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Course plan

I Week 1: Introduction to convexity

I Week 2: More on convex sets

I Week 3: Dual view of convex sets + more on convex functions

I Week 4: Dual view of convex functions

I Week 5: Duality and optimization

I Week 6: Introduction to algorithms, descend methods

I Week 7: Proximal methods, projected gradients

I Weeks 8 - 9: Fix point approach, averaged operators

2 / 20



Dual view on convex functions

I Continuity and closedness

I Di↵erentiability and subgradients

I Conjugate functions

I Prox operators
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Types of continuity

Let S ✓ Rn, consider a function f :S ! Rm
for some m � 1.

Def: f is lower semicontinuous in x if f (x) lim inf
y!x

f (y), 8(y) ⇢ S .

Def: f is continuous in x 2dom(f ) if f (x)= lim
y!x

f (y), 8(y)⇢dom(f )

Def: f is Lipshitz-continuous with constant L > 0 if
kf (x)� f (y)k2  Lkx � yk2 for all x , y 2 dom(f )
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Semicontinuity and closedness

Def: f : S ! R is closed if its epigraph epi(f ) is a closed set.

Thm: Function f : Rn ! R is closed if and only if
() f is lower-semicontinuous
() level set V� =: {x 2 Rn : � � f (x)} is closed for any � 2 R
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Continuity and convexity

Thm: f :S!R proper and convex ) f continuous over ri(dom(f )).

Corollary: A convex function Rn ! R is continuous.
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Lipschitz continuity and fixed points

Def: f : Rn ! Rn is a non-expansive mapping if it is Lipschitz
continuous with constant L  1.

I If also kf (x)� f (y)k22 (f (x)� f (y))>(x�y) for all x , y 2dom(f ),
f is called firmly non-expansive.

I If L < 1, f is called a contraction.

Def: x is a fixed point of function f : Rn ! Rn if f (x) = x .

Banach Fixed Point Thm: Let f be a contraction. Then f admits a
unique fixed-point, and an algorithm starting from some x0 and
computing xk = f (xk�1) for k = 1, . . . converges to that fixed point.

Extension to firmly-non-expansive: xk = f (xk�1) for k = 1, . . .
converges to a fixed point if it exists.
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Di↵erentiable functions

Def: f :Rn ! R is di↵erentialble in x̄ 2dom(f ) if

lim
x!x̄

|f (x)�f (x̄)�rf (x̄)>(x�x̄)|
kx�x̄k = 0 for all sequences {x} converging to x̄ .

Gradient rf (x̄) :=
h
@f
@x1

(x̄), . . . , @f
@xn

(x̄)
i
and directional derivative

rv f (x̄) := lim
↵#0

f (x̄+↵v)�f (x̄)
↵ = rf (x̄)>v exist in x̄ for all v 2 Rn.
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Convex di↵erentiable functions and optimization

Thm: Let S ✓ Rn be convex, f be di↵erentiable over an open set
that contains S . Then f is convex over S if and only if

f (z)� f (x) � rf (x)>(z � x) 8x , z 2 S .

Corollary: for S and f as above,

I rf (x⇤) = 0 =) x⇤ minimizes f over Rn;

I x⇤ minimizes f over S if and only if rf (x⇤)>(z � x⇤) � 0 8z 2 S .
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Convex twice di↵erentiable functions

Thm: Let S ✓ Rn be convex and open, f be twice continuously
di↵erentiable over S . Then f is convex over S if and only if

r2f (x) ⌫ 0 8x 2 S .
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Subgradient and subdi↵erential

Def: g 2 Rn is a subgradient of a convex f : Rn ! R in x̄ 2 dom(f )
if f (z)� f (x̄) � g>(z � x̄) 8z 2 Rn.

Def: subdi↵erential @f (x̄) is the set of all subgradients of f in x̄ :

@f (x̄) := {g 2 Rn : f (z)� f (x̄) � g>(z � x̄) 8z 2 Rn}.
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Properties of subdi↵erential

I @f (x̄) is closed and convex as an intersection of closed subspaces.

I If f is di↵erentiable in x̄ , then @f (x̄) = rf (x).

I For S ✓ Rn, NS(x̄) = @�S(x̄), where �S(x) =

(
0 if x 2 S

1 otherwise.

I Let f be convex, A 2 Rn⇥m, and F (x) = f (Ax). If f is polyhedral
or 9↵ 2 Rm : A↵ 2 ri(dom(f )), then @F (x) = A>@f (Ax).

I Let f , h be convex and F = f + h be proper. If
ri(dom(f )) \ ri(dom(h)) 6= ;, then @F (x) = @f (x) + @h(x).

I If ; 6=S ✓dom(f ) is compact, then
S

x2S @f (x) 6=; and bounded;
and f is Lipschitz continuous on S with constant L= sup

g2
S

x2S @f (x)
kgk2.
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Subdi↵erential in optimization

Let S ✓ Rn, S 6= ; and f : Rn ! R be proper and convex. We know:

I by definition x⇤ minimizes f on Rn if and only if 0 2 @f (x⇤);

I min
x2S

f (x) = min
x2Rn

F (x), whereF (x) = f (x) + �S(x);

I ri(dom(f ))\ri(S) 6=; =) @F (x)=@f (x)+@�S(x)=@f (x)+NS(x).

Optimality Conditions Thm: Let ri(dom(f ))\ri(S) 6=;. Then x⇤

minimizes f over S if and only if �@f (x⇤) \ NS(x⇤) 6= ;.
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Conjugate function

Def: conjugate (aka Fenchel conjugate) function of f : Rn ! R is

f ⇤ : Rn ! R, f ⇤(y) := sup
x2Rn

(x>y � f (x))

Closed, convex (even if f is not convex), may be not proper.

Conjugacy Thm: f ⇤⇤(x) := (f ⇤)⇤(x)  f (x), 8x 2 Rn.
If f is closed, proper, convex, then f ⇤⇤ = f .
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Examples of conjugate functions

I f (x) = a>x + b, f ⇤(y) =

(
�b if y = a

1 otherwise

I f (x) = 1
2x

>x , f ⇤(y) = 1
2y

>y

I f (x) = kxk2, f ⇤(y) =

(
0 if kyk2  1

1 otherwise
; by Hölder’s inequality,

if f (x) = kxkp, p � 1, replace kyk2 in f ⇤ by kykq, 1
p + 1

q = 1.

I f = �S , f ⇤(y) = sup
x2S

x>y ; and f ⇤(y) = �S⇤ if S is a convex cone.
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Subgradients and conjugate functions

Conjugate Subgradient Thm: If f :Rn ! R is proper, convex, then:

y 2 @f (x) () x>y = f (x) + f ⇤(y) for any x , y 2 Rn

() x 2 @f ⇤(y) if f closed.

Corollary: f proper, convex, closed =) arg min
x2Rn

f (x) = @f ⇤(0).
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Projection Theorem

Def: projection x⇤ of vector z on set S : x⇤ = argmin
x2S

kx � zk2

Thm: projection of any point z 2 Rn on a non-empty closed convex
set S is unique and x⇤ 2 Rn is this projection if and only if

(z � x⇤)>(x � x⇤)  0 8x 2 S .
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Proximal operator

Def: Proximaloperatorof convex,proper, lower semi-cont. f :Rn!R
and ✏>0: prox✏,f :Rn!Rn, prox✏,f (z) :=argmin

x2Rn
f (x)+ ✏

2kx�zk22.

Finding prox is unconstrained convex problem, generalized projection:

prox�S (z) is equal to projection of z on S .

Thm: prox✏,f exists and is unique for any closed and convex f
(extends projection thm).
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Examples of prox-operators for ✏ = 1

I f (x) = 0 : proxf (z) = z

I f (x) = 1
2x

>Px + q>x + r : proxf (z) = (In + P)�1(v � q)

I f (x) = kxk1 : proxf = T1, where T✏ :Rn!Rn is a soft-threshold

operator T✏(z)i =

8
><

>:

xi � ✏ if xi � ✏

0 if ✏ � xi � �✏

xi + ✏ if � ✏ � xi

, i = 1, . . . , n.
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Properties of prox-operators

Recall: proxf (z) :=argmin
x2Rn

f (x)+ 1
2kx�zk22.

I Fixed points of proxf are minimizers of f .

I proxf is firmly non-expansive =) can iteratively find min of f .

I y = proxf (x) () x � y 2 @f (y).
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