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Organization

» Format: weekly lectures for 9 weeks

» Obligatory attendance of at least 7 lectures (Sept 9 to Nov 4)
» Grade: take-home assignment, groups of up to two students
» Weekly exercises, not graded, published on the course website

» Office hours or mistakes in the course material: contact us during
the lecture or via emalil
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https://sites.google.com/view/convexanalysisforoptimization/home

Prerequisites

» Real analysis and linear algebra at bachelor’s level
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Literature

» D. Bertsekas, Convex Optimization Theory, Athena Scientific,
2009 (main book), online version

» S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge
University Press, 2004 (for more applications and details), online
version

» R. T. Rockafellar. Convex analysis. Princeton University Press,
1970 or later editions (for somewhat more theory), online version
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https://web.mit.edu/dimitrib/www/Convex_Theory_Entire_Book.pdf
https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf
https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf
https://convexoptimization.com/TOOLS/AnalyRock.pdf

Course plan

» Week 1: Introduction to convexity

» Week 2: More on convex sets

» Week 3: More on convex functions

» Week 4: Dual description of convex functions

» Week 5: Duality and optimization

» Week 6: Introduction to algorithms, descend methods
» Week 7: Proximal methods, projected gradients

» Weeks 8 - 9: Fix point approach, averaged operators

5/ 26



On which sets we work

» Usually we just use R”
» Sometimes extended reals: R" U {co} U {—oc0}

» All we do is generalizable to topological vector spaces
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Convex set

Line L between points x,y € R" is
[ ={zeR":z=ax+ (1 —a)y, a € R}

Line segment LS between points x,y € R" is A \

LS ={zeR":z=ax+ (1 —a)y, 1 >a > 0}

Def: convex set contains the line segment between its any two points

CONVAL Cohu g X y

VA\V)&g . OLA"\ Q~ E - C = (onu=esf 5&76
J%OK m% Q—(bi i—i 7/26



. , N
Convex function QL/“

Epigraph of a function f @
& ho D X

epi(f) ={(x,t) e SxR:xe 5t > f(x)}

» Def: a function is convex if it lies below the line segment between
any two points in its domain

Pdp ) B) £ (R f@—@ﬂ%)

» Another def: a function is convex if its epigraph is a convex set
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Functions onto extended line

Domain of a function is the set where it is defined

Effective domain of a function f : S — R is

dom(f) :={x € R": f(x) < o0}

Def: f is proper if f(x) < oo for some x € § and f(x) > —oo for all
x € S (i.e., its epigraph is non-empty and contains no vertical lines)
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Convex optimization problem (0 -

(W
QWK

A problem P SC&\
min fo(x)

s.t. fi(x) <0, i=1,...,m,

where all functions are convex.
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Why convexity?

Global minima of convex functions

Duality for convex problems



Usage of convexity

» Convexity is a basis for more complex problems
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» Many data science problems (e.g., most regressions, SVM, PCA)

» Problems in physics (e.g., power, water, gas, signal processing)
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Usage of convexity

» Convexity is a basis for more complex problems

W%Pf @W@

» Many data science problems (e.g., most regressions, SVM, PCA)

» Problems in physics (e.g., power, water, gas, signal processing)

» Other problems, e.g., neural networks, are not convex, but
algorithms from this course help to find local optima

» Can also use convex approximations (e.g., McCormick envelopes,
difference-of-convex algorithms, high-dimensional liftings)
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Combinations

Def: Convex combination of x1,...,x, is > «;x; for some a1, ..., a,
i=1
where a,...,ap >0 (*) and > 7 ;o =1 (*%) IDCC]
AN .
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Convexifying sets

Convex hull of set S: s deieted @ )

conv(S)—{Zax, xES Q1y...,0n > 0,37 104;21}

ey Lo

Conic hull of set S:
cone(S) —{Zozx, x€S, ay,... anZO}

Affine hull of set S:
afF(S)—{Zax, x €S, Z i =1}
=1
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Dimension of a convex set

Dimension of a convex set is equal to the dimension of its affine hull
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Caratheodory’s Theorem

Let S be a nonempty subset of R”. Then

n
(a) Every y € cone(S),y # 0 can be written as ) «a;x; , where
i=1

X1,...,X, € S are linearly independent and a4, ..., a, are positive.
(b) Every y € conv(S) is a convex combination of no morew
n+ 1 elements from S.
S w ¢
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1 of Temo
Proof of Caratheodory’s Theorem (@E&{f giaﬁiu proot 14O 6)
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Affine transformation

An affine transformation L from vector space X to vector space Y:
L(x € X) =Ax+ b e Y, for some linear operator A and be Y.

When X =R"and Y =R™ Ais a matrix in R™*" and b € R™.
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Frequently used convex sets /TN / / / / ol
Q&\é /
/ e
o
» Hyperplane for some given a € R", b e R: 2

HP :={x eR":a'x = b}

» Half-space for some given a € R”, b € R: \,&N\g

@U)
HS :={x € R":a'x < b} <ﬁ

» Polyhedron for some given A € R"*™ b € R™: ///
P:={xcR":A'x < b} //

pelytope TS undtd o (ghl, y\j




More of frequently used sets

» Ball B for some given norm || - ||, center y, and e: S\M(’%

B(y,€) = ix e R": [[x —y| < ¢} se0”

2
> EII|p50|d affine ransformatlon of a baII
C (A6 ) = 7 gl

» Cone C: forall x € C we have ax € S > 0. Most popular
convex cones: f@nd -order, positive semidefinite,_exponential.
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Closure of a set

Closure of a set S is the set together with all its limit points (aka
points that are limits of sequences belonging to S), denoted by cl(S).
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Convexity preserving operations on sets

» Intersection of any number of convex sets

» Cartesian product of convex sets

» Closure of a convex set

» Affine transformation (including projection onto some coordinates)

» Sum of elements of convex sets:
S={>.xi, xi € Ai, Aj are convex for all i}

» Perspective mapping S = {x/t : [x,t] € A, A is convex}

Wl\mappmg S = {Cf\rxxibd x €A, Alis convex}j

: , ¥
» These are the main ones but not the only @YOU

Counterexample: union of two convex sets can be non-convex
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How to show a set iIs convex

» Apply definition
» Show the set is defined by convex functions

» Show the set is obtained from other convex sets via convexity
preserving operations
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Proof that linear-fractional map preserves convexity
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Concepts of interior ™ a

st
Let S C R"
Lo Qs jus? csef
» Interior: / ul'r“,bﬁeﬁ%@f

o ¥

int(S) := {x € S : 3 open (ball /A such that x € A C S}

) ‘\%
x
Algebraic interior: Und Sefment >
core(S) :={x € S :Vz e R" 3§ > 0 such that AI C S}
% lara P“M“+ A e core S
Relative interior: ik A& tE(S) (o OOF&Q"F'W@)
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Line segment principle

Let S C R” be a convex set. If x € int(S) (resp. ri(S)) and
y € cl(S), then [x,y) C int(S) (resp. ri(S)). In particular, int(S)
(resp. ri(S)) is a convex set. This is called “Line segment principle”.
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Algebraic interior of convex sets

For convex sets, the definition of algebraic interior reduces to:
core(S) :={x € S :Vz € R" 3§ > 0 such that x + 6z € S}
To prov e Core (S) W s ml&lf}ga(/\ C{/{IMW/

puh m prove
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core(S) = int(S) foriconvex' S C R™: can use them interchangeably

in proofs. Can show using the Line Segment Principle for int(S).
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