Convex Analysis for Optimization

Olga Kuryatnikova (Erasmus University Rotterdam) kuryatnikova@ese.eur.nl

September-October 2024 Lecture 4

Course plan

- ► Week 1: Introduction to convexity
- ▶ Week 2: More on convex sets
- ▶ Week 3: Dual view of convex sets + more on convex functions
- ► Week 4: Dual view of convex functions
- ► Week 5: Duality and optimization
- ▶ Week 6: Introduction to algorithms, descend methods
- ► Week 7: Proximal methods, projected gradients
- ► Weeks 8 9: Fix point approach, averaged operators

Dual view on convex functions

- Continuity and closedness
- Differentiability and subgradients
- Conjugate functions
- Prox operators

Types of continuity

Let $S \subseteq \mathbb{R}^n$, consider a function $f: S \to \overline{\mathbb{R}}^m$ for some m > 1.

Def: f is lower semicontinuous in x if $f(x) \le \liminf f(y), \forall (y) \subset S$.

Def: f is continuous in $x \in \text{dom}(f)$ if $f(x) = \lim_{y \to x} f(y), \forall (y) \subset \text{dom}(f)$

Def: f is Lipshitz-continuous with constant L > 0 if $||f(x) - f(y)||_2 \le L||x - y||_2$ for all $x, y \in dom(f)$

L tuis implies

herer vertical slope

Semicontinuity and closedness

Def: $f: S \to \overline{\mathbb{R}}$ is closed if its epigraph epi(f) is a closed set.

Thm: Function $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ is closed if and only if

 \iff f is lower-semicontinuous

 \iff level set $V_{\gamma} =: \{x \in \mathbb{R}^n : \gamma \geq f(x)\}$ is closed for any $\gamma \in \mathbb{R}$

function graph in R³ level sets in R²

Proof: Proposition 1.1.2 in Textbook.

Continuity and convexity

Thm: $f: S \to \overline{\mathbb{R}}$ proper and convex $\Rightarrow f$ continuous over ri(dom(f)).

Proof: Proposition 1.3.11 in Textbook.

Corollary: A convex function $\mathbb{R}^n \to \mathbb{R}$ is continuous.

gentums, including

Lipschitz continuity and fixed points

Def: $f: \mathbb{R}^n \to \mathbb{R}^n$ is a non-expansive mapping if i Def: $f: \mathbb{R}^n \to \mathbb{R}^n$ is a non-expansive mapping if it is Lipschitz continuous with constant $L \leq 1$.

- ▶ If also $||f(x)-f(y)||_2^2 \le (f(x)-f(y))^\top (x-y)$ for all $x,y \in \text{dom}(f)$, f is called firmly non-expansive.
- ▶ If L < 1, f is called a contraction.

Def: x is a fixed point of function $f: \mathbb{R}^n \to \mathbb{R}^n$ if f(x) = x.

Banach Fixed Point Thm: Let f be a contraction. Then f admits a unique fixed-point, and an algorithm starting from some x_0 and computing $x_k = f(x_{k-1})$ for k = 1, ... converges to that fixed point.

Extension to firmly-non-expansive: $x_k = f(x_{k-1})$ for k = 1, ...converges to a fixed point if it exists.

Differentiable functions

Def: $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ is differentially in $\bar{x} \in \mathsf{dom}(f)$ if

 $\lim_{x \to \bar{x}} \frac{|f(x) - f(\bar{x}) - \nabla f(\bar{x})^{\top} (x - \bar{x})|}{\|x - \bar{x}\|} = 0 \text{ for all sequences } \{x\} \text{ converging to } \bar{x}.$

there is a hyperplane

first-order Taylor approximation in X => that pesses through X

approaches the function in the limit

The graph of fin

and directions

Gradient $\nabla f(\bar{x}) := \left[\frac{\partial f}{\partial x_1}(\bar{x}), \dots, \frac{\partial f}{\partial x_n}(\bar{x})\right]$ and directional derivative

 $\nabla_{v} f(\bar{x}) = \lim_{\alpha \downarrow 0} \frac{f(\bar{x} + \alpha v) - f(\bar{x})}{\alpha} = \nabla f(\bar{x})^{\top} v \text{ exist in } \bar{x} \text{ for all } v \in \mathbb{R}^{n}.$

definition of directional

holds po differentiable functions, follows from (1), often used in proofs.

Convex differentiable functions and optimization

Thm: Let $S \subseteq \mathbb{R}^n$ be convex, f be differentiable over an open set that contains S. Then f is convex over S if and only if $f(z) - f(x) \ge \nabla f(x)^{\top} (z - x) \quad \forall x, z \in S.$ always above Proof: Proposition 1.1.7 in Textbox its first-order Idea for ...if 1: take x,y,p=dx+(1-d)y; write f(x)-f(p) > Vf(p)T(x-p) | od | add . f(y)-f(p) >> Vf(D)T(y-p) | (1-d) | add . lay for approx. I dea for only if! use directional derivative and its connection to gradient. Corollary: for S and f as above, wholds too but does not immediately follow from the trum above, follows from $\nabla f(x^*) = 0 \iff x^* \text{ minimizes } f \text{ over } \mathbb{R}^n;$ for theorem above, check. x^* minimizes f over S if and only if $\nabla f(x^*)^{\top}(z-x^*) \geq 0$ (=) - Pf(x)T (2-x) EO YZES (=) $-\Delta t(x) \in N^{c}(x_{*})$

- gradient, ax a the irrection of steepest discent, points at least 30° outside grad all descent irrections point outside 5.9/20

Convex twice differentiable functions

Thm: Let $S \subseteq \mathbb{R}^n$ be convex and open, f be twice continuously differentiable over S. Then f is convex over S if and only if

$$\nabla^2 f(x) \succeq 0 \quad \forall x \in S.$$

Proof: Proposition 1.1.10 in Textbox

Subgradient and subdifferential

Def: $g \in \mathbb{R}^n$ is a subgradient of a convex $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ in $\bar{x} \in \text{dom}(f)$

if $f(z) - f(\bar{x}) \geq g^{\top}(z - \bar{x}) \quad \forall z \in \mathbb{R}^n$.

Def: subdifferential $\partial f(\bar{x})$ is the set of all subgradients of f in \bar{x} : to the hormal

$$\partial f(\bar{x}) := \{ g \in \mathbb{R}^n : f(z) - f(\bar{x}) \geq g^\top(z - \bar{x}) \quad \forall z \in \mathbb{R}^n \}.$$

hormals of all blue hyperpianes are subgradients.

Subtifierential consists on an these hormals.

f(x)= x2 here subdifferential = forradient?

hotice: Subdifferential is defined by asot of unear mequalities (mfinitely many)

of a supporting

hyperplane in x

to the epignorph of f.

Properties of subdifferential

se the dephiton of Subdif.

- \blacktriangleright $\partial f(\bar{x})$ is closed and convex as an intersection of closed subspaces.
- ▶ If f is differentiable in \bar{x} , then $\partial f(\bar{x}) = \nabla f(x)$. Proof: Page 184 of Text fook.
- For $S \subseteq \mathbb{R}^n$, $N_S(\bar{x}) = \partial \delta_S(\bar{x})$, where $\delta_S(x) = \begin{cases} 0 & \text{if } x \in S \\ \infty & \text{otherwise.} \end{cases}$ otherwise.
 - ▶ Let f be convex, $A \in \mathbb{R}^{n \times m}$, and F(x) = f(Ax). If f is polyhedral or $\exists \alpha \in \mathbb{R}^m : A\alpha \in ri(dom(f))$, then $\partial F(x) = A^\top \partial f(Ax)$.

Proof: Prop. 5.4.5 In Textrook

- Let f, h be convex and F = f + h be proper. If $\operatorname{ri}(\operatorname{dom}(f)) \cap \operatorname{ri}(\operatorname{dom}(h)) \neq \emptyset, \text{ then } \partial F(x) = \partial f(x) + \partial h(x).$ fundamental from the form of the f
 - ▶ If $\emptyset \neq S \subseteq \text{dom}(f)$ is compact, then $\bigcup_{x \in S} \partial f(x) \neq \emptyset$ and bounded; and f is Lipschitz continuous on S with constant $L = \sup \|g\|_2$. $g \in \bigcup_{x \in S} \partial f(x)$ Proof. Proposition 5.4.2 in That Pook

Subdifferential in optimization

Smust be conver,

Let $S \subseteq \mathbb{R}^n, S \neq \emptyset$ and $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ be proper and convex. We know:

- by definition x^* minimizes f on \mathbb{R}^n if and only if $0 \in \partial f(x^*)$;
- ► ri(dom(f))∩ri(S) ≠ ∅ ⇒ $\partial F(x) = \partial f(x) + \partial \delta_S(x) = \partial f(x) + N_S(x)$.
 - Optimality Conditions Thm: Let $ri(dom(f)) \cap ri(S) \neq \emptyset$. Then x^* minimizes f over S if and only if $-\partial f(x^*) \cap N_S(x^*) \neq \emptyset$.

This is almost the same condition as for differentiable] Is: -ge If (x) and gT(2-x*) = 0 for all ze S tructions on slide 9, but the (x) Ige If (x) with gT(2-x) > 0 for all ze S set of g to choose from cond contain many vectors. Same intuition: reed to leave S it we want to decrease f sine all contain many vectors. Same intuition: reed to leave S it we want to decrease f sine all contain many vectors. Same intuition: reed to leave S it we want to decrease f sine all contain many vectors.

Conjugate function

Among all hyperplanes hormal to (g), we find one supporting function fitting gives us xt in which the hyperplane is supporting, so y & of (x') and f'(y) is the interept, so the hyperplane is defined as [-y]T[+x) - +*(y) = 0 (a) +*(y) = yTx+f(x').

Def: conjugate (aka/Fenchel conjugate) function of $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ is

$$f^*: \mathbb{R}^n \to \overline{\mathbb{R}}, \ f^*(y) := \sup_{x \in \mathbb{R}^n} (x^\top y - f(x))$$

and
$$xty - f(x) > 7y - f(x)$$

$$\forall z \in \mathbb{R}^n$$

Closed, convex (even if f is not convex), may be not proper.

Supremum over affile nunchons

Conjugacy Thm: $f^{**}(x) := (f^*)^*(x) \le f(x), \forall x \in \mathbb{R}^n$.

If f is closed, proper, convex, then $f^{**} = f$.

Present of this part; Proposition 1.6.1 in Testhook.

Examples of conjugate functions

These conditions describe

Proof:

$$f(x) = \frac{1}{2}x^{T}x, \quad f^{*}(y) = \frac{1}{2}y^{T}y \quad \forall f(x) = 0$$

$$f(y) = \sup_{x \in \mathbb{R}^{2}} x^{T}y - \frac{1}{2}x^{T}x \quad \forall f(x) = 0$$

$$\lim_{x \in \mathbb{R}^{2}} x^{T}y - \frac{1}{2}x^{T}x \quad \forall f(x) = 0$$

$$\lim_{x \in \mathbb{R}^{2}} x^{T}y - \frac{1}{2}x^{T}x \quad \forall f(x) = 0$$

$$\lim_{x \in \mathbb{R}^{2}} x^{T}y - \frac{1}{2}x^{T}x \quad \forall f(x) = 0$$

$$\lim_{x \in \mathbb{R}^{2}} x^{T}y - \frac{1}{2}x^{T}x \quad \forall f(x) = 0$$

$$\lim_{x \in \mathbb{R}^{2}} x^{T}y - \frac{1}{2}x^{T}x \quad \forall f(x) = 0$$

$$\lim_{x \in \mathbb{R}^{2}} x^{T}y - \frac{1}{2}x^{T}x \quad \forall f(x) = 0$$

$$\lim_{x \in \mathbb{R}^{2}} x^{T}y - \frac{1}{2}x^{T}x \quad \forall f(x) = 0$$

$$\lim_{x \in \mathbb{R}^{2}} x^{T}y - \frac{1}{2}x^{T}x \quad \forall f(x) = 0$$

$$\lim_{x \in \mathbb{R}^{2}} x^{T}y - \frac{1}{2}x^{T}x \quad \forall f(x) = 0$$

$$\lim_{x \in \mathbb{R}^{2}} x^{T}y - \frac{1}{2}x^{T}x \quad \forall f(x) = 0$$

$$\lim_{x \in \mathbb{R}^{2}} x^{T}y - \frac{1}{2}x^{T}x \quad \forall f(x) = 0$$

$$\lim_{x \in \mathbb{R}^{2}} x^{T}y - \frac{1}{2}x^{T}x \quad \forall f(x) = 0$$

$$\lim_{x \in \mathbb{R}^{2}} x^{T}y - \frac{1}{2}x^{T}x \quad \forall f(x) = 0$$

$$\lim_{x \in \mathbb{R}^{2}} x^{T}y - \frac{1}{2}x^{T}x \quad \forall f(x) = 0$$

$$\lim_{x \in \mathbb{R}^{2}} x^{T}y - \frac{1}{2}x^{T}x \quad \forall f(x) = 0$$

$$\lim_{x \in \mathbb{R}^{2}} x^{T}y - \frac{1}{2}x^{T}x \quad \forall f(x) = 0$$

$$\lim_{x \in \mathbb{R}^{2}} x^{T}y - \frac{1}{2}x^{T}x \quad \forall f(x) = 0$$

$$\lim_{x \in \mathbb{R}^{2}} x^{T}y - \frac{1}{2}x^{T}x \quad \forall f(x) = 0$$

$$\lim_{x \in \mathbb{R}^{2}} x^{T}y - \frac{1}{2}x^{T}x \quad \forall f(x) = 0$$

$$\lim_{x \in \mathbb{R}^{2}} x^{T}y - \frac{1}{2}x^{T}x \quad \forall f(x) = 0$$

$$\lim_{x \in \mathbb{R}^{2}} x^{T}y - \frac{1}{2}x^{T}x \quad \forall f(x) = 0$$

$$\lim_{x \in \mathbb{R}^{2}} x^{T}y - \frac{1}{2}x^{T}x \quad \forall f(x) = 0$$

$$\lim_{x \in \mathbb{R}^{2}} x^{T}y - \frac{1}{2}x^{T}x \quad \forall f(x) = 0$$

$$\lim_{x \in \mathbb{R}^{2}} x^{T}y - \frac{1}{2}x^{T}x \quad \forall f(x) = 0$$

$$\lim_{x \in \mathbb{R}^{2}} x^{T}y - \frac{1}{2}x^{T}x \quad \forall f(x) = 0$$

$$\lim_{x \in \mathbb{R}^{2}} x^{T}y - \frac{1}{2}x^{T}x \quad \forall f(x) = 0$$

$$\lim_{x \in \mathbb{R}^{2}} x^{T}y - \frac{1}{2}x^{T}x \quad \forall f(x) = 0$$

$$\lim_{x \in \mathbb{R}^{2}} x^{T}y - \frac{1}{2}x^{T}x \quad \forall f(x) = 0$$

$$\lim_{x \in \mathbb{R}^{2}} x^{T}y - \frac{1}{2}x^{T}x \quad \forall f(x) = 0$$

$$\lim_{x \in \mathbb{R}^{2}} x^{T}y - \frac{1}{2}x^{T}x \quad \forall f(x) = 0$$

$$\lim_{x \in \mathbb{R}^{2}} x^{T}y - \frac{1}{2}x^{T}x \quad \forall f(x) = 0$$

$$\lim_{x \in \mathbb{R}^{2}} x^{T}y - \frac{1}{2}x^{T}x \quad \forall f(x) = 0$$

$$\lim_{x \in \mathbb{R}^{2}} x^{T}y - \frac{1}{2}x^{T}x \quad \forall f(x) = 0$$

$$\lim_{x \in \mathbb{R}^{2}} x^{T}y - \frac{1}{2}x^{T}x \quad \forall f(x) = 0$$

$$\lim_{x \in \mathbb{R}^{2}} x^{T}y - \frac{1}{2}x^{T}x$$

►
$$f(x) = \|x\|_2$$
, $f^*(y) = \begin{cases} 0 & \text{if } \|y\|_2 \le 1 \\ \infty & \text{otherwise} \end{cases}$; by Hölder's inequality, if $f(x) = \|x\|_p$, $p \ge 1$, replace $\|y\|_2$ in f^* by $\|y\|_q$, $\frac{1}{p} + \frac{1}{q} = 1$.

$$f = \delta_S, \ f^*(y) = \sup_{x \in S} x^\top y; \ \text{and} \ f^*(y) = \delta_S \text{ if } S \text{ is a convex cone}$$

$$\sum_{x \in S} \sup_{x \in S} x^\top y = \int_{S} \inf_{x \in S} x^\top y = \int_{S} \sup_{x \in S} x^\top y = \int_{S} \inf_{x \in S} x^\top y = \int_{S} \sup_{x \in S} x^\top y =$$

Subgradients and conjugate functions

Conjugate Subgradient Thm: If $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ is proper, convex, then:

$$y \in \partial f(x) \iff x^{\top} y = f(x) + f^*(y) \text{ for any } x, y \in \mathbb{R}^n$$

 $\iff x \in \partial f^*(y) \text{ if } f \text{ closed.}$

Proof:
$$X = arg sup$$
 $f \times Ty - f (x)$ $f \times Ty - f \times Ty - f (x)$ $f \times Ty - f (x)$

Corollary:
$$f$$
 proper, convex, closed $\Longrightarrow \arg\min_{x\in\mathbb{R}^n} f(x) = \partial f^*(0)$.

Therefore, so xiy alore things.

Projection Theorem

Def: projection x^* of vector z on set S: $x^* = \arg\min_{x \in S} ||x - z||_2$

Thm: projection of any point $z \in \mathbb{R}^n$ on a non-empty closed convex set S is unique and $x^* \in \mathbb{R}^n$ is this projection if and only if

$$(z-x^*)^\top(x-x^*) \leq 0 \ \forall x \in S.$$

$$(x) \qquad \text{Proposition (.(.9))}$$

Proximal operator

offenset withdi Def: Proximal operator of convex, proper, lower semi-cont. $f_{\ell}: \mathbb{R}^n \to \overline{\mathbb{R}}$ and $\epsilon > 0$: $\operatorname{prox}_{\epsilon,f} : \mathbb{R}^n \to \mathbb{R}^n$, $\operatorname{prox}_{\epsilon,f}(z) := \arg\min_{x \in \mathbb{R}^n} f(x) + \frac{\epsilon}{2} ||x - z||_2^2$.

Finding prox is unconstrained convex problem, generalized projection:

 $\operatorname{prox}_{\varepsilon,\delta_S}(z)$ is equal to projection of z on S.

Proof: Indeed, f(4) = 0 if it is finite, and it is finite if XES, so we have proyection.

proof: Indeed, f(4) = 0 if it is finite, and it is finite if XES, so we have

proof: \[
\text{Proof:} \]

proof: \[
\text{Indeed}, f(4) = 0 if it is finite, and it is finite if XES, so we have

\[
\text{Proof:} \]

proof: \[
\text{Indeed}, f(4) = 0 if it is finite, and it is finite if XES, so we have

\]

Thm: $prox_{\epsilon,f}$ exists and is unique for any closed and convex f(extends projection thm).

Examples of prox-operators for $\epsilon=1$

- $f(x) = 0 : \operatorname{prox}_f(z) = z$
- $f(x) = \frac{1}{2}x^{\top}Px + q^{\top}x + r : prox_f(z) = (I_n + P)^{-1}(v q)$
- $f(x) = \|x\|_1 : \operatorname{prox}_f = T_1, \text{ where } T_{\epsilon} : \mathbb{R}^n \to \mathbb{R}^n \text{ is a soft-threshold}$ operator $T_{\epsilon}(z)_i = \begin{cases} x_i \epsilon & \text{if } x_i \geq \epsilon \\ 0 & \text{if } \epsilon \geq x_i \geq -\epsilon \text{ , } i = 1, \ldots, n. \\ x_i + \epsilon & \text{if } -\epsilon \geq x_i \end{cases}$

Proof: exercise. I dea: solve que eptimitation problem, similar to how we found conjugate penctions.

Properties of prox-operators (we assume fis proper, conver)

Recall:
$$\operatorname{prox}_f(z) := \arg\min_{x \in \mathbb{R}^n} f(x) + \frac{1}{2} ||x - z||_2^2$$
.

ightharpoonup Fixed points of prox_f are minimizers of f.

Proof: 1)
$$\neq$$
 fixed pant =D proof (7) = 7 =D nun $f(x) + \frac{1}{2}(1x-2) = \min f(x)$
 $x \in \mathbb{R}^n$
 x

ightharpoonup prox_f is firmly non-expansive \implies can iteratively find min of f.

 $ightharpoonup y = \operatorname{prox}_f(x) \iff x - y \in \partial f(y).$

Proof: fis proper, convex =D f(x)+ $\frac{1}{2}|(x-2||^2)$ is so too, and down(f) $f \phi$. Hence, $y \in Prof_f(x)$ iff $0 \in 2g_x(y) \in 20 \in 2f(y)$ + $y-x \leftarrow 2x-y \in 2f(y)$.