiB window, 1instance)
	Slide 39: Separate vs Combined layout (8KiB window, 4 instances)
	Slide 40: System performance (8KiB window, Combined, 1 instance)
	Slide 41: Scalability
	Slide 42: CPU comparison 1 core vs system (sequential)
	Slide 43: CPU comparison 1 core vs system (optimized)
	Slide 44: CPU comparison 8 cores vs system (optimized)
	Slide 45: CPU comparison 8 cores vs platform
	Slide 46: FPGA comparison System 1 - AWS EC2 F1
	Slide 47: FPGA comparison System 2 - ZCU102
	Slide 48: GPU Performance
	Slide 49: Conclusion
	Slide 50: Conclusion
	Slide 51: Future work
	Slide 52: Questions
	Slide 53: AIE configurations
	Slide 54
	Slide 55: Results - multiple instances
	Slide 56: Window size effect on execution time
	Slide 57: Host Program
	Slide 58: RAxML PLF on CPU
	Slide 59: Performance comparison - CPU
	Slide 60: FPGA Performance comparison

