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Chapter 1

Introduction to Quantum Chromo Dynamics (QCD)

The next pillar of the Standard Model that will be briefly presented is the one that describes the strong interactions. The
gauge theory is called Quantum Chromo Dynamics or QCD and explains how the word of the smallest building blocks of
ordinary matter, the quarks and the gluons, works. QCD shares a number of similarities with QED and thus we will profit
from the prior experience that we gained from Chapter ?? to explore the fundamental properties of our theory. However,
it is essential to point out that QCD, being by far more complicated than QED, has a number of fundamental differences
compared to the theory that is based on U(1) transformations. Thus a large part of the current chapter will be devoted to
highlighting these differences.

Once again, we will start by the Dirac Lagrangian that describes the dynamics of a free particle, this time a quark. We
will then impose a more complicated transformation described by the SU(3) group, the underlying group of QCD. The
requirement of local gauge invariance will automatically lead us to the term of the QCD Lagrangian that reflects the
interactions between the free particle and the field. The kinetic term of this field will be derived again from the Proca
Lagrangian. Requiring local gauge invariance also for this term, will reveal the nature of the QCD field: eight massless
fields, the gluons.

We will then proceed by looking at a number of QCD processes with the help of the, known to us by now, Feynman
diagrams. After a small recap of the similarities and the differences between QED and QCD we will focus on one of the
main, fundamental differences between the two gauge theories: we will see how the strong coupling constant behaves
depending on how “soft“ or “hard“ a process is (reflected by the momentum transfer). This discussion will naturally lead
to the introduction of two of the main characteristics of QCD: confinement and asymptotic freedom.

We will conclude the chapter by briefly discussing about QCD processes known as deep inelastic scattering. Through this
discussion we are going to see how one can probe the distribution functions of valence and sea quarks inside nucleons.
Finally, we will talk about the remaining part inside nucleons: the gluon distribution functions.

1.1 A small recap from QED

Let us briefly summarise the steps we followed in QED to derive the overall Lagrangian density of the gauge theory:

• We started off with the Dirac Lagrangian that describes a free particle (e.g. a lepton) of the form:

L = iΨγµ ∂
µ
Ψ −mΨΨ

• We then made a transformation of the form U = eigΛ , that transforms the eigenfunction as Ψ
′
= eigΛΨ , where g is a

constant and Λ is a scalar. This is, as we saw, a U(1) transformation, a rotation with a phase gΛ .

• We then promoted the transformation from global to local by adding a dependence of Λ on space and/or time such that
Λ = Λ(x, t) = Λ(xµ).

• Applying this local transformation to the Lagrangian density, we saw that

1



2 1 Introduction to Quantum Chromo Dynamics (QCD)

L
′
= iΨγµ ∂

µ
Ψ + iΨγµ

(
ig∂

µ
Λ

)
Ψ −mΨΨ 6= L

• The second term of the previous equation is responsible for breaking the invariance. Why is the invariance broken?
Because of the dependence of the scalar Λ on space and time (note that now Λ = Λ(x, t) = Λ(xµ)), which leads to

∂
µ
Ψ
′
= ∂

µ

(
eigΛ

Ψ

)
= eigΛ

∂
µ
Ψ + igeigΛ

∂
µ

(
∂

µ
Λ

)
Ψ = eigΛ

[
∂

µ + ig
(

∂
µ

Λ

)]
Ψ 6= eigΛ

∂
µ
Ψ

• How do we cure this? We tried to absorb the term that breaks the invariance, ∂ µ + ig
(

∂ µΛ

)
, by introducing a covariant

derivative Dµ = ∂ µ + ig
(

∂ µΛ

)
in the place of the partial derivative ∂ µ .

• This automatically leads to the introduction of a new vector field Aµ , such that Dµ = ∂ µ + igAµ .

• We then request local gauge invariance. Since this can’t be achieved with the partial derivative, we use the newly
introduced covariant derivative, such that after the U(1) transformation we demand that

D
′
µΨ

′
= eigΛ DµΨ

• It turned out that in order to have local gauge invariance the external vector field Aµ should transform with a given rule,
namely

A
′
µ = Aµ −∂µΛ

• Adding then the covariant derivative Dµ in the place of the partial derivative ∂ µ in the free Dirac Lagrangian gives:

L = iΨγµ Dµ
Ψ −mΨΨ =Ψ

(
iγµ ∂

µ
Ψ −m

)
Ψ −gΨγµ Aµ

Ψ

• The first term in the previous equation (i.e. Ψ

(
iγµ ∂ µΨ −m

)
Ψ ) describes the free Dirac Lagrangian density for a

lepton or a quark. The second term (i.e. gΨγµ AµΨ ) is the interaction term.

• To get the full Lagrangian density of the gauge theory we then added the Proca Lagrangian that describes the field
itself:

L =−1
4

Fµν Fµν +
1
2

m2Aµ Aµ

• Applying the same U(1) transformation as before also for this term and requesting local gauge invariance leads to
L
′
= L ⇒ m = 0. This implies that the gauge field is massless i.e. the photon.

• Finally, we also saw that the electromagnetic tensor Fµν = ∂µ Aν − ∂ν Aµ can be derived by its gauge invariant form:
[Dµ ,Dν ] = igFµν .

1.2 The free Dirac equation

For the case of QCD, we will start again with the Dirac Lagrangian that describes, this time, a free quark:

L = iΨγµ ∂
µ
Ψ −mΨΨ (1.2.1)

As in the case of QED, also here, we are going to act on it with a transformation. The underlying group that describes the
relevant transformations in QCD is not as simple as U(1). These transformations are now described by 3× 3 matrices,
described by the generators of the SU(3) group. The SU(3) transformation is now of the form
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U = eig λ
2 Λ , (1.2.2)

where Λ are eight parameters associated with the eight gauge bosons of the theory i.e. the gluons.The matrices λ are all
3×3 matrices also known as Gell-Mann matrices with the form:

λ1 =




0 1 0
1 0 0
0 0 0


 , λ2 =




0 −i 0
i 0 0
0 0 0


 , λ3 =




1 0 0
0 −1 0
0 0 0


 , λ4 =




0 0 1
0 0 0
1 0 0


 ,

λ5 =




0 0 −i
0 0 0
i 0 0


 , λ6 =




0 0 0
0 0 1
0 1 0


 , λ7 =




0 0 0
0 0 −i
0 i 0


 , λ8 =

1√
3




1 0 0
0 1 0
0 0 −2




1.2.1 Global gauge invariance

Let us again first discuss the case where the transformation is global i.e. the parameters Λ are not a function of space and
time but rather a constant. Is the Lagrangian density of Eq. 1.2.1 invariant under these types of transformations?

L
′
= iΨ

′
γµ ∂

µ
Ψ
′ −mΨ

′
Ψ
′

= ie−ig λ
2 Λ

Ψγµ ∂
µ

(
eig λ

2 Λ
Ψ

)
−me−ig λ

2 Λ
Ψeig λ

2 Λ
Ψ

Since Λ does not depend on space and time, it can be taken out from the partial derivative in the first term, such that:

L
′
= ie−ig λ

2 Λ eig λ
2 Λ

Ψγµ ∂
µ
Ψ −me−ig λ

2 Λ eig λ
2 Λ

ΨΨ

= iΨγµ ∂
µ
Ψ −mΨΨ ⇒

L
′
= L

We thus reach again the conclusion that our system, described by the Lagrangian density of Eq. 1.2.1, is invariant under
global SU(3) transformations.

1.2.2 Local gauge invariance

We will now promote the transformation of Eq. 1.2.2 into a local one, by adding a dependence of Λ on space and/or time
i.e. Λ = Λ(x, t) = Λ(xµ):

U = eig λ
2 Λ(xµ ), (1.2.3)

where g is still a constant and Λ this time is a scalar field. Let’s look at how this transformation alters the Lagrangian
density of Eq. 1.2.1 (note that I suppress in the lines below the dependence of Λ on xµ , however the reader should not
misinterpret it as if the dependence is not there!!!):
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L
′
= iΨ

′
γµ ∂

µ
Ψ
′ −mΨ

′
Ψ
′

= ie−igΛ
Ψγµ ∂

µ

(
eigΛ

Ψ

)
−me−igΛ

ΨeigΛ
Ψ

Note that Λ is not a constant but a scalar field i.e. a field whose value depends on space and time. That means that we can
not just take it out from the partial derivative of the first term, but instead the derivative has to act on Λ(xµ):

L
′
= ie−ig λ

2 Λ
Ψγµ

(
∂

µ eig λ
2 Λ

)
Ψ + ie−ig λ

2 Λ
Ψγµ eig λ

2 Λ

(
∂

µ
Ψ

)
−me−ig λ

2 Λ eig λ
2 Λ

ΨΨ

= ie−ig λ
2 Λ

Ψγµ

(
ig

λ

2

)
eig λ

2 Λ

(
∂

µ
Λ

)
Ψ + iΨγµ ∂

µ
Ψ −mΨΨ

=−g
λ

2
Ψγµ

(
∂

µ
Λ

)
Ψ + iΨγµ ∂

µ
Ψ −mΨΨ

=−g
λ

2
Ψγµ

(
∂

µ
Λ

)
Ψ +L 6= L

It is thus clear that the Lagrangian does not remain invariant under this local gauge transformation. The first term in the
equation above is responsible for this, with the underlying reason being that the exponent that describes the transformation
can not be taken out from the partial derivative: ∂ µ has to act on eigΛ(xµ ) since now Λ is not a constant but a scalar field
that depends on xµ .

Let’s look again a bit closer at the responsible term:

∂
µ
Ψ
′
= ∂

µ

(
eig λ

2 Λ
Ψ

)
= eig λ

2 Λ
∂

µ
Ψ + ig

λ

2

(
∂

µ
Λ

)
Ψ = eig λ

2 Λ

[
∂

µ + ig
λ

2

(
∂

µ
Λ

)]
Ψ 6= eig λ

2 Λ
∂

µ
Ψ

The idea is the same as in the case of QED, it is just the term that needs to be absorbed is a bit more complicated since it
involves the λ -matrices. So how about trying to absorb the term

[
∂ µ + ig λ

2

(
∂ µΛ

)]
which is responsible for breaking the

invariance into a new quantity that will be built for the exact purpose of restoring the desired invariance of the Lagrangian
density?

For this reason we introduce the covariant derivative Dmu constructed in a way to have the desired property:

Dµ ′
Ψ
′
= eig λ

2 Λ Dµ
Ψ

The term responsible for breaking the invariance of the Lagrangian density,
[
∂ µ + ig λ

2

(
∂ µΛ

)]
, once again motivates the

form of the covariant derivative:

Dµ = ∂
µ + ig

λ

2
Aµ , (1.2.4)

where Aµ are eight external vector fields. So from now on, we need to replace in the Lagrangian density the term ∂ µΨ

with DµΨ . The latter provides us with the feature of Dµ ′Ψ
′
= eig λ

2 Λ DµΨ we need. Here comes another complication: due
to the fact that Aµ are eight gauge fields, we need to introduce another index to keep track of this:

Dµ ≡ ∂
µ + ig

λ α

2
Aµα , (1.2.5)

We now investigate how the external fields should transform to ensure that local gauge invariance is preserved. For this
we need Dµ ′Ψ

′
= eig λα

2 Λ α

DµΨ . Let us look at the different terms one by one:
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• Let us first look at the term Dµ ′Ψ
′
:

Dµ ′
Ψ
′
=
(

∂
µ + ig

λ α

2
Aµα ′

)(
eig λα

2 Aµα

Ψ

)
=

∂
µ

(
eig λα

2 Λ α

Ψ

)
+ ig

λ α

2
Aµα ′eig λα

2 Λ α

Ψ =

eig λα

2 Λ α
(

∂
µ
Ψ

)
+ ig

λ α

2
eig λα

2 Λ α
(

∂
µ

Λ
α

)
Ψ + ig

λ α

2
Aµα ′eig λα

2 Λ α

Ψ

• Next, we look at the term eig λα

2 Λ α

DµΨ :

eig λα

2 Λ α

Dµ
Ψ = eig λα

2 Λ α
(

∂
µ + ig

λ α

2
Aµα

)
Ψ =

eig λα

2 Λ α
(

∂
µ
Ψ

)
+ igeig λα

2 Λ α λ α

2
Aµα

Ψ

Comparing those two terms, it turns out that the external fields should transform in a rather complicated manner, given
by:

eig λα

2 Λ α

λ
α Aµα = λ

α Aµα ′eig λα

2 Λ α

+λ
α eig λα

2 Λ α
(

∂
µ

Λ
α

)
(1.2.6)

This complicated transformation that the external fields need to obey stems from the fact that, contrary to the U(1) case,
in SU(3) the matrices λ α and the gauge fields Aµα do not commute. In the vocabulary of group theory, this means that
SU(3) is not Abelian.

1.2.3 The interaction term

With the previous requirement we have ensured that local gauge invariance is preserved and we can safely write down the
QCD Lagrangian density of the free quark field:

LQCD = iΨγµ Dµ
Ψ −mΨΨ =

iΨγµ

(
∂

µ + ig
λ α

2
Aµα

)
Ψ −mΨΨ =

iΨγµ ∂
µ
Ψ −mΨΨ −gΨγµ

λ α

2
Aµα

Ψ →

L partial
QCD =Ψ(iγµ ∂

µ −m)Ψ −gΨγµ

λ α

2
Aµ

Ψ (1.2.7)

The first term of Eq. 1.2.7 is the standard Lagrangian density of the free particle i.e. the quark. The second term that was
introduced, involves both the spinors Ψ and Ψ but also the external vector fields Aµα

. This is the interaction term! This
term introduced by the requirement of local gauge invariance, reflects the interactions between the particles (i.e. quarks in
this case) with the external field.
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1.3 The field kinetic term

So far our theory consists of the term that describes the free particle with mass m (i.e. the free quark) and the term that
describes the interaction of the particle with the vector fields (i.e. the interaction term). To complete our theory we need
to include also the term that describes the field itself. This term comes once again from the Proca Lagrangian described in
Section ??:

L =−1
4

Fµν Fµν +
1
2

M2Aµ Aµ , (1.3.1)

where Fµν is the field tensor of the theory. Let us note again that in this equation, M is the mass of the vector fields,
whereas in Eq. 1.2.1 m corresponds to the mass of the particle that feels the field i.e. the quark in this case.

We now apply the transformation of Eq. 1.2.3 in Eq. ??:

L
′
=−1

4
F
′
µν Fµν ′ +

1
2

m2A
′
µ Aµ ′

At this point, I will not repeat the same tedious mathematical steps that we did in Section ??. In addition to the fact that the
procedure is practically the same, the vector fields in QCD have a highly not trivial transformation they need to obey (see
Eq. 1.2.6). This fact adds some additional number of lines of algebraic actions that one needs to follow. Nevertheless, if
one completes all the steps we will once again reach the conclusion that in order for local gauge invariance to be preserved
also for the field term, then the fields need to be massless (i.e. M = 0). So we have eight (since our theory is described by
SU(3) that has eight generators) massless fields: the eight physical gluons!!!

After setting the mass of the vector fields to zero, the term that remains is the one that has the tensor “squared“: i.e.
− 1

4 Fµν Fµν . In the case of QED, where the underlying group was the one of U(1), the tensor was simply given by
Fµν = ∂µ Aν −∂ν Aµ . But this term in QCD, described by SU(3), is not anymore gauge invariant! However we know very
well how to construct such a term in a way that local gauge invariant is not at question: we will use the equation

[Dµ ,Dν ] = igFµν → Fµν =
−i
g
[Dµ ,Dν ]

The advantage is obvious: the field tensor is constructed from the commutator of the covariant derivatives. Remember
that the covariant derivatives were introduced in a way to absorb the terms that were breaking local gauge invariance.
Therefore, preserving local gauge invariance is in that way guaranteed. In what follows, we will derive the form of the
field tensor. For that, it is easier (i.e. it will make the place where different partial derivatives act more clear) if we let the
previous equation act on a spinor field, such that FµνΨ = −i

g [Dµ ,Dν ]Ψ .

−i
g
[Dµ ,Dν ]Ψ =− i

g

(
∂µ + ig

λ α

2
Aα

µ

)(
∂ν + ig

λ β

2
Aβ

ν

)
Ψ +

i
g

(
∂ν + ig

λ β

2
Aβ

ν

)(
∂µ + ig

λ α

2
Aα

µ

)
Ψ =

− i
g

∂µ

(
∂νΨ

)
+

λ α

2
Aα

µ

(
∂νΨ

)
+

λ β

2
Aβ

ν

(
∂µΨ

)
+ ig

λ α

2
Aα

µ

λ β

2
Aβ

νΨ − i
g

∂µ

(
ig

λ β

2
Aβ

ν

)
Ψ

+
i
g

∂ν

(
∂µΨ

)
−λ β

2
Aβ

ν

(
∂µΨ

)
−λ α

2
Aα

µ

(
∂νΨ

)
− ig

λ β

2
Aβ

ν

λ α

2
Aα

µΨ +
i
g

∂ν

(
ig

λ α

2
Aα

µ

)
Ψ =

ig
4

(
λ

α Aα
µ λ

β Aβ

ν −λ
β Aβ

ν λ
α Aα

µ

)
+

1
2

∂µ

(
λ

β Aβ

ν

)
Ψ − 1

2
∂ν

(
λ

α Aα
µ

)
Ψ =

ig
4
[λ α Aα

µ ,λ
β Aβ

ν ]+
1
2

[
λ

β

(
∂µ Aβ

ν

)
−λ

α

(
∂ν Aα

µ

)]
=
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ig
4
[λ α Aα

µ ,λ
β Aβ

ν ]+
1
2

λ
α

(
∂µ Aα

ν −∂ν Aα
µ

)

In the last two lines, the last terms imply using the summation rule for indices with indices α and β . But the λ -matrices
can be considered the same i.e. both their indices run from 1 to 8 at the same time, and thus can factorise. As for the
commutator, the first term of the previous equation, we have to use again the summation rule for indices. We can then pull
out of the commutator the vector fields Aµ and Aν such that:

[λ α Aα
µ ,λ

β Aβ

ν ] = [λ α ,λ β ]Aα
µ Aβ

ν

The commutator is not zero due to the Gell-Mann matrices! The generators of SU(3) respect the following Algebra:

[λ α ,λ β ] = i f αβγ
λ

γ , (1.3.2)

where the variables f αβγ are real numbers, called the structure constants of SU(3).

Let’s now identify the final form of the field tensor (note that we will interchange the indices α , β and γ compared to what
we followed before to make the final expression more convenient in writing; there is no essential change with this action):

Fµν =
ig
4
[λ β ,λ γ ]Aβ

µ Aγ

ν +
1
2

λ
α

(
∂µ Aα

ν −∂ν Aα
µ

)
=

ig
4

i f αβγ
λ

α Aβ

µ Aγ

ν +
1
2

λ
α

(
∂µ Aα

ν −∂ν Aα
µ

)
⇒

Fµν =
1
2

λ
α

(
∂µ Aα

ν −∂ν Aα
µ

)
− g

4
f αβγ

λ
α Aβ

µ Aγ

ν (1.3.3)

Once again, we can pull out the λ α matrices so that the field tensor can take the following form:

Fµν = λ
α Fα

µν , (1.3.4)

where Fα
µν = 1

2

(
∂µ Aα

ν −∂ν Aα
µ

)
− g

4 f αβγ Aβ

µ Aγ

ν .

We are not done since the final QCD Lagrangian density had the field tensor “squared“. It is enough to see what kind of
complications this brings by simply looking at the “square“ of the Fα

µν part:

Fα
µν Fµνα =

[1
2

(
∂µ Aα

ν −∂ν Aα
µ

)
− g

4
f αβγ Aβ

µ Aγ

ν

][1
2

(
∂

µ Aνα −∂
ν Aµα

)
− g

4
f αδε Aµδ Aνε

]
=

1
4

(
∂µ Aα

ν −∂ν Aα
µ

)(
∂

µ Aνα −∂
ν Aµα

)

−g
8

f αβγ Aβ

µ Aγ

ν

(
∂µ Aα

ν −∂ν Aα
µ

)

−g
8

f αδε

(
∂µ Aα

ν −∂ν Aα
µ

)
Aµδ Aνε

g2

16
f αβγ f αδε Aβ

µ Aγ

ν Aµδ Aνε

Let us try to understand what each term brings:

• 1
4

(
∂µ Aα

ν − ∂ν Aα
µ

)(
∂ µ Aνα − ∂ ν Aµα

)
: This first term of the previous equation is the standard term for the field we

encountered also in QED (modulo the factor 1/4 which is not relevant).
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• g
8 f αβγ Aβ

µ Aγ

ν

(
∂µ Aα

ν − ∂ν Aα
µ

)
: This term contains “interactions“ between three vector fields e.g. Aβ

µ Aγ

ν ∂µ Aα
ν . These

terms reveal one of the main differences between QED and QCD which have to do with vertices involving three
gluons.

• g
8 f αδε

(
∂µ Aα

ν −∂ν Aα
µ

)
Aµδ Aνε : Similarly to the term before, also this term contains “interactions“ between three vector

fields e.g. ∂µ Aα
ν Aµδ Aνε . These terms describe again vertices that involve three gluons.

• g2

16 f αβγ f αδε Aβ

µ Aγ

ν Aµδ Aνε : This term clearly involves “interactions“ between four vector fields and describe vertices
that involve four gluons.

These last elements, which are characteristic of QCD are shown in fig. 1.1.

(a) (b)

Fig. 1.1: One of the main characteristic QCD feature: the self coupling of the gauge bosons of the theory originating from its non-Abelian
nature i.e. the three and four gluon vertices.

1.4 Some comments

At this stage it is once again essential to take a break and reflect on a few things. Let me guide you through with the
following comments:

• As in the case of QED, also in QCD, we acted on the Dirac Lagrangian of the free particle with a transformation. The
underlying group that describes the relevant transformations in QCD is not as simple as U(1). These transformations
are now described by 3×3 matrices, described by the generators of the SU(3) group.

But how do we act on the eigenfunction Ψ with such a complicated transformation that obeys the properties and rules
of the SU(3) group? The answer is that we have to make Ψ a bit more complicated as well: the eigenfunction needs to
have this time three additional elements:

Ψ =
(

ΨR,ΨB,ΨG

)
(1.4.1)

where each component of the new array corresponds to the new quantum number associated with the strong interaction
i.e. the colour: ΨR for red, ΨB for blue and ΨG for green.

Remember though that that Ψ in the Dirac equations was a 4–component vector representing two particles with spin
±1/2 and two antiparticles with similar as before spin orientation of ±1/2. That means that this new 3–component
spinor comes on top of the existing four components! These three components are different colour charges of each
element of the 4–component Dirac spinor!!! An extra dimension on the existing spinor, but this time explicitly for
quarks.
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• A few words about the “charge“ and its nature in QED and in QCD. In QED the word “charge“ was associated to the
electric charge. It had two possible values±1: a positive and a negative charge always an integer multiple of the charge
of the electron.

In QCD on the other had, the word “charge“ is associated to the colour charge. We have seen that we have three charges:
red, blue and green. Note that as in the case of QED, also in QCD, each of these charges have two possible values: R
and R, B and B, G and G.

Overall, it looks as if QCD containes three times the QED fundamental structure. In the language of group theory,
people say that the maximum commuting subgroup of SU(3) is U(1)×U(1)×U(1).

• Each quark has a colour chosen between the three available i.e. R, B and G. Each antiquark has an anticolour chosen
between the three available i.e. R, B and G. Gluons have one colour and one anticolour.

The basis vectors in colour space are

C1 = |R〉=




1
0
0




C2 = |B〉=




0
1
0




C3 = |G〉=




0
0
1




Their Hermitian conjugates are:

C†
1 = 〈R|=

(
1 0 0

)

C†
2 = 〈B|=

(
0 1 0

)

C†
3 = 〈G|=

(
0 0 1

)

• There are eight physical gauge bosons in QCD, as expected by the fact that the underlying group that describes the
strong interactions is SU(3) that has eight generators. Each gluon contains one colour and one anticolour. The physical
states are written as follows:

|1〉= 1√
2

(
RB+BR

)
|2〉= −i√

2

(
RB−BR

)

|3〉= 1√
2

(
RR−BB

)
|4〉= 1√

2

(
RG+GR

)

|5〉= −i√
2

(
RG−GR

)
|6〉= 1√

2

(
BG+GB

)

|7〉= −i√
2

(
BG−GB

)
|8〉= 1√

6

(
RR+BB−2GG

)

• The SU(3) transformation that is applied is, as we have seen, of the form U = eig λ
2 Λ . The matrices λ are all 3× 3

matrices also known as Gell-Mann matrices with the form:
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0 1 0
1 0 0
0 0 0




︸ ︷︷ ︸
λ1




0 −i 0
i 0 0
0 0 0




︸ ︷︷ ︸
λ2




1 0 0
0 −1 0
0 0 0




︸ ︷︷ ︸
λ3




0 0 1
0 0 0
1 0 0




︸ ︷︷ ︸
λ4




0 0 −i
0 0 0
i 0 0




︸ ︷︷ ︸
λ5




0 0 0
0 0 1
0 1 0




︸ ︷︷ ︸
λ6




0 0 0
0 0 −i
0 i 0




︸ ︷︷ ︸
λ7

1√
3




1 0 0
0 1 0
0 0 −2




︸ ︷︷ ︸
λ8

• There are, as we have seen, eight physical gluon states. These states are in fact reflected in the Gell-Mann matrices if
one writes the general form of the matrix as




RR RB RG
BR BB BG
GR GB GG




The Gell-Mann matrices have the colours of each gluon state embedded in them!

• Why is the underline group of QCD the one of SU(3) and not the one of U(3)? After all, the generators of U(3) are
also 3×3 matrices. The reason is that in that case there would be a ninth gluon whose form would be

|9〉= 1√
3

(
RR+BB+GG

)

Note that this is a colour singlet state. Remember that all naturally observed particles are in a colour singlet state and
thus the ninth gluon would qualify as one i.e. we would be able to see gluons flying free in nature!!! Since this is not
observed, then this means that this gluon state does not exist, it is not physical!

• We have seen in Section 1.3 how the fact that SU(3) is a non-Abelian group leads to additional terms in the QCD
Lagrangian density revealed by the introduction of the field kinetic term. These three and four gluon vertices highlight
the self-coupling nature of the gauge bosons of QCD.

1.5 QCD processes and Feynman diagrams

In this section we are going to review some basic QCD processes. These processes involve interactions between particles
that have obviously the ability to feel the strong force i.e. the quarks and gluons. But the quarks and the gluons are not
seen free in nature. As a result the processes we are about to briefly review happen but are not directly seen in experiments.
They are only observed indirectly via e.g. the production of spray of hadrons within a very narrow cone usually referred
to as jet production. Nevertheless, understanding and measuring such processes to various measurements is very critical:
it is obviously critical to measure cross-sections of various QCD processes if you started with this aim but that’s not the
end of the story. In accelerators that offer collisions between particles formed by partonic1 constituents and in particular
at very high energies these QCD processes are the dominant contribution in searches of particle physics experiments. A
characteristic example of such case is the Large Hadron Collider where protons are collided against protons with the main
goal of the experimental physics program of three out of the four major experiments (i.e. ATLAS, CMS and LHCb) being
the exploration of the standard model within its electroweak sector. But more on this in Chapters ?? and ??.

At this point let me remind you that in Chapter ??, we have seen what is the way one can calculate the cross-section of a
process. We have to calculate the so-called matrix element, Mi f , that describes the transition from the initial to the final
state. The calculation of the matrix element is facilitated by the so-called Feynman diagrams and the corresponding rules.
Below, we summarise the basic Feynman rules for QCD for completeness and we then take a look at some of the basic

1 This is the first time the term “parton“ appears in these lecture notes. Get used to it since it will be used from now on a number of times.
When writing parton one refers to the quarks and the gluons of a composite particle.
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QCD processes. Note again that the calculation of the matrix element of a process using the Feynman rules is beyond the
scope of this course, this is why there is no such attempt here.

1.5.1 Feynman rules for QCD processes

Let’s now review how these general rules described before change in the case of a strong interaction.

Let’s now review how these general rules described before change in the case of an electromagnetic or weak interaction.

• Labeling: We label every external line with the ingoing and outgoing momenta P1,..., Pn, adding also an arrow
indicating whether a particle is approaching or moving away from the vertex. If the diagram includes antiparticles, we
still label them as particles but with the reverse direction of the arrow. We then label the 4-momenta for all internal
lines q1,..., qj and we give an arbitrary direction to the relevant arrow.

• External lines: Each external line contribute the following factors:

Incoming quark→ us · c

Outgoing quark→ us · c†

Incoming anti-quark→ vs · c†

Outgoing anti-quark→ v · c

Incoming gluon→ εµ ·aα

Outgoing gluon→ ε
∗
µ ·aα∗

where u and v are the relevant Dirac spinors. In the previous c are the matrices that represent the colour:




1
0
0


 for R,




0
1
0


 for G,




0
0
1


 for B

and a are the 8-element column matrices, one for each gluon state (i.e. α goes from 1 to 8):

|1〉 ≡




1
0
0
0
0
0
0
0




, |2〉 ≡




0
1
0
0
0
0
0
0




, |3〉 ≡




0
0
1
0
0
0
0
0




, |4〉 ≡




0
0
0
1
0
0
0
0




, |5〉 ≡




0
0
0
0
1
0
0
0




, |6〉 ≡




0
0
0
0
0
1
0
0




, |7〉 ≡




0
0
0
0
0
0
1
0




, |8〉 ≡




0
0
0
0
0
0
0
1




• Vertices: For each vertex we note down in the diagram the coupling constant factor ≈ gs. This factor is connected to
the coupling constant via the equation

gs =
√

4παs

For a quark-gluon vertex (see fig. 1.2) the factor is of the form:
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−igs

2
λ

α
γ

µ

,

where the parameters λ α are the Gell-Man λ -matrices of SU(3).

For a 3-gluon vertex (see fig. 1.2) the factor is of the form:

−gs f αβγ

[
gµν(k1−k2)ρ +gνρ(k2−k3)µ +gρµ(k3−k1)ν

]

,

where the factors f αβγ are the structure constants of SU(3) and ki are the 4-momenta of each internal line (with
i = 1,2,3).

Finally, for a 4-gluon vertex (see fig. 1.2) the factor is of the form:

−ig2
s

[
f αβη f γδη(gµσ gνρ −gµρ gνσ )+ f αδη f βγη(gµν gσρ −gµσ gνρ)+ f αγη f δβη(gµρ gνσ −gµν gσρ)

]

• Propagators: For each internal line, we give a factor of

q−q :
i(/q+m)

q2−m2

gluon :−igµν δ
αβ

where /q≡ γν qν .

• δ -functions and integration: The remaining steps are identical as in the general rules described before.

Figure 1.2 presents the lines for the basic particles and anti-particles but also the propagators for the strong interactions.

Fig. 1.2: The most characteristic lines for the Feynman diagrams in strong interactions.



1.6 Evidence of colour 13

1.5.2 QCD processes

There are three main categories of basic QCD processes that we will review. In all cases what is important to note is that
colour needs to be conserved on every vertex. The processes consist of:

• interactions between quarks where only one colour is involved (e.g. fig. 1.3–a),

• interactions between quarks where two colours are involved, but there is no colour exchange at the vertex (e.g. fig. 1.3–
b)

• interactions between quarks where two colours are involved with colour exchange at the vertex (e.g. fig. 1.3–c)

g (RR, GG, BB)

R R

R R

R R

G G

g (RR, GG, BB)

R G

G R

g (RG)

(a) (b)

(c)

Fig. 1.3: Basic QCD processes with an illustration of how colour is conserved at the vertices.

In fig. 1.3–a the interaction involves two red quarks. This interaction is facilitated with the exchange of any of the colour-
less gluon states among the eight we have introduced i.e. |3〉 or |8〉.

In fig. 1.3–b the interaction takes place between a red quark and a green quark. It can be seen that colour is not altered
between the incoming and the outgoing partons i.e. left and right relative to each vertex. As a result the transition is again
facilitated with the exchange of any of the colourless gluon states among the eight we have introduced i.e. |3〉 or |8〉.

Finally, in fig. 1.3–c the interaction takes place between a red quark and a green quark similarly as in the previous case.
However, this time the process involves a change of colour at each vertex. If one focuses on the bottom vertex, then the
gluon needs to have such a colour combination to compensate for the incoming red and the outgoing green colours. As a
result the gluon needs to have the RG combination. Similarly in the upper vertex, the gluon needs to carry such a colour
combination to compensate for the incoming green and the outgoing red colours. That means that the needed combination
is the GR. This means that the transition is facilitated with the exchange of any of the |4〉 or |5〉 gluon states among the
eight we have introduced.

1.6 Evidence of colour

So far we have discussed about colour as a new quantum number that characterises quarks and gluons. We have not
discussed how the existence of colour was established. To do this, we need to go back to a QED process we should be
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by now familiar with i.e. the electron-positron scattering described by the interaction e−+ e+ → µ−+ µ+ and by the
diagram 1.4.

Fig. 1.4: The diagram describing the electron-positron scattering into a pair of muons e−+ e+→ µ−+µ+.

Similarly to this figure, one can as well create a pair of quarks i.e. more precise a q− q pair that for a brief moment fly
apart until the are separated by a distance of the size of the hadron (≈ 10−15 m). The relevant diagram for this process
is given in fig. 1.5. Beyond this distance it is energetically favourable to form new q−q pairs that eventually lead to the
creation of hadrons. It turns out though that the initial q−q pair leaves a footprint in the final state hadron production since
these hadrons usually emerge as two back-to-back sprays, known as jets. In some cases it happens that a gluon emerges
with a substantial fraction of the initial energy. This gluon then fragments, creating a third jet, a topology known as a
three-jet event. Examples of a two- and three-jet events are shown in the left and right plot of fig. 1.6, respectively.

Fig. 1.5: The diagram describing the electron-positron scattering into a pair of quarks e−+ e+→ q+q.

jet

jet

jete+

e−

Fig. 1.6: A typical two- and three-jet topology in the left and right plot, respectively.
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At the Large Hadron Collider (LHC), where the energy compared to the previous colliders has increased significantly i.e.
by orders of magnitude, we are able to detect event topologies that involve more than three jets. That implies that more
than one gluon carries enough energy, fragment and produce additional jets. An example of a five jet event topology from
the ATLAS experiment is given in fig. 1.7

Fig. 1.7: A typical five-jet topology as recorded by the ATLAS experiment at the LHC.

In terms of the incident energy E of the electron (positron) and the scattering angle θ between the electron and the quark,
the squared average matrix element is given by

〈|Mi f |2〉= Q2g4
e

[
1+
(m

E

)2
+
(M

E

)2
+
(

1−
(m

E

)2
)
·
(

1−
(M

E

)2
)

cos2(θ)
]

It is obvious that there is a threshold for this interaction to occur: E ≥ M, below which the process is kinematically
forbidden. The final integrated cross-section for the case where E > M >> m is

σ =
π

3

[Qα

E

]2
(1.6.1)

As the energy increases, new quarks are allowed to be created e.g. at about 1.5 GeV the charm quark.

Through the comparison between the cross-sections for the processes e−+ e+→ q+q and e−+ e+→ µ−+µ+, one can
probe the number of colours via the ratio

R =
σ(e−+ e+→ hadrons)

σ(e−+ e+→ µ−+µ+)
(1.6.2)

Since the numerator includes all possible q−q pairs, Eq. 1.6.1 gives:

R(E) = 3∑Q2
i ,
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Fig. 1.8: The energy evolution of R as measured in experiments.

where the sum is over all quark flavours with threshold below E and the factor 3 in front of the summation reflects the fact
that there are three colours for each flavour. For u, d, and s quarks one expects to have:

R = 3
[(2

3

)2
+
(−1

3

)2
+
(−1

3

)2]
= 2

Above the threshold for the c-quark: R= 2+3(2/3)2 = 10/3, above the threshold for the b-qaurk R= 10/3+3(−1/3)2 =
11/3. One expects a staircase evolution, depending on the threshold and certainly something that reflects the existence of
three colours. Figure 1.8 present the energy evolution of R as measured in experiments.

1.7 The strong coupling strength

We have seen in Chapter ?? how an electron is surrounded by a cloud of virtual photons and e+e− pairs continuously pop
in and out of existence. This charge screening gives rise to the notion of an effective charge e(r) that becomes smaller
with larger distance. One says that the β -function is positive in QED:

β (r)≡−de(r)
dlnr

Likewise, the QCD vacuum consists of virtual qq̄ pairs, and if this would be all, the charge screening mechanism would
be the same as in QED, with a positive β -function. However, due to the gluon self–coupling, the vacuum will also
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be filled with virtual gluon pairs as is indicated in fig. 1.9. Because the gluon cloud carries colour charge, it turns out
that the effective charge becomes larger with larger distance. Hence, the beta-function is negative. This effect is called
antiscreening.2 It turns out that the negative contribution wins over the positive contribution, so that the QCD beta function
is negative, and the effective strong coupling becomes small at short distances.

Fig. 1.9: The photon vacuum polarisation (left) generates a charge screening effect, making α smaller at larger distances.

Charge screening in QED and antiscreening QCD leads to the concept of a running coupling. In QED we have seen that
the coupling becomes large at (very) short distance but its effect is small. In QCD, the antiscreening effect causes the
strong coupling to become small at short distance (large momentum transfer). This causes the quarks inside hadrons to
behave more or less as free particles, when probed at large enough energies. This property of the strong interaction is called
asymptotic freedom. Asymptotic freedom allows us to use perturbation theory, and by this arrive at quantitative predictions
for hard scattering cross sections in hadronic interactions. On the other hand, at increasing distance the coupling becomes
so strong that it is impossible to isolate a quark from a hadron (it becomes cheaper to create a q uark-antiquark pair). This
mechanism is called confinement. Confinement is verified in Lattice QCD calculations but, since it is non-perturbative,
not mathematically proven from first principles.

The discovery of asymptotic freedom (1973) was a major breakthrough for QCD as the theory of the strong interaction, and
was awarded the Nobel prize in 2004 to Gross, Politzer and Wilczek. 3 To get a more quantitative insight into asymptotic
freedom, we will now first discuss the higher order corrections and the running coupling in QED.

Let’s now turn explicitly to the strong coupling constant αs. Note that αs is large, compared to the electromagnetic
coupling constant α = 1/137: strong interactions are indeed strong. The running is also strong, compared to a few percent
effect at large Q2 in QED. The running of αs is beautifully confirmed by experiment. For Q2 ∼ 1, αs ∼ 1 and perturbative
QCD breaks down. Usually Q2 ∼ 5–10 GeV2 is considered to be reasonable lower bound for perturbation theory to apply.

αs(Q2) =
αs(µ

2)

1+β0 αs(µ2) ln(Q2/µ2)
with β0 =

11Nc−2n f

12π

Because β0 > 0 we find that αs→ 0 for Q2→∞. This vanishing coupling is called asymptotic freedom and is responsible
for the fact that quarks behave like free particles at short distances (large momentum transfers) as is observed in deep
inelastic scattering experiments. The expression for the running coupling constant can be simplified when we define the
QCD scale parameter Λ as follows:

1
αs(Q2)

=
1

αs(µ2)
+β0 ln

(
Q2

µ2

)
≡ β0 ln

(
Q2

Λ 2

)

The parameter Λ is thus equal to the scale where the first term on the right-hand side vanishes, that is, the scale where
αs(µ

2) becomes infinite. Now we may write

2 Antiscreening follows from the calculation of vacuum polarisation in QCD, which is non-trivial and beyond the scope of these lectures;
unfortunately it is not so easy to intuitively understand the antiscreening effect.
3 The Nobel lecture of Frank Wilczek can be downloaded from http://www.nobelprize.org and makes highly recommended reading,
both as an exposé of the basic ideas, and as a record of the hard struggle.
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αs(Q2) =
1

β0 ln(Q2/Λ 2)

Experimentally, the value of Λ is found to be about 300 MeV, but the scale parameter is nowadays out of fashion because
it cannot be defined unambiguously beyond 1-loop order. Instead, it is now common practise to not quote a value for Λ ,
but a value for αs at the mass of the Z. This is unambiguous at all orders. At Q2 values close to Λ , the coupling constant
becomes large and perturbative QCD breaks down.

1.7.1 Numerical results of αs

Beside the quark masses, the only free parameter in the QCD Lagrangian is the strong coupling constant αs. The coupling
constant in itself is not a physical observable, but rather a quantity defined in the context of perturbation theory, which
enters predictions for experimentally measurable observables, such as R we have encountered in Section ??.

Many experimental observables are used to determine αs. The simplest observables in QCD are those that do not involve
initial-state hadrons and that are fully inclusive with respect to details of the final state. One example is the total cross
section for e+e→hadrons at center-of-mass energy Q, for which one can write:

R =
σ(e−+ e+→ hadrons)

σ(e−+ e+→ µ−+µ+)
= REW (Q)

[
1+δQCD(Q)

]
(1.7.1)

where REW (Q) is the purely electroweak prediction for the ratio and δQCD(Q) is thecorrection due to QCD effects. To
keep the discussion simple, we can restrict our attention to energies Q << MZ , where the process is dominated by photon
exchange (REW = 3∑q e2

q, neglecting finite-quark-mass corrections, where the eq are the electric charges of the quarks):

δQCD(Q) =
∞

∑
n=1

cn

[
αs(Q2)

π

]n
+O

(
Λ 4

Q4

)

Considerations in such determinations include:

• The observable?s sensitivity to ?s as compared to the experimental precision. For example, for the e+e? cross section
to hadrons, QCD effects are only a small correction, since the perturbative series starts at order α0

s ; 3-jet production or
event shapes in e+e? annihilations are directly sensitive to αs since they start at order αs; the hadronic decay width of
heavy quarkonia, Γ (ϒ → hadrons), is very sensitive to αs since its leading order term is ≈ α3

s .

• The accuracy of the perturbative prediction, or equivalently of the relation between αs and the value of the observable.
The minimal requirement is generally considered to be an NLO prediction. Some observables are predicted to NNLO
(many inclusive observables, 3-jet rates and event shapes in e+e? collisions) or even N3LO (e+e− hadronic cross section
and the branching fraction to hadrons). In certain cases, fixed-order predictions are supplemented with resummation.

• The size of uncontrolled non-perturbative effects. Sufficiently inclusive quantities, like the e+e? cross section to
hadrons, have small non-perturbative uncertainties ≈Λ/Q4.

1.7.1.1 Results from deep inelastic scattering (DIS)

New measurements of αs from inclusive jet cross sections in γp interactions at HERA are available from the ZEUS
collaboration. Jet cross sections and values of αs are presented as a function of the jet transverse energy, E jet

T , for jets
with E jet

T > 17 GeV. The resulting values of αs(E
jet
T ), based on NLO QCD calculations, are in good agreement with the

running of αs, as expected by QCD, and average to:
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αs(MZ0) = 0.1224 ±0.0001 (stat.)
+0.0022
−0.0019 (exp.)
+0.0054
−0.0042 (theo.), (1.7.2)

if evolved to the energy scale of MZ0 using the QCD β function in two-loop approximation. Averaging all measurements
of αs from jet production at HERA results in:

αs(MZ0) = 0.120 ±0.002 (exp.)
±0.004 (theo.), (1.7.3)

A new global analysis using all available precision data of deep inelastic and related hard scattering processes includes
recent measurements of structure functions from HERA and of the inclusive jet cross sections at the Tevatron. After
analysis of experimental and theoretical uncertainties the authors obtain

αs(MZ0) = 0.1165 ±0.002 (exp.)
±0.003 (theo.) , (1.7.4)

in NLO QCD. Using NNLO QCD calculations wherever available, the same fit gives:

αs(MZ0) = 0.1153 ±0.002 (exp.)
±0.003 (theo.). (1.7.5)

The latter result, however, does not relate to complete NNLO since predictions of jet production cross sections and parts
of the DIS structure functions are only available in NLO so far.

QCD   (   ) = 0.1184 ± 0.0007s Z

0.1

0.2

0.3

0.4

0.5

s (Q)

1 10 100Q [GeV]

Heavy Quarkonia
e+e–  Annihilation
Deep Inelastic Scattering

July 2009

Fig. 1.10: The Q dependence of the strong coupling constant αs.

The wealth of available results provides a rather precise and stable world average value of αs(MZ), as well as a clear
signature and proof of the energy dependence of αs, in full agreement with the QCD prediction of asymptotic freedom.
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This is demonstrated in fig. 1.10, where results of αs(Q) obtained at discrete energy scales Q, now also including those
based just on NLO QCD, are summarized. Thanks to the results from the Tevatron and from the LHC, the energy scales
at which αs is determined now extend to several hundred GeV up to 1 TeV.

1.8 Deep inelastic scattering

One way to probe the internal structure of matter is to bombard it with high energy particles, and then see what happens.
For instance, in the Rutherford experiment (1911), alpha particles (helium nuclei) were deflected on a thin gold foil.
Rutherford found that the deflections followed his famous inverse sin4(θ/2) law, and concluded that the alpha particles
were scattered from electrically charged point-like nuclei inside the gold atoms. Experiments using probes of higher
energy later revealed that the point-like scattering distributions were damped by form factors which are essentially the
Fourier transform of a charge distribution. This clearly showed that nuclei are not point-like and indeed, after the discovery
of the neutron by Chadwick (1932), it became clear that nuclei are bound states of protons and neutrons. Also the protons
and neutrons were found not to be point-like and a real breakthrough came with a series of deep inelastic scattering
experiments in the 1960’s at SLAC, where electron beams were scattered on proton targets at energies of about 20 GeV,
large enough to reveal the proton’s internal structure. The SLAC experiments showed that the electrons were scattering
off quasi-free point-like constituents inside the proton which were soon identified with quarks. This was the first time
that quarks were shown to be dynamical entities, instead of bookkeeping devices to classify the hadrons (Gell-Mann’s
eightfold way). The Nobel prize was awarded in 1990 for this spectacular discovery.

The pioneering SLAC experiments were followed by a series of other fixed-target experiments4 with larger energies at
CERN (Geneva) and at Fermilab (Chicago), using electrons, muons, neutrino’s and anti-neutrinos as probes. The largest
centre-of-mass energies were reached at the HERA collider in Hamburg (1992–2007) with counter rotating beams of
27 GeV electrons and 800 GeV protons. Deep inelastic scattering (DIS) data are very important since they provide detailed
information on the momentum distributions of the partons (quarks and gluons) inside the proton. Parton distributions are
crucial ingredients in theoretical predictions of scattering cross-sections at hadron colliders like the Tevatron (Fermilab,
proton-antiproton at 2 TeV) or the LHC (CERN, proton-proton at 5–14 TeV). The reason for this is simple: the colliding
(anti)protons have a fixed centre-of-mass energy but not the colliding partons, since their momenta are distributed inside
the (anti)proton. Clearly one has to fold-in this momentum spread to compare theoretical predictions with the data. Apart
from providing parton distributions, DIS is also an important testing ground for perturbative QCD, as we will see.

1.8.1 The parton model

When a highly energetic virtual photon interacts with the proton, it probes its constituents i.e. the quarks and the gluons.
However since the gluons do not interact with the photon, we can safely say that we mainly probe the quarks. Now, there
are more than one type of such particles inside the proton. Each such quark, can carry a different fraction of the proton’s
momentum and energy. This is schematically depicted in fig. 1.11.

We now introduce the parton distribution function fi(x) which gives the probability that the struck parton carries a fraction
x of the proton’s momentum P. All the fractions have to add up to unity such that:

∑
i

∫
x fi(x)dx = 1,

where the index i includes also the patrons that do not interact with the virtual photon. Note that in a dynamical picture,
inside the proton there are also gluons from the QCD splitting q→ qg and quark-antiquark pairs from the splitting g→ qq̄.
What is true is that there is a net excess of three quarks that carry the quantum numbers of the proton.A schematic picture
of the QCD proton structure is given in fig. 1.12. The uud that carry the quantum numbers of the proton enter the diagram

4 In a fixed-target experiment, beam particles interact with a stationary target in the laboratory, and the debris is recorded in a downstream
detector. In a collider experiment, on the other hand, counter-rotating beams collide in the centre of a detector, which is built around the
interaction region.
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Fig. 1.11: The interaction of a highly energetic virtual photon with the quark of the initial proton that carries a fraction x of its momentum.

on the left, and they are called the valence quarks. This corresponds to a low-resolution 3-quark picture of the proton
that only accounts for its quantum numbers. At the right of the diagram we see a high-resolution picture (at large Q2)
of the proton where the valence quarks are dressed with gluons and a sea of qq̄ pairs. Note that the valence quarks can
zig-zag through the diagram but will never disappear so that the proton quantum numbers are the same in both the low-
and high-resolution pictures.
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Fig. 1.12: The dynamical picture of the proton, with the valence and sea quarks and the gluons.
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1.8.2 Probing the quark and gluon distributions in protons

As indicated before, the proton has a more dynamical picture than the static one where only the valence quarks, that carry
the quantum numbers, are prominent. There are not only gluons but also what is usually referred to as sea quarks. We
will focus on the three lightest quark flavours i.e. u,d,s since the remaining heavy flavour quarks (i.e. c,b, t) are subject
to threshold effects for their production in the sea. Under these considerations, the F2 structure function, defined as the
charge weighted sum of the parton momentum densities x fi(x), can be written as:

1
x

F p
2 (x) =

(2
3

)2[
up(x)+up(x)

]
+
(1

3

)2[
dp(x)+d

p
(x)
]
+
(1

3

)2[
sp(x)+ sp(x)

]
,

where e.g. u(x) and u(x) are the probability distributions of u and u quarks within the proton. This structure function has
obviously six unknown quantities. To overcome this one relies on the fact that the proton and the neutron are members of
an isospin doublet and thus their quark content is related. The inelastic neutron structure functions can be constrained by
scattering of electrons off a deuterium target:

1
x

Fn
2 (x) =

(2
3

)2[
un(x)+un(x)

]
+
(1

3

)2[
dn(x)+d

n
(x)
]
+
(1

3

)2[
sn(x)+ sn(x)

]
,

The quark contents between the proton and the neutron are the same if one reverses u for d (and vice-versa). This means
that:

up(x) = dn(x)≡ u(x)

dp(x) = un(x)≡ d(x)

sp(x) = sn(x)≡ s(x)

Another constrain for the currently unknown quantities comes from the fact that the quantum numbers of the proton are
carried by the valence quarks. In addition, if we consider the dynamical picture of the proton, schematically introduced in
fig. 1.12, one can assume that the sea quarks which are radiated by the valence quarks occur to first order at the same rate
and have similar momentum distributions (please note that we still consider the three lightest flavours). It is convenient to
define the valence and the sea quark distributions as:

uv = u− ū, dv = d− d̄, sv = s− s̄ = 0, · · ·
us = 2 ū, ds = 2 d̄, ss = 2 s̄, · · ·

so that u+ ū = uv +us, etc.

Summing over all contributing partons, we should recover the quantum number of the proton and thus we have the
following counting rules:

∫ 1

0
uv(x)dx = 2 and

∫ 1

0
dv(x)dx = 1

As a result the proton and neutron structure functions can be written as:

1
x

F p
2 =

1
9
[
4uv +dv

]
+

4
3

S

1
x

Fn
2 =

1
9
[
uv +4dv

]
+

4
3

S,
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where S(x) is the sea quark distribution (us(x)≈ us(x)≈ ds(x)≈ ds(x)≈ ss(x)≈ ss(x)≡ S(x). When studying the small
momentum part of the proton (i.e. at x≈ 0) one probes the low momentum sea quarks. On the other side of the spectrum,
at high momenta (i.e. at x ≈ 1), the high momentum valence quarks leave little unoccupied room for the sea quarks and
thus one probes the valence quarks mainly. This is experimentally illustrated in fig. 1.13, where obviously depending on
the value of x one can probe either the valence and sea quarks (i.e. at high values of x) or the sea quarks (i.e. at low values
of x).

Fig. 1.13: The proton structure function as measured experimentally as a function of Bjorken-x. At different values of x one probes either the
sea or the valence and sea quarks.

Finally integrating the quark distributions obtained from deep inelastic charged lepton and neutrino scattering gives

∑
i

∫ 1

0
x fi(x)dx≈ 0.5

The missing momentum turns out that is carried by gluons. Introducing a gluon momentum distribution xg(x), the correct
momentum sum rule is

∑
i

∫ 1

0
x fi(x)dx+

∫ 1

0
xg(x)dx = 1


