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1. Background
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Classical Queueing

Reversing time establishes independence :
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Classical Queueing

Quasi-reversibility establishes independence :
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Asymptotic Analysis
Studying Limit behaviour provides insights :

Example 1 (Loss network)

As the number of links gets large
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Asymptotic Analysis
Studying Limit behaviour provides insights :

Example 1 (Loss network)

As the number of links gets large

m(ng) —=s— 1 ()
Primal (most likely state)
max f(q) subject to Zq’iﬂ' < C;
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Dual (blocking probabilities)
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Asymptotic Analysis

Studying Limit behaviour provides insights :

Example 2 (Fluid Limits and Stability)
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Asymptotic Analysis

Studying Limit behaviour provides insights :

Example 2 (Fluid Limits and Stability)
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Theorem (Dai): Under appropriate conditions
If Q(t) is stable then @ (?) is stable.




Stability

Lyapunov
Function:
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Stability

Lyapunov
Function:

L:R?Y— R,

Such that

This implies
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Instability

|s necessary for stability :
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Instability

|s necessary for stability :

But is it sufficient? No:
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2. Switched
Queueing Networks



;\j\@u




X\@u




y\“l







Single—hop Switched Networks
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Multihop Switched Networks
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3. Stability and Instability
of MaxWeight



MaxWeight

l

l

MAX-WEIGHT:

l l a; (1)

l




When can we stabilise?
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When can we stabilise?

MAXIMAL STABILITY REGION IS CONVEX CLOSURE
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THEOREM: (Tassiulas & Ephremedes)
MAXWEIGHT IS STABLE FOR ALL RATES IN (S)
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Because of these stability results MaxWeight has been studied
extensively in the context of communication systems.

However packets leave after service.
So there is no communication.

Question: Is MaxWeight Stable when there
IS communication?




Answer: No
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Answer: No
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SURPRISINGLY, THE MOST OBVIOUS POLICY:

SERVE THE LONGEST QUEUE

IS A BAD IDEA.



4. Stability of
Proportional fairness



Aim: To find a maximally stable
policy “similar” to MaxWeight.




Aim: To find a maximally stable
policy “similar” to MaxWeight.

One Solution: Extend the quadratic

Lyapunov argument used for MaxWeight.
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Another Solution: Analyse a different
policy with good stability properties.




Classical queueing network has
good stability properties:
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Classical queueing network has
good stability properties: M
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Primal: - (4l 2 = Q
rlma mé[n; D; (q“ C) S.t. ; qdi; = Qz
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Proportional Fairness
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Proportional Fairness

mj&\lXZQz log AZ S.t. ZAZ < Cj
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Is used for data scheduling on 4G mobile



Convergence and Stability

Theorem (Fluid Stability)
For Proportionally fair fluid model, when a €< S >° there exists
T>O0 such that Q(t)=0, forallt > T.
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FIFO Model
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6. An(k) (t) = Dy (t)



Fluid Limit

1. Q;(t) = Q;(0) + A;(t) - D;(¢t)

2. Ykejlk(s) =s
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4 A () =T, (Aj(t))
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5 D (t) = I, (Dj(t))
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Fluid Limit

1. Q;(t) = Q;(0) + A;(t) - D;(¢t)
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Lyapunov Function

Idea: Under SLLN scaling, what is the Large Deviations

rate function for the equilibrium network
1.

1
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Entropy Lyapunov function:

H(t):=L(t)+M(t)
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Derivative of Lyapunov Function

Proposition:
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5. Fixing the instability
of MaxWeight



It is possible to adjust the
MaxWeight policy to achieve stabillity.

In particular, we consider the following
weighted Max Weight policy:
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Theorem. Given p € (S), the weighted
MaxWeight policy is positive recurrent.

Proof
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Finally,_ Two Practical Extensions:
- Each job has an impact of P
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Use in road traffic applications
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Two Practical Extensions:

- Weighted Delay
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Use in medical operations
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summary

* Rich set of techniques are employed to analyse
gueueing systems.

- Max Weight is a fantastic policy
but has some shortcomings

- |ts analysis shows stability of queueing systems
is highly non-trivial.

- Classical theory and asymptotics can help
fix issues.
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