A Power Side-Channel Attack on the Reed-Muller Reed-Solomon Version of the HQC Cryptosystem

Thomas Schamberger¹ Lukas Holzbaur² Julian Renner² Wachter-Zeh² Georg Sigl¹

¹Technical University of Munich Faculty of Electrical and Computer Engineering Institute for Security in Information Technology

²Technical University of Munich Faculty of Electrical and Computer Engineering Institute for Communications Engineering

28.09.2022

Antonia

◆ 伊 ト ◆ 臣 ト ◆ 臣 →

Tun Ulwenturm

PQCrypto 2022

Side-Channel Attacks

Side-Channel Attacks

Profiled Side-Channel Attacks

- Build "Templates" of the real power consumption
- Done for all different intermediate values or classes

ТЛП

Hamming Quasi Cyclic (HQC)

- Code-based key encapsulation mechanism (KEM)
- Fourth round alternative candidate

	Algorithm 1:	—
	Encrypt	Algorithm 2:
	Input: <i>m</i> , pk = (<i>h</i> , <i>s</i>), θ	Decrypt
	Output: c	Input: sk = (<i>x</i> , <i>y</i>)
1	$\boldsymbol{e}' \xleftarrow{\$(w_{\mathrm{e}}, \theta)} \mathcal{R}$	$m{c}=(m{u},m{v})$
^	(\mathbf{r}, \mathbf{r}) $(\mathbf{w}_{\mathrm{r}}, \theta)$ \mathcal{D}^2	
2	$(I_1, I_2) \leftarrow \mathcal{K}$	$v \leftarrow v - uy$
4	$\mathbf{v} \leftarrow Encode(\mathbf{m}) + \mathbf{sr}_2 + \mathbf{e}'$	2 $m \leftarrow \text{Decode}(v)$ 3 return m
5	return $c = (u, v)$	

• The PKE version is vulnerable against chosen-ciphertext attacks

• The PKE version is vulnerable against chosen-ciphertext attacks

 HQC uses a variant of the Fujisaki-Okamoto transformation to achieve a CCA2-secure KEM

HQC - Side-channel attacks

This work.

7 [1] Uneo et al.: Curse of re-encryption: A generic Power/EM analysis on post-quantum KEMs, CHES 2022

O [2] Guo et al.: Don't reject this: Key-recovery timing attacks due to rejection-sampling in HQC and BIKE, CHES 2022

Attack components

Chosen-ciphertext attacks need two attack components:

Attack strategy

 How to find inputs with an observable oracle result based on secret Side-channel oracle

 Classification result provides needed information for attack strategy → Oracle

 \Rightarrow Both steps components influence each other

Recap HQC - Parameters

	shortened RS code	duplicated RM code		
	[<i>n</i> ₁ , <i>k</i> , <i>d</i> _{<i>RS</i>}]	[<i>n</i> ₂ , <i>k</i> _{<i>RM</i>} , <i>d</i> _{<i>RM</i>} , <i>s</i>]	п	W
HQC-128	[46, 16, 31]	[384, 8, 192, 3]	17,669	66
HQC-192	[56, 24, 33]	[640, 8, 320, 5]	35,851	100
HQC-256	[90, 32, 49]	[640, 8, 320, 5]	57,637	131

$$\overbrace{\begin{array}{c|c} \textbf{y}_{i}^{(0)} \in \mathbb{F}_{2}^{n_{2}} & \textbf{y}^{(0)} \in \mathbb{F}_{2}^{n_{1}n_{2}} & \textbf{y}^{(1)} \in \mathbb{F}_{2}^{n-n_{1}n_{2}} \\ \hline \textbf{y}_{0}^{(0)} & \textbf{y}_{1}^{(0)} & \textbf{y}_{2}^{(0)} & \cdots & \textbf{y}_{n_{1}-1}^{(0)} & \textbf{y}^{(1)} \end{array}}$$

Algorithm 2:
Decrypt
Input:
$$sk = (x, y)$$

 $c = (u, v)$
Output: m
 $v' \leftarrow v - uy$
 $m \leftarrow Decode(v')$
 $3 return m$

Recap HQC - Parameters

	shortened RS code	duplicated RM code		
	[<i>n</i> ₁ , <i>k</i> , <i>d</i> _{<i>RS</i>}]	[<i>n</i> ₂ , <i>k</i> _{<i>RM</i>} , <i>d</i> _{<i>RM</i>} , <i>s</i>]	п	W
HQC-128	[46, 16, 31]	[384, 8, 192, 3]	17,669	66
HQC-192	[56, 24, 33]	[640, 8, 320, 5]	35,851	100
HQC-256	[90, 32, 49]	[640, 8, 320, 5]	57,637	131

• Note: Previous versions used repetition code and shortened BCH code

Algorithm 2:
DecryptInput: sk = (x, y)
c = (u, v)Output: m
1 $v' \leftarrow v - uy$
2 $m \leftarrow Decode(v')$
3 return m

 $c = (\boldsymbol{u}, \boldsymbol{v})$

General Attack Idea

General Attack Idea

- Goal: Find support of y
- Attack each $\boldsymbol{y}_{i}^{(0)}$ separately
- Decoding result gives information \rightarrow **SCA oracle**

Algorithm 2: Decrypt

Input: sk = (x, y)c = (u, v)Output: m

1
$$V' \leftarrow V - UY$$

2
$$m \leftarrow \mathsf{Decode}(v')$$

з return m

General Attack Idea

- Goal: Find support of y
- Attack each $y_i^{(0)}$ separately
- Decoding result gives information \rightarrow **SCA oracle**
- Steps:
 - 1. Find input $c = (u = (1, 0..., 0) \in \mathbb{F}_2^n, v)$ at decoder boundary
 - 2. Test each individual bit of $\boldsymbol{y}_{i}^{(0)}$

Algorithm 2: Decrypt

Input: sk = (x, y)c = (u, v)

2
$$m \leftarrow \mathsf{Decode}(v')$$

з return m

Power SCA from Ueno et al. [1] not working

- Transfer of plaintext-checking attack from second-round version [3]
- Problem: Only valid for bounded distance decoder
- **Reed-Muller codes** of third round version are decoded using an ML decoder
 - Decoding result depends on number of errors and support

[1] Uneo et al.: Curse of re-encryption: A generic Power/EM analysis on post-quantum KEMs, CHES 2022
[3] Bâetu et al.: Misuse attacks on post-quantum cryptosystem, 2019

Power SCA from Ueno et al. [1] not working

- Transfer of plaintext-checking attack from second-round version [3]
- Problem: Only valid for bounded distance decoder
- **Reed-Muller codes** of third round version are decoded using an ML decoder
 - ► Decoding result depends on *number of errors* and *support*

Power SCA from Ueno et al. [1] not working

- Transfer of plaintext-checking attack from second-round version [3]
- Problem: Only valid for bounded distance decoder
- **Reed-Muller codes** of third round version are decoded using an ML decoder
 - Decoding result depends on number of errors and support
- Strategy does not work anymore:
 - Counterexample
 - Simulations using ideal decoder results

[1] Uneo et al.: Curse of re-encryption: A generic Power/EM analysis on post-quantum KEMs, CHES 2022

[3] Bâetu et al.: Misuse attacks on post-quantum cryptosystem, 2019

$$\mathfrak{D}_0^{\boldsymbol{e}}(\boldsymbol{r}) = \begin{cases} \text{True}, & \text{if } \mathfrak{D}_{\mathcal{RM}}(\boldsymbol{r} + \boldsymbol{e}) = \boldsymbol{0}, \\ \text{False}, & \text{else} \end{cases}$$

$$\mathfrak{D}_0^{\boldsymbol{e}}(\boldsymbol{r}) = \begin{cases} \mathsf{True}, & \text{if } \mathfrak{D}_{\mathcal{RM}}(\boldsymbol{r} + \boldsymbol{e}) = \boldsymbol{0}, \\ \mathsf{False}, & \mathsf{else} \end{cases}$$

- Choose input as RM codewords in a way that:
 - Oracle result is always valid depending on e
 - No ties possible
- This allows to follow the general attack strategy for ML decoder

$$\mathfrak{D}_0^{\boldsymbol{\theta}}(\boldsymbol{r}) = egin{cases} \mathsf{True}, & ext{if } \mathfrak{D}_{\mathcal{RM}}(\boldsymbol{r}+\boldsymbol{\theta}) = \boldsymbol{0}, \\ \mathsf{False}, & \mathsf{else} \end{cases}$$

- Choose input as RM codewords in a way that:
 - Oracle result is always valid depending on e
 - No ties possible
- This allows to follow the general attack strategy for ML decoder
- Proof in paper for $HW(\boldsymbol{y}_i^{(0)}) < \frac{d_{\mathcal{RM}}}{4}$
- Valid with very high probability for HQC parameter sets

$$\mathfrak{D}_0^{\boldsymbol{\theta}}(\boldsymbol{r}) = egin{cases} \mathsf{True}, & ext{if } \mathfrak{D}_{\mathcal{RM}}(\boldsymbol{r}+\boldsymbol{\theta}) = \boldsymbol{0}, \\ \mathsf{False}, & \mathsf{else} \end{cases}$$

- Choose input as RM codewords in a way that:
 - Oracle result is always valid depending on e
 - No ties possible
- This allows to follow the general attack strategy for ML decoder
- Proof in paper for $HW(\boldsymbol{y}_i^{(0)}) < \frac{d_{\mathcal{RM}}}{4}$
- Valid with very high probability for HQC parameter sets
- Verified with perfect oracle calls from decoder of the reference implementation

ТЛП

Partial Information with Information-Set Decoding

- Partial information of y due to:
 - Amount of oracle calls is limited
 - Side-channel does not allow perfect oracle answers
- Modified variant of Stern's algorithm [4]

[4] Stern: A method for finding codewords of small weight, Coding Theory and Applications, 1989

Comparison with Related Work

• Our strategy requires a *maximum* amount of oracle calls:

$$n_{calls} = n_1 \cdot 4 \cdot (\frac{2 \cdot n_2}{4} + \frac{n_2}{4})$$

Comparison with Related Work

• Our strategy requires a *maximum* amount of oracle calls:

$$n_{calls} = n_1 \cdot 4 \cdot (\frac{2 \cdot n_2}{4} + \frac{n_2}{4})$$

- Guo et al. [2] show non-deterministic timing attack:
 - Randomly increase hamming weight of RM input until decoder boundary
 - Has to be repeated several times until each position in $\mathbf{y}_i^{(0)}$ is evaluated
 - Uncertainty of timing oracle requires majority threshold

 [2] Guo et al.: Don't reject this: Key-recovery timing attacks due to rejection-sampling in HQC and BIKE, CHES 2022
 Thomas Schamberger (TUM)

Comparison with Related Work

• Our strategy requires a *maximum* amount of oracle calls:

$$n_{calls} = n_1 \cdot 4 \cdot (\frac{2 \cdot n_2}{4} + \frac{n_2}{4})$$

- Guo et al. [2] show non-deterministic timing attack:
 - Randomly increase hamming weight of RM input until decoder boundary
 - Has to be repeated several times until each position in $y_i^{(0)}$ is evaluated
 - Uncertainty of timing oracle requires majority threshold

	This work	Timing Attack [2]	Strategy of [2] using $\mathfrak{D}_0^{\boldsymbol{e}}$
HQC-128	1152*46	18829*46	13174*46
HQC-192	1920*56	-	23170*56
HQC-256	1920*90	-	23170*90

[2] Guo et al.: Don't reject this: Key-recovery timing attacks due to rejection-sampling in HQC and BIKE, CHES 2022

SCA Targets Overview

• Side-channel targets to build $\mathfrak{D}_0^{e}(\mathbf{r})$:

Power Side-Channel of the RS Decoder

Power Side-Channel of the RS Decoder

- Adaptation of the attack on the BCH decoder from [5]
- Directly applicable as BCH codes are subcodes from RS codes
- RS decoder has to correct an error if $y_i^{(0)}$ is not the all-zero codeword
- Attack results:
 - ► Latest HQC-128 reference implementation
 - STM32F415 Cortex-M4 microcontroller
 - 1000 template traces
 - 100,000 correctly classified attack traces

[5] Schamberger et al.: A power side-channel attack on the cca2-secure HQC KEM, CARDIS 2020

Power Side-Channel of the RS Decoder

• Attack target: Error-locator polynomial computation

Power Side-Channel: Hash Functions \mathcal{G}, \mathcal{H}

ТШТ

Power Side-Channel: Hash Functions \mathcal{G}, \mathcal{H}

- Plaintext checking oracle through SHAKE256-512 [1]
- Decoding result *m*['] directly influences computation
- Oracle evaluated by the authors:
 - Same hardware attack target
 - SHAKE software implementation of pqm4
 - Machine learning classifier (CNN)
 - Accuracy of 0.998 for 10,000 attack traces
- Needs adaptation such that $(d_{\mathcal{RS}} 1)/2$ blocks of $y^{(0)}$ contain an error

[1] Uneo et al.: Curse of re-encryption: A generic Power/EM analysis on post-quantum KEMs, CHES 2021

Conclusion

- Updated version of HQC requires new attack strategies
- Used Reed-Muller codes are decoded through ML decoder
 → breaks attack assumption from Uneo et al. [1]
- New proven attack strategy through close-to-0-Oracle
- Possible side-channel targets to build oracle:
 - Decoder during decryption
 - SHAKE256 to generate randomness for sampler
 - Timing side-channel of rejection sampling not usable
- Information set decoding results for partial retrieved keys
- Practical power side-channel results of the implement Reed-Solomon decoder of the HQC-128 reference implementation

Thank You!

Thomas Schamberger

```
ТΠ
```

t.schamberger@tum.de https://www.sec.ei.tum.de/

This work was supported by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) under Grant No. SE2989/1-1 as well as WA3907/4-1 and the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 801434).