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Agenda

● What is clustering and why is challenging?
● Algorithms for Clustering

– K-means
– Hierarchical Clustering
– DBSCAN

● Clustering Validation
– How to make sure your clustering makes sense?

● Lab on simple clustering tasks using WEKA



What is clustering?

● Finding groups of objects such that the objects in a group
will be similar (or related) to one another and different from 
(or unrelated to) the objects in other groups

Inter-cluster 
distances are 
maximized

Intra-cluster 
distances are 
minimized



Easy, peasy, right?
YOU on your first 
clustering attempt YOU chasing a

“good clustering”





Examples of clustering applications

● Information retrieval: Document clustering
● Marketing: Discover distinct groups in customer 

bases (e.g. facebook grouping: “People established 
adult life”)

● Land use: Areas of similar land use in earth 
observation database

● Insurance: Groups of policy holders with a high 
average claim cost

● …



Why do it?

● Understanding
– Group related documents 

for browsing
– Group genes and proteins 

that have similar 
functionality

– Group stocks with similar 
price fluctuations

● Summarization
– Reduce the size of large 

data sets

 Discovered Clusters Industry Group 

1 Applied-Matl-DOWN,Bay-Network-Down,3-COM-DOWN, 
Cabletron-Sys-DOWN,CISCO-DOWN,HP-DOWN, 

DSC-Comm-DOWN,INTEL-DOWN,LSI-Logic-DOWN, 
Micron-Tech-DOWN,Texas-Inst-Down,Tellabs-Inc-Down, 

Natl-Semiconduct-DOWN,Oracl-DOWN,SGI-DOWN, 
Sun-DOWN 

 
 

Technology1-DOWN 

2 Apple-Comp-DOWN,Autodesk-DOWN,DEC-DOWN, 
ADV-Micro-Device-DOWN,Andrew-Corp-DOWN, 

Computer-Assoc-DOWN,Circuit-City-DOWN, 
Compaq-DOWN, EMC-Corp-DOWN, Gen-Inst-DOWN, 

Motorola-DOWN,Microsoft-DOWN,Scientific-Atl-DOWN 

 
 

Technology2-DOWN 

3 Fannie-Mae-DOWN,Fed-Home-Loan-DOWN, 
MBNA-Corp-DOWN,Morgan-Stanley-DOWN 

 
Financial-DOWN 

4 Baker-Hughes-UP,Dresser-Inds-UP,Halliburton-HLD-UP, 
Louisiana-Land-UP,Phillips-Petro-UP,Unocal-UP, 

Schlumberger-UP 

 
Oil-UP 

 

 

Clustering precipitation 
in Australia



Why do it (again)

● “The revolution (in AI) will not be supervised”
● We need to have models that understand the world, 

like humans do
– We don’t give many “labels” to humans
– They just learn by observing the world



Clustering IS
Ambiguous

How many clusters?

Four ClustersTwo Clusters

Six Clusters



What is a good clustering?

● A good clustering method will produce
high quality clusters

– high intra-class similarity: cohesive within clusters

– low inter-class similarity: distinctive between clusters

● The quality of a clustering method depends on

– Data, distance, … (see next slide)

– its implementation, 

– Its ability to discover some or all of the hidden
patterns



Input data matters

● Type of data in the input
– Measurements?
– Image? Text? Timeseries?

● Type of distance used
– Central to clustering
– Depends on data and application 

● Data characteristics that affect proximity and/or density are
– Dimensionality (issues with sparseness)
– Attribute type
– Special relationships in the data

● Noise and Outliers
– Often interfere with the operation of the clustering algorithm



Major Clustering Approaches

● Partitioning approach: 
– Construct various partitions and then evaluate them by 

some criterion, e.g., minimizing the sum of square errors
– We will see: K-means

● Hierarchical approach: 
– Create a hierarchical decomposition of the set of data (or 

objects) using some criterion
– We will see: Agglomerative Clustering

● Density-based approach: 
– Based on connectivity and density functions
– We will see: DBSCAN



K-means Clustering

● The basic algorithm is very simple
● Number of clusters, K, must be specified
● Each cluster is associated with a centroid (center point) 
● Each point is assigned to the cluster with the closest 

centroid



Example of K-means Clustering
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Example of K-means Clustering
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K-means Clustering – Facts

● Initial centroids are often chosen randomly.
– Clusters produced vary from one run to another.

● The centroid is (typically) the mean of the 
points in the cluster.

● We need a distance measure:
Euclidean, cosine, correlation, etc.

● K-means will converge after a few iterations
– Often the stopping condition is changed to ‘Until relatively 

few points change clusters’



Evaluating K-means Clusters

● Most common measure is Sum of Squared Error (SSE)
– For each point, the error is the distance to the nearest cluster
– To get SSE, we square these errors and sum them.

– x is a data point in cluster Ci and mi is the representative point for 
cluster Ci
u can show that mi corresponds to the center (mean) of the cluster

– Given two sets of clusters, we prefer the one with the smallest 
error

– One easy way to reduce SSE is to increase K, the number of 
clusters
u A good clustering with smaller K can have a lower SSE than a poor 

clustering with higher K
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Limitations of K-means

● K-means has problems when clusters are of 
differing 
– Sizes
– Densities
– (Non-globular shapes)

● K-means has problems when the data contains 
outliers

● How do we select the initial centroids?



Limitations of K-means: Differing Sizes

Original Points K-means (3 Clusters)



Limitations of K-means: Differing Density

Original Points K-means (3 Clusters)



Limitations of K-means: (Non-globular) Shapes

Original Points K-means (2 Clusters)



Overcoming K-means Limitations

Original Points K-means Clusters

One solution is to use many clusters.
Find parts of clusters, but need to put together.



Overcoming K-means Limitations

Original Points K-means Clusters



Overcoming K-means Limitations

Original Points K-means Clusters



Hold on… Another issue
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Importance of Choosing Initial 
Centroids
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Importance of Choosing Initial 
Centroids …

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y
Iteration 1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y
Iteration 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y
Iteration 3

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y
Iteration 4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y
Iteration 5



Importance of Choosing Initial 
Centroids …
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Solutions to Initial
Centroids Problem

● Multiple runs
– Helps, but probability is not on your side

● Sample and use hierarchical clustering to determine 
initial centroids

● Select more than K initial centroids and then select 
among these initial centroids

● Post-processing
● Generate a larger number of clusters and then 

perform a hierarchical clustering
● K-means variants e.g. bisecting K-means



Hierarchical Clustering 

● Produces a set of nested clusters organized as a 
hierarchical tree

● Can be visualized as a dendrogram
– A tree like diagram that records the sequences of 

merges or splits
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Strengths of Hierarchical 
Clustering

● Do not have to assume any particular number of 
clusters
– Any desired number of clusters can be obtained by 

‘cutting’ the dendrogram at the proper level

● They may correspond to meaningful
taxonomies
– Example in biological sciences (e.g.:

animal kingdom, phylogeny reconstruction)



Agglomerative Clustering Algorithm

● Most popular hierarchical clustering technique

● Basic algorithm is straightforward
1. Compute the proximity matrix
2. Let each data point be a cluster
3. Repeat
4. Merge the two closest clusters
5. Update the proximity matrix
6. Until only a single cluster remains

● Key operation is the computation of the proximity of 
two clusters

– Different approaches to defining the distance between clusters 
distinguish the different algorithms



Starting Situation 

● Start with clusters of individual points and a 
proximity matrix

p1

p3

p5

p4

p2

p1 p2 p3 p4 p5 . . .

.

.

. Proximity Matrix

...
p1 p2 p3 p4 p9 p10 p11 p12



Intermediate Situation

● After some merging steps, we have some clusters 

C1

C4

C2 C5

C3

C2C1

C1

C3

C5

C4

C2

C3 C4 C5

Proximity Matrix

...
p1 p2 p3 p4 p9 p10 p11 p12



Intermediate Situation

● We want to merge the two closest clusters (C2 and C5)  and 
update the proximity matrix. 

C1

C4

C2 C5

C3

C2C1

C1

C3

C5

C4

C2

C3 C4 C5

Proximity Matrix

...
p1 p2 p3 p4 p9 p10 p11 p12



After Merging

● The question is:
“How do we update the proximity matrix?” 

C1

C4

C2 U C5

C3
?        ?        ?        ?    

?

?

?

C2 
U 
C5C1

C1

C3

C4

C2 U C5

C3 C4

Proximity Matrix

...
p1 p2 p3 p4 p9 p10 p11 p12



How to Define Inter-Cluster Distance

p1

p3

p5

p4

p2

p1 p2 p3 p4 p5 . . .

.

.

.

Similarity?

● MIN
● MAX
● Group Average
● Distance Between Centroids
● Other methods driven by an objective 

function
– Ward’s Method uses squared error

Proximity Matrix



How to Define Inter-Cluster Similarity
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– Ward’s Method uses squared error



How to Define Inter-Cluster Similarity
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How to Define Inter-Cluster Similarity

p1

p3

p5

p4
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. Proximity Matrix

● MIN
● MAX
● Group Average
● Distance Between Centroids
● Other methods driven by an objective 

function
– Ward’s Method uses squared error



How to Define Inter-Cluster Similarity

p1

p3

p5

p4

p2

p1 p2 p3 p4 p5 . . .

.

.

. Proximity Matrix

● MIN
● MAX
● Group Average
● Distance Between Centroids
● Other methods driven by an objective 

function
– Ward’s Method uses squared error

´ ´



MIN or Single Link 

● Proximity of two clusters is based on the two 
closest points in the different clusters
– Determined by one pair of points, i.e., by one link in the 

proximity graph
● Example:

Distance Matrix:



Hierarchical Clustering: MIN

Nested Clusters Dendrogram
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Strength of MIN

Original Points Six Clusters

• Can handle non-elliptical shapes



Limitations of MIN

Original Points

Two Clusters

• Sensitive to noise and outliers Three Clusters



MAX or Complete Linkage

● Proximity of two clusters is based on the two most 
distant points in the different clusters
– Determined by all pairs of points in the two clusters

Distance Matrix:



Hierarchical Clustering: MAX

Nested Clusters Dendrogram
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Strength of MAX

Original Points Two Clusters

• Less susceptible to noise and outliers



Limitations of MAX

Original Points Two Clusters

• Tends to break large clusters
• Biased towards globular clusters



Group Average

● Proximity of two clusters is the average of pairwise proximity 
between points in the two clusters.

● Need to use average connectivity for scalability since total 
proximity favors large clusters

||Cluster||Cluster

)p,pproximity(

)Cluster,Clusterproximity(
ji

Clusterp
Clusterp

ji

ji
jj
ii

´
=

å
Î
Î

Distance Matrix:



Hierarchical Clustering: Group Average

Nested Clusters Dendrogram
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Hierarchical Clustering: Group Average

● Compromise between Single and Complete 
Link

● Strengths
– Less susceptible to noise and outliers

● Limitations
– Biased towards globular clusters



Cluster Similarity: Ward’s Method

● Similarity of two clusters is based on the increase 
in squared error when two clusters are merged
– Similar to group average if distance between points is 

distance squared

● Less susceptible to noise and outliers

● Biased towards globular clusters

● Hierarchical analogue of K-means
– Can be used to initialize K-means



Hierarchical Clustering: 
Problems and Limitations

● Once a decision is made to combine two clusters, 
it cannot be undone

● It needs much more space AND time
● No global objective function is directly minimized
● Different schemes have problems with one or more 

of the following:
– Sensitivity to noise and outliers
– Difficulty handling clusters of different sizes and non-

globular shapes
– Breaking large clusters



DBSCAN

● DBSCAN is a density-based algorithm.
– Density = number of points within a specified radius (Eps)

– A point is a core point if it has at least a specified number of 
points (MinPts) within Eps
u These are points that are at the interior of a cluster
u Counts the point itself

– A border point is not a core point, but is in the neighborhood 
of a core point

– A noise point is any point that is not a core point or a border 
point 



DBSCAN: Core, Border, Noise Points

MinPts = 7



DBSCAN Algorithm

● Eliminate noise points
● Perform clustering on the remaining points



DBSCAN: Core, Border and Noise Points

Original Points Point types: core, 
border and noise

Eps = 10, MinPts = 4



When DBSCAN Works Well

Original Points Clusters

• Resistant to Noise
• Can handle clusters of different shapes and sizes



When DBSCAN Does NOT Work Well

Original Points

(MinPts=4, Eps=9.75).

(MinPts=4, Eps=9.92)

• Varying densities
• High-dimensional data



DBSCAN: Determining EPS and MinPts

● Idea is that for points in a cluster, their kth nearest 
neighbors are at roughly the same distance

● Noise points have the kth nearest neighbor at further 
distance

● So, plot sorted distance of every point to its kth nearest 
neighbor



Cluster Validity 



Cluster Validity 

● For supervised classification we have a variety of measures 
to evaluate how good our model is

– Accuracy, precision, recall
● For cluster analysis, the analogous question is how to 

evaluate the “goodness” of the resulting clusters?

● But “clusters are in the eye of the beholder”! 

● Evaluation is really important here:
– To avoid finding patterns in noise
– To compare clustering algorithms
– To compare two sets of clusters
– To compare two clusters



Clusters found in Random Data
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● Numerical measures that are applied to judge various 
aspects of cluster validity, are classified into the following 
three types.
– External Index: Used to measure the extent to which 

cluster labels match externally supplied class labels.
u Entropy or Purity

– Internal Index: Used to measure the goodness of a 
clustering structure without respect to external 
information. 

u Sum of Squared Error (SSE)

– Relative Index: Used to compare two different clusterings
or clusters. 

u Often an external or internal index is used for this function, e.g., SSE or 
entropy

Measures of Cluster Validity



● Order the similarity matrix with respect to cluster labels 
and inspect visually. 

Cluster Validity: Similarity Matrix
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● Clusters in random data are not so crisp
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● Clusters in random data are not so crisp
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● Clusters in more complicated figures aren’t well separated
● Internal Index:  Used to measure the goodness of a clustering 

structure without respect to external information
– SSE

● SSE is good for comparing two clusterings or two clusters 
(average SSE).

● Can also be used to estimate the number of clusters

Internal Measures: SSE
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Internal Measures: SSE

● SSE curve for a more complicated data set
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SSE of clusters found using K-means



● A proximity graph based approach can also be used for cohesion 
and separation.
– Cluster cohesion is the sum of the weight of all links within a cluster.
– Cluster separation is the sum of the weights between nodes in the cluster 

and nodes outside the cluster.

Internal Measures: Cohesion and Separation

cohesion separation



● Silhouette coefficient combines ideas of both cohesion and separation, 
but for individual points, as well as clusters and clusterings

● For an individual point, i
– Calculate a = average distance of i to the points in its cluster
– Calculate b = min (average distance of i to points in another cluster)
– The silhouette coefficient for a point is then given by 

s = (b – a) / max(a,b)   

– Typically between 0 and 1. 
– The closer to 1 the better.

● Can calculate the average silhouette coefficient for a cluster or a 
clustering

Internal Measures: Silhouette Coefficient

Distances used 
to calculate a

i
Distances used 
to calculate b



External Measures of Cluster Validity: 
Entropy and Purity



“The validation of clustering structures is the most 
difficult and frustrating part of cluster analysis. 
Without a strong effort in this direction, cluster 
analysis will remain a black art accessible only to 
those true believers who have experience and great 
courage.”

Algorithms for Clustering Data, Jain and Dubes

Final Comment on Cluster Validity



To summarize

● Clustering is the most basic unsupervised technique
● Different algorithms might raise different results 

for what is the “optimal” clustering
● It is important to properly evaluate the results and 

justify any conclusion/decision using numbers


