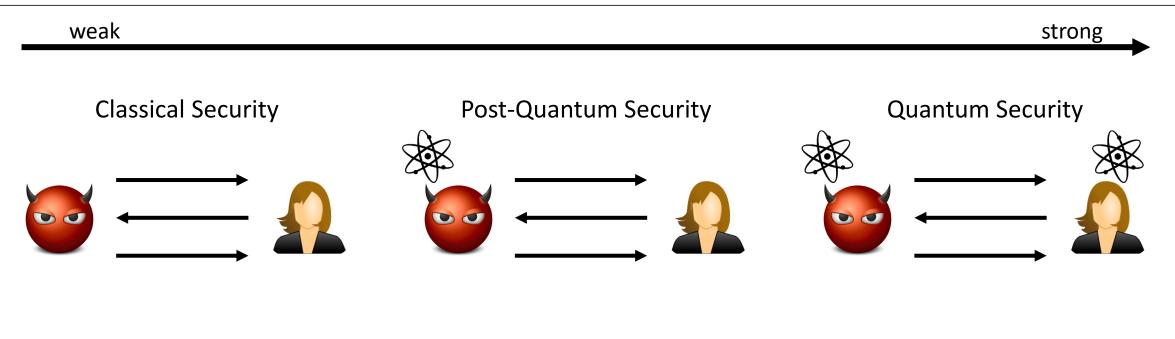
On Quantum Ciphertext Indistinguishability, Recoverability, and OAEP

Juliane Krämer and Patrick Struck

The Setting



 Only classical access to oracles

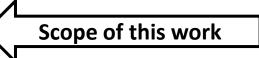
- Quantum access to "offline" oracles
- Classical access to "online" oracles

- Quantum access to "offline" oracles
- Quantum access to "online" oracles

Quantum Security Notions for PKE

• 3 different security notions:

- 1. INDqCCA [BZ13]
 - Classical challenges and quantum access to decryption
 - Left-or-Right
 - Always applicable
- 2. qINDqCPA [CEV20]
 - 1. Quantum challenges
 - 2. Real-or-Random
 - 3. Always applicable
- 3. qINDqCPA [GKS21]
 - 1. Quantum challenges
 - 2. Left-or-Right
 - 3. Not always applicable

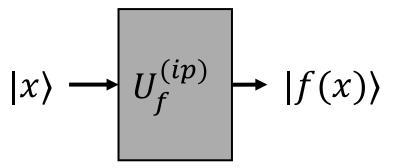


[BZ13] Boneh, Zhandry. Secure signatures and chosen ciphertext security in a quantum computing world. CRYPTO 2013
 [CEV20] Chevalier, Ebrahimi, Vu. On security notion for encryption in a quantum world. ePrint 2020
 [GKS21] Gagliardoni, Krämer, Struck. Quantum indistinguishability for public key encryption. PQCrypto 2021

Quantum Operators

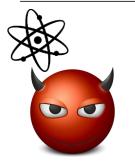
$$\begin{array}{c} |x\rangle \longrightarrow \\ |y\rangle \longrightarrow \end{array} \begin{array}{c} U_{f}^{\oplus} \\ \downarrow y \oplus f(x) \end{array}$$

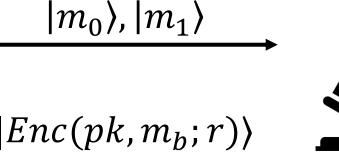
- XOR operator
 - Realisable for any *f* [NC16]
 - Creates entanglement



- In-place operator [KKVB02]
 - Realisable only for reversible *f*
 - Not always efficiently realisable

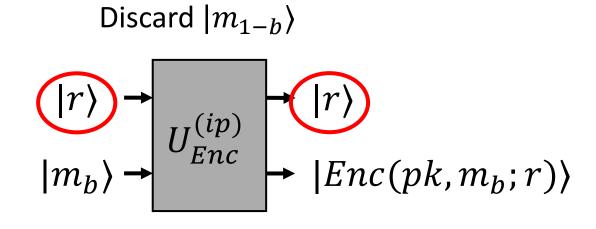
The qINDqCPA Security Notion [GKS21]





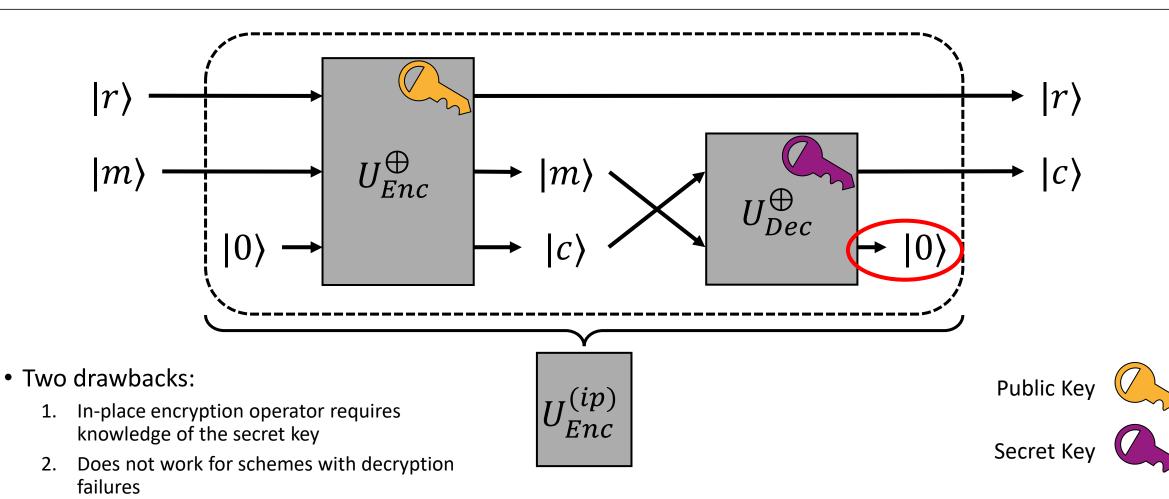
- Randomness is classical, hence unentangled
 - Challenger can simply withhold it
- Question: can we (efficiently) build $U_{Enc}^{(ip)}$?

 $b \leftarrow_{\$} \{0,1\}$

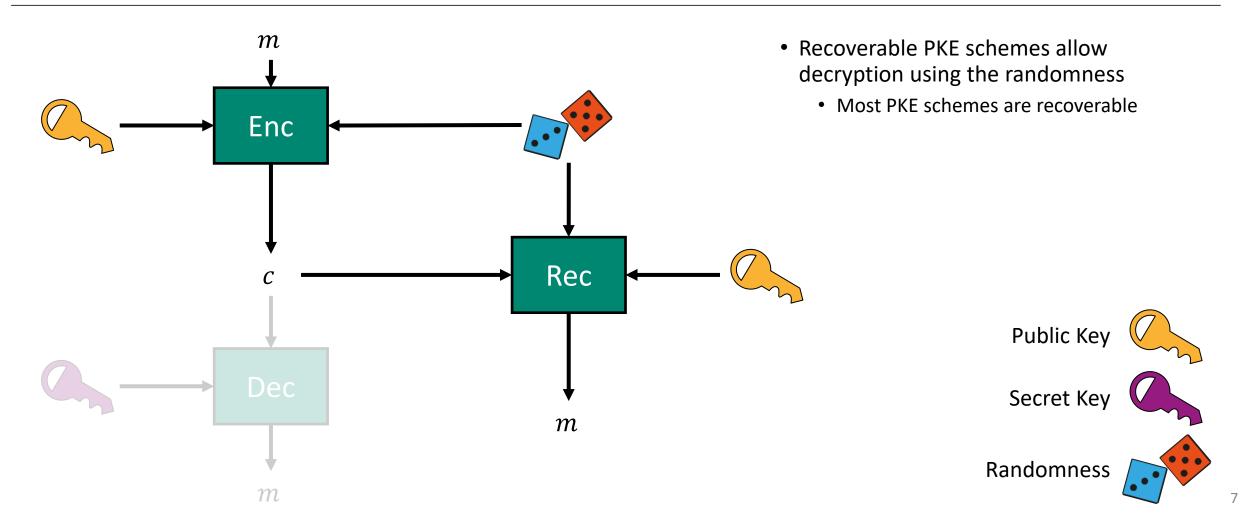


- Explicitly de-randomise the operator
 - Randomness is often implicit in other notions
 - Required to ensure reversibility

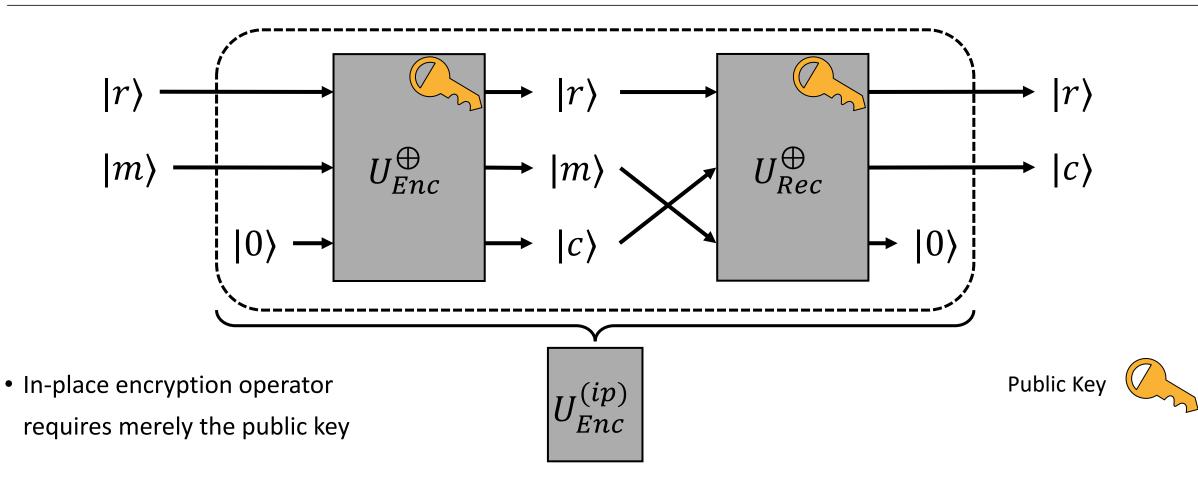
In-Place Operator for Perfectly Correct PKE



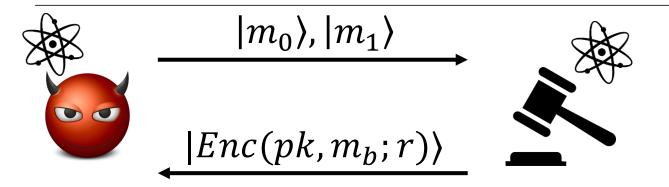
Recoverable Public Key Encryption



In-Place Operator for Recoverable PKE



The qINDqCPA Security Notion



 $b \leftarrow_{\$} \{0,1\}$

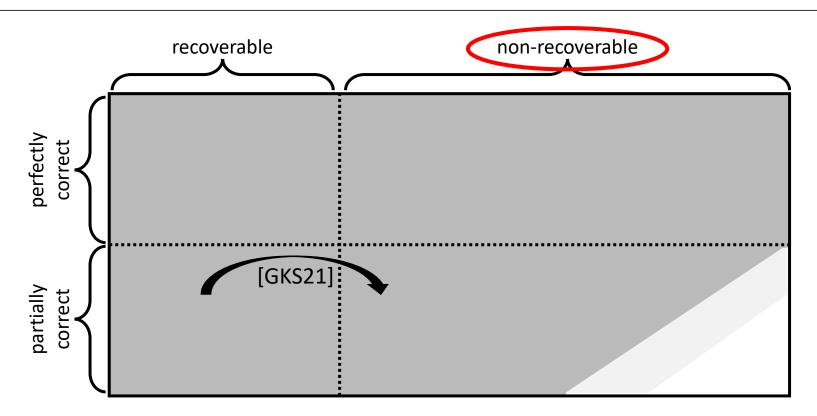
Discard $|m_{1-b}\rangle$

$$\begin{array}{c} |r\rangle \rightarrow \\ U_{Enc}^{(ip)} \rightarrow \\ m_b\rangle \rightarrow \end{array} \xrightarrow{} |r\rangle \\ \rightarrow |Enc(pk, m_b; r)\rangle \end{array}$$

- Challenger models the encrypting party
 - Standard communication setting: only public key known
 - Other settings possible

Are there public key encryption schemes for which qINDqCPA security cannot be defined for challengers knowing only the public key?

Classification of PKE Schemes [GKS21]



Are there non-recoverable public key encryption schemes?

Trapdoor Transformation [GKS21]

- PKE scheme $\Sigma = (KGen^{\Sigma}, Enc^{\Sigma}, Dec^{\Sigma})$
- Trapdoor permutation $\Pi = (KGen^{\Pi}, F, F^{-1})$

KGen() $(pk_{\Sigma}, sk_{\Sigma}) \leftarrow KGen^{\Sigma}()$ $(pk_{\Pi}, sk_{\Pi}) \leftarrow KGen^{\Pi}()$ $pk \leftarrow (pk_{\Sigma}, pk_{\Pi})$ $sk \leftarrow (sk_{\Sigma}, sk_{\Pi})$ Return (*pk*, *sk*)

Enc(pk, m; r)Parse pk as (pk_{Σ}, pk_{Π}) $y \leftarrow F(pk_{\Pi}, m)$ $c \leftarrow Enc^{\Sigma}(pk_{\Sigma}, y; r)$ Return c

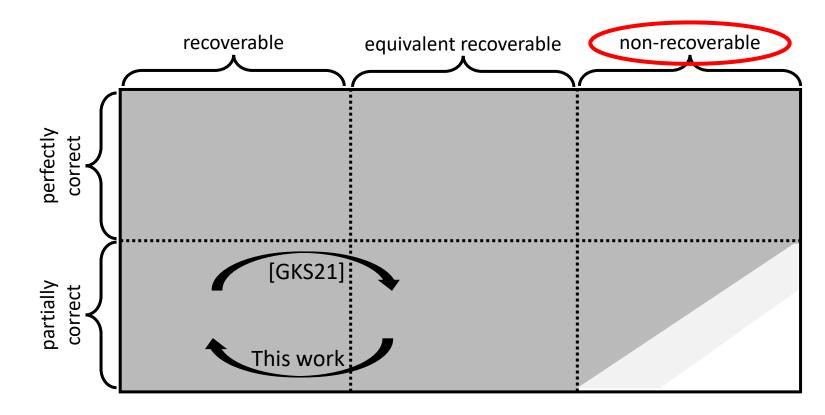
Dec(sk,c)Parse sk as (sk_{Σ}, sk_{Π}) $y \leftarrow Dec^{\Sigma}(sk_{\Sigma}, c)$ $(m \leftarrow F^{-1}(sk_{\Pi}, y))$ Return m

- Trapdoor permutation prevents recoverability
 - Trapdoor permutation does not affect the security
 - Can be transformed into a recoverable PKE scheme

Equivalent Recoverable PKE

Enc(pk,m;r)KGen() Dec(sk,c) $(pk_{\Sigma}, sk_{\Sigma}) \leftarrow KGen^{\Sigma}()$ Parse pk as $(pk_{\Sigma}, pk_{\Pi}, sk_{\Pi})$ Parse *sk* as sk_{Σ} $(pk_{\Pi}, sk_{\Pi}) \leftarrow KGen^{\Pi}()$ $y \leftarrow Dec^{\Sigma}(sk_{\Sigma}, c)$ $y \leftarrow F(pk_{\Pi}, m)$ $m \leftarrow F^{-1}(sk_{\Pi}, y)$ $c \leftarrow Enc^{\Sigma}(pk_{\Sigma}, y; r)$ $pk \leftarrow (pk_{\Sigma}, pk_{\Pi})$ $sk \leftarrow (sk_{\Sigma}, sk_{\Pi})$ Return m Return *c* Return (*pk*, *sk*) KGen'() Can be done with the public key $(pk_{\Sigma}, sk_{\Sigma}) \leftarrow KGen^{\Sigma}()$ $(nk_{\Pi}, sk_{\Pi}) \leftarrow KGen^{\Pi}()$ $pk \leftarrow (pk_{\Sigma}, pk_{\Pi}, sk_{\Pi})$ $sk \leftarrow sk_{\Sigma}$ Return (pk, sk)

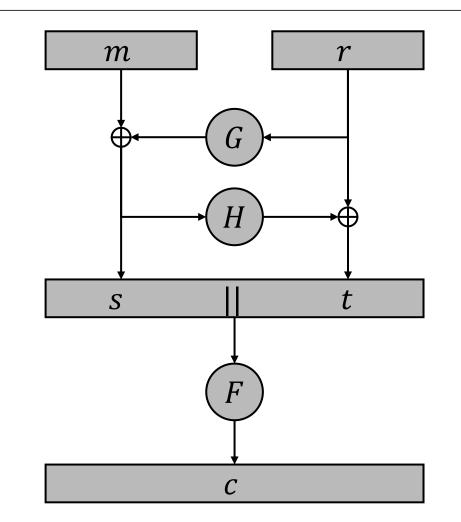
Refined Classification of PKE Schemes



Are there non-recoverable public key encryption schemes?

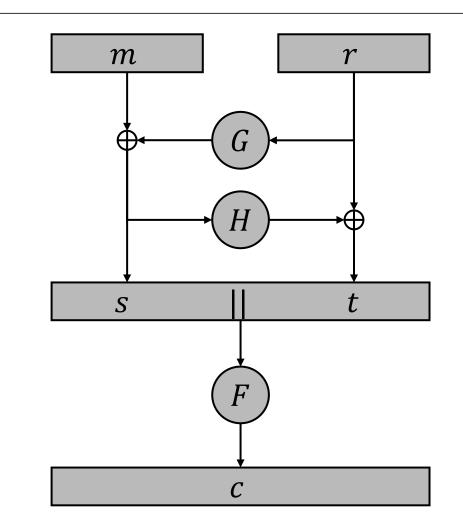
The OAEP Construction

- Transforms a trapdoor permutation into a public key encryption scheme
- Secure if *F* is partial-domain one-way:
 - Given *c*, it is hard to find *s*



Recoverability of OAEP

- Assuming that if *F* is partial-domain one-way, OAEP is not recoverable
 - Knowledge of the randomness r does not help
 - $m = s \oplus G(r)$
- Assuming that F is one-way is not enough
 - Consider $F(s||t) = s||F^*(t)$
 - From $F(s||t) = s||F^*(t)$ and r, one can easily recover the message $m = s \bigoplus G(r)$
- This rules out only the construction based on the recoverable property but not the quantum operator



In-Place Operator for OAEP

Game
$$pdOW$$

 $(pk_{\Pi}, sk_{\Pi}) \leftarrow KGen^{\Pi}()$
 $s, t \leftarrow_{\$} \{0,1\}^{n}$
 $c \leftarrow F(pk_{\Pi}, s||t)$
 $s' \leftarrow A(pk_{\Pi}, c)$
Return $s' = s$

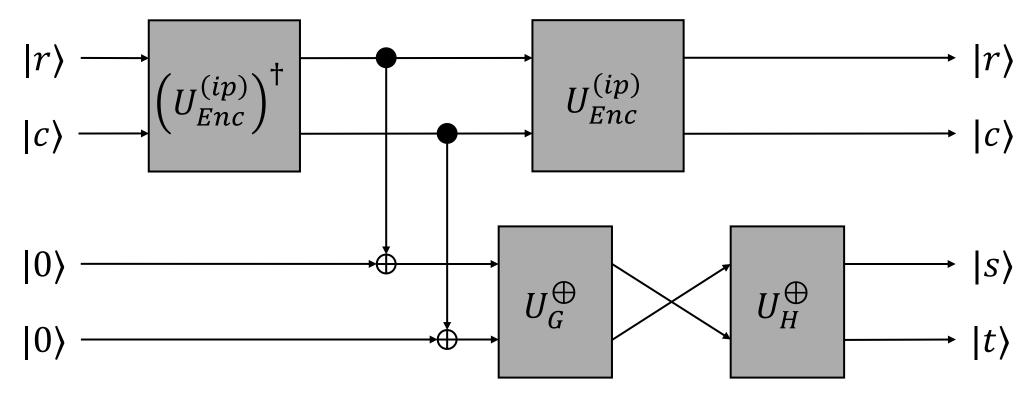
Game
$$pdOW^*$$

 $(pk_{\Pi}, sk_{\Pi}) \leftarrow KGen^{\Pi}()$
 $s, t \leftarrow_{\$} \{0,1\}^n$
 $c \leftarrow F(pk_{\Pi}, s||t)$
 $r \leftarrow H(s) \oplus t$
 $s' \leftarrow A(pk_{\Pi}, cr)$
Return $s' = s$

- Hardness of *pdOW* implies hardness of *pdOW**
 - Extra information *r* does not help

In-Place Operator for OAEP

• Assumption: $U_{Enc}^{(ip)}$ can be constructed solely from the public key and F is $pdOW^*$ secure



• This construction breaks $pdOW^*$, hence contradicting the assumption

Summary/Open Problems

- Applicability of the qINDqCPA security notion
 - Challengers knowing only the public key
 - The OAEP construction is non-recoverable
 - Mandatory in-place operator cannot be constructed solely from the public key for the OAEP construction
- Are there more non-recoverable PKE schemes?
- Unified quantum security notion for public key encryption
 - Combining [GKS21] and [CEV[20]

Thank You!

patrick.struck@ur.de

ePrint 2022/1074