

#### Quantum Integration Technology Introduction of research topics Ryoichi Ishihara

29/04/19













### Color center in diamond

- Impurity doped in diamond
- Optically addressable/read-out qubit
- Spin-dependant fluorescence even at RT
- Magnetic, temperature and strain sensitive
- Biocompatible, chemically stable, thermally conductive and mechanically hard



Delft



B. Hensen, et al., Nature 526, 682-686 (2015)





# Application of diamond color-center

#### Quantum computer



N. H. Nickerson, et al.,

#### Quantum enhanced sensor



Nabeel Aslam, et al., Science 357, 67-71 (2017)





# The impact of operating temperature

#### T=100mK



- Max. cooling power ~100uW
- Price ~600KEuro



T=4K

- Max. cooling power ~0.1W
- Price: ~100KEuro



# Engineering challenges in diamond color-center

| Circuits  | <ul> <li>Integration with photonic and CMOS circuits</li> </ul>                                          |
|-----------|----------------------------------------------------------------------------------------------------------|
| Devices   | <ul> <li>Efficient spin-photon interfaces</li> <li>Predetermined positioning of color centers</li> </ul> |
| Materials | <ul> <li>Wafer-scale diamond growth and process</li> </ul>                                               |





# Large scale epitaxial growth of diamond



2D array of micro-diamonds grown on silicon wafer





## Photonic crystal cavity in diamond







# Diamond integration with silicon







#### IoE



1 Global semiconductor market (2013) Source: IDC; Gartner; World Bank; IMF; HIS; The Semiconductor Industry Association; OICA; IC Insights; MarketLine; Apparel Market: Planet Forward



Graph from Thin Film Electronics ASA presentation by Dr. Davor Sutija

#### Future electronics challenge





# Printed Silicon with liquid silicon



M. Trifunovic, et al., npj Flexible Electronics (1), 12 (2017)

Flexible Bio-degradable/compatible High-speed Low-cost Agrifood



Wearable



Medical







# Fabrication in cleanrooms







- Printing silicon
- Photonic structure







- Diamond growth
- Diamond nano structure





#### QIT Partners







## QIT is for you, if you...

• want to use you hands for making emerging electronics

- are keen to interact with semiconductor device/material/ equipment manufacturing companies
- like Japanese food (and others)









#### More to read

- "<u>Cheap and environmental friendly silicon chips printed on</u> paper"
- "<u>High-mobility poly-Si TFTs directly printed on paper</u>"
- "Diamond color centers for quantum internet and sensor", Issue 22.3, MAXWELL, April 2019









r.ishihara@tudelft.nl

