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Organization

I Format: weekly lectures for 9 weeks

I Obligatory attendance of at least 7 lectures (Sept 9 to Nov 4)

I Grade: take-home assignment, groups of up to two students

I Weekly exercises, not graded, published on the course website

I O�ce hours or mistakes in the course material: contact us during
the lecture or via email
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https://sites.google.com/view/convexanalysisforoptimization/home


Prerequisites

I Real analysis and linear algebra at bachelor’s level
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Literature

I D. Bertsekas, Convex Optimization Theory, Athena Scientific,
2009 (main book), online version

I S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge
University Press, 2004 (for more applications and details), online
version

I R. T. Rockafellar. Convex analysis. Princeton University Press,
1970 or later editions (for somewhat more theory), online version
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https://web.mit.edu/dimitrib/www/Convex_Theory_Entire_Book.pdf
https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf
https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf
https://convexoptimization.com/TOOLS/AnalyRock.pdf


Course plan

I Week 1: Introduction to convexity

I Week 2: More on convex sets

I Week 3: More on convex functions

I Week 4: Dual description of convex functions

I Week 5: Duality and optimization

I Week 6: Introduction to algorithms, descend methods

I Week 7: Proximal methods, projected gradients

I Weeks 8 - 9: Fix point approach, averaged operators
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On which sets we work

I Usually we just use Rn

I Sometimes extended reals: Rn [ {1} [ {�1}

I All we do is generalizable to topological vector spaces
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Convex set

Line L between points x , y 2 Rn is

L := {z 2 Rn : z = ↵x + (1� ↵)y , ↵ 2 R}

Line segment LS between points x , y 2 Rn is

LS := {z 2 Rn : z = ↵x + (1� ↵)y , 1 �↵ � 0}

Def: convex set contains the line segment between its any two points
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Convex function

Epigraph of a function f : S ! R is

epi(f ) := {(x , t) 2 S ⇥ R : x 2 S , t � f (x)}

I Def: a function is convex if it lies below the line segment between
any two points in its domain

I Another def: a function is convex if its epigraph is a convex set
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Functions onto extended line

Domain of a function is the set where it is defined

E↵ective domain of a function f : S ! R is

dom(f ) := {x 2 Rn : f (x) < 1}

Def: f is proper if f (x) < 1 for some x 2 S and f (x) > �1 for all
x 2 S (i.e., its epigraph is non-empty and contains no vertical lines)
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Convex optimization problem

A problem

min
x

f0(x)

s.t. fi (x)  0, i = 1, . . . ,m,

where all functions are convex.
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Why convexity?

Global minima of convex functions

Separation theorems for convex sets

Duality for convex problems
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Usage of convexity

I Convexity is a basis for more complex problems

I Many data science problems (e.g., most regressions, SVM, PCA)

I Problems in physics (e.g., power, water, gas, signal processing)

I Other problems, e.g., neural networks, are not convex, but
algorithms from this course help to find local optima

I Can also use convex approximations (e.g., McCormick envelopes,
di↵erence-of-convex algorithms, high-dimensional liftings)
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Combinations

Def: Convex combination of x1, . . . , xn is
nP

i=1
↵ixi for some ↵1, . . . ,↵n

where ↵1, . . . ,↵n � 0 (*) and
Pn

i=1 ↵i = 1 (**) [DCC]

Conic combination: remove (**) from [DCC]

A�ne combination: remove (*) from [DCC]

Linear combination: remove both (*) and (**) from [DCC]
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Convexifying sets

Convex hull of set S :

conv(S) = {
nP

i=1
↵ixi : x 2 S ,↵1, . . . ,↵n � 0,

Pn
i=1 ↵i = 1}

Conic hull of set S :

cone(S) = {
nP

i=1
↵ixi : x 2 S ,↵1, . . . ,↵n � 0}

A�ne hull of set S :

a↵(S) = {
nP

i=1
↵ixi : x 2 S ,

Pn
i=1 ↵i = 1}
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Dimension of a convex set

Dimension of a convex set is equal to the dimension of its a�ne hull
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Caratheodory’s Theorem

Let S be a nonempty subset of Rn. Then

(a) Every y 2 cone(S), y 6= 0 can be written as
nP

i=1
↵ixi , where

x1, . . . , xn 2 S are linearly independent and ↵1, . . . ,↵n are positive.

(b) Every y 2 conv(S) is a convex combination of no more than
n + 1 elements from S .
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Proof of Caratheodory’s Theorem
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A�ne transformation

An a�ne transformation L from vector space X to vector space Y :

L(x 2 X ) = Ax + b 2 Y , for some linear operator A and b 2 Y .

When X = Rn and Y = Rm, A is a matrix in Rm⇥n and b 2 Rm.
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Frequently used convex sets

I Hyperplane for some given a 2 Rn, b 2 R:

HP := {x 2 Rn : a>x = b}

I Half-space for some given a 2 Rn, b 2 R:

HS := {x 2 Rn : a>x  b}

I Polyhedron for some given A 2 Rn⇥m, b 2 Rm:

P := {x 2 Rn : A>
x  b}
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More of frequently used sets

I Ball B for some given norm k · k, center y , and ✏:

B(y , ✏) = {x 2 Rn : kx � yk  ✏}

I Ellipsoid: a�ne transformation of a ball

I Cone C : for all x 2 C we have ↵x 2 S if ↵ > 0. Most popular
convex cones: second-order, positive semidefinite, exponential.
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Closure of a set

Closure of a set S is the set together with all its limit points (aka
points that are limits of sequences belonging to S), denoted by cl(S).
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Convexity preserving operations on sets

I Intersection of any number of convex sets

I Cartesian product of convex sets

I Closure of a convex set

I A�ne transformation (including projection onto some coordinates)

I Sum of elements of convex sets:
S = {

P
i xi , xi 2 Ai , Ai are convex for all i}

I Perspective mapping S = {x/t : [x , t] 2 A, A is convex}
I Linear-fractional mapping S = { Ax+b

c>x+d
: x 2 A, A is convex}

I These are the main ones but not the only

Counterexample: union of two convex sets can be non-convex
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How to show a set is convex

I Apply definition

I Show the set is defined by convex functions

I Show the set is obtained from other convex sets via convexity
preserving operations
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Proof that linear-fractional map preserves convexity
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Concepts of interior

Let S ✓ Rn

I Interior:
int(S) := {x 2 S : 9 open ball A such that x 2 A ✓ S}

I Algebraic interior:
core(S) := {x 2 S : 8z 2 Rn 9� > 0 such that [x , x + �z ] ✓ S}

I Relative interior:
ri(S) := {x 2 S : 9 open ball A such that x 2 A \ a↵(S) ✓ S}
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Line segment principle

Let S ✓ Rn be a convex set. If x 2 int(S) (resp. ri(S)) and
y 2 cl(S), then [x , y) ⇢ int(S) (resp. ri(S)). In particular, int(S)
(resp. ri(S)) is a convex set. This is called “Line segment principle”.
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Algebraic interior of convex sets

For convex sets, the definition of algebraic interior reduces to:
core(S) := {x 2 S : 8z 2 Rn 9� > 0 such that x + �z 2 S}

core(S) = int(S) for convex S ✓ Rn: can use them interchangeably
in proofs. Can show using the Line Segment Principle for int(S).
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