
Efficient Hardware for

Neural Network Processing

Building Inference Engines for

Quantized Neural Networks

Using Brevitas and FINN

Jakoba Petri-Koenig

HW Acceleration/FIRE Event, June 2024

2 |

[Public]

AMD Research and Advanced Development (RAD)

• Integrated Comms and AI Lab

• ~20 researchers plus university program
• 5 different locations

• Established as Xilinx Research Labs and AMD Research

• Focus: AI and Communications
• Building systems, architectural exploration, algorithmic

optimizations, benchmarking

• In collaboration with partners, customers, and universities
• ETH Zürich, Paderborn University, TU Delft, Imperial College, KIT,

NTNU, Politecnico di Milano, NUS, University of Sydney

• Active Internship Program
• On average 10 interns at any given time

3 |

[Public]

Agenda 1. The FINN project

2. Status and Roadmap

The FINN Project

5 |

[Public]

FINN Project: A Brief Timeline

2016 Research project on binarized NNs (BNNs)

2017-19 Extended to multi-bit QNNs, multiple application domains

2019-21 Rebuilt from scratch for open source, growing community

2022-... Professional customer support through CSE Technology and

transfer of compiler stack to Engineering

Research and Advanced

Development

Custom and Strategic

Engineering

6 |

[Public]

Two Key Techniques for Customization in FINN

∑

+2

-4

+1

𝑓 .

∙ +1

+1

e.g. 1-bit weights

e.g. 3-bit activations

Custom Precision:

Few-bit Weights and Activations
Streaming Dataflow Architectures

for FPGAs

∙ −1

∙ −1

7 |

[Public]

Customized Dataflow Processing

versus More Generic Architectures

Matrix of Processing Engines (MPE)

(Vitis AI, ASICs, GPUs)
Dataflow Architectures

with FPGAs and FINN

Customized

Data path

MAC, Vector

Processor or VLIW

8 |

[Public]

Matrix of Processing Engines (MPEs)

Specializing for AI in General

• Popular layer-by-layer compute

• Batching to achieve high compute efficiency

• At latency cost (latency ~ batch size)

• Customized for ML in general

• Designed to run any DNN

• Specialized processing engines
• Operators

• ALU types

• Works really well for computer vision and natural language

processing

• Popular approach: VitisAI (FPGA or AIE) as well as

majority of AI accelerators

Buffer

PE

DNN

Matrix of Processing Engines (MPE)

“layer-by-layer” compute

9 |

[Public]

Dataflow - Specializing for Individual Topologies

• Hardware instantiates the topology as a dataflow architecture

• Customize everything to the specifics of the given DNN, any

operation, any connectivity

• Benefits:

• Improved efficiency

• Low fixed latency

• Scale performance and resources to meet the application

requirements

FPGA

allocated resource ~

compute requirement

per layer

DNN

10 |

[Public]

Dataflow Processing:

Scaling to Meet Performance and Resource Requirements

FPGA (fold 10)

RAM
RAM

LUTs,

DSP

LUTs,

DSP

FPGA (fold 1000)

RAM
RAM

LUTs,

DSP

FPGA (fold 1)

RAM
RAM

LUTs,

DSP

LUTs,

DSP

Scaling to fit into

available resources
Scaling to maximize

throughput

1. Scale performance and resources to meet the application requirements

2. If resources allow, we unfold completely, creating a circuit for inference at clock speed

200Minfps 20Minfps 200kinfps

11 |

[Public]

Customizing Arithmetic to Minimum Precision

Precision Modelsize [MB]

(ResNet50)

1b 3.2

8b 25.5

32b 102.5

Reducing precision saves resources/ scales performance,

and reduces memory

However, it requires quantization support in the training software

C= f(size of accumulator, size of weight,size of activation)

• Popular approach which reduces bits in the data representation

of weights and activations while preserving accuracy

• Reducing precision shrinks hardware cost/scales performance

• Instantiate n-times more compute within the same fabric, thereby

scale performance n-times

• Reduces memory footprint

• NN model can stay on-chip => no memory bottlenecks

• With dataflow: every layer has dedicated compute resources,

we can mix and match precision across layers

• Exploit custom arithmetic at a greater degree than MPEs

12 |

[Public]

FINN Framework: From DNN to FPGA Deployment

• Train or even learn reduced precision DNNs

• Library of standard layers

• Pretrained examples

• Perform optimizations

• Assemble parameterized HLS/RTL modules

• Generate a DNN hardware IP

• Embed the DNN IP into an infrastructure design

• Generate a Python run-time

• Enable integration with your application

• System integration available for some embedded and Alveo

platforms, including HACC

FINN Compiler

Hardware Architecture

Build

Deployment

Brevitas

Training in PyTorch

Algorithmic optimizations

Status and Roadmap

14 |

[Public]

Status Summary

• Many strategic customer engagements

• Including Sick AG

• Open-Source Adoption

• ~2k+ GitHub stars summarized across repos

• 250k+ Brevitas downloads

• ~200k QONNX downloads

• 17k+ FINN compiler downloads

• Academic Results

• ACM TRETS 2020, FPL’2020, DFT’2019 Best Paper awards

• 1000+ citations on original paper

• University Classes on computer architecture for ML with FINN

• Stanford, UNC Charlotte, NTNU in Norway, EPFL in Switzerland

• Regular tutorials, also available on YouTube: https://www.youtube.com/watch?v=zw2aG4PhzmA

• Business units providing customer support

• Lead engineering team: Custom and Strategic Engineering, Dublin

https://github.com/Xilinx/brevitas

https://github.com/Xilinx/finn

https://github.com/Xilinx/finn-hlslib

https://github.com/Xilinx/finn-examples

https://github.com/fastmachinelearning/q

onnx

“The FINN toolset is showing huge potential using it

in upcoming SICK products.

It is easy to use and with an extraordinary

performance and very promising results.

In the future, flexible implementations of ML in our

products with FINN can be a great advantage and even

replace static architectures as they are currently used.

Thanks to the FINN team for the great cooperation”

https://www.youtube.com/watch?v=zw2aG4PhzmA
https://github.com/Xilinx/brevitas
https://github.com/Xilinx/finn
https://github.com/Xilinx/finn-hlslib
https://github.com/Xilinx/finn-examples

15 |

[Public]

FINN Compiler Updates

• Refactoring of operator instantiation infrastructure

• FINN compiler used to assume that hardware blocks are synthesized from on HLS

• New class hierarchy to facilitate integration of RTL components

• Provide users with an interface to override the compiler’s choice

for HLS vs. RTL implementation on a per-layer basis

• RTL component library optimizing the implementations of critical layers

• Efficient implementation of 4-bit and 8-bit compute leveraging DSP slices

• Efficient implementation of multi-level thresholding

• Eradication of (regularly long) HLS synthesis times for layers with an RTL option

• Compiler optimization pass for accumulator and weight bit width minimization

• Added board support in system integration flow

• RFSoC 4x2 and U55C (contributed by University of Paderborn)

FINN v0.10

Release

16 |

[Public]

FINN Technical Roadmap: Capabilities

• Operator Hardening

• Revised RTL Thresholding by binary search

• Ingestion of fp32 inputs

• DSP-enabled Generalized Datatype Support
• Efficient higher-precision integer compute: int4, int8, …, int16

• Small standard floating-point formats: float16, bfloat16

• Custom MiniFloats: fp4 – fp8

• Internal clock pumping of DSP datapaths to increase their operational

density. We are aiming at an operational frequency around 500 MHz

• New Operators

• SeLU activation function

• Optimized transposed convolution

• Fallback float layers to mitigate streamlining limits

17 |

[Public]

FINN Technical Roadmap: Ease of Use

• FINN Library
• Refactoring of streamed layer interfaces

• Packed flat ap_uint<W> → explicit hls::vector<T, N>

• Combining HLS and RTL components into one FINN Library

• FINN Examples
• MobileNet-v1 and VGG10-RadioML with efficient DSP compute

• New example: German Traffic Sign Recognition Benchmark

18 |

[Public]

COPYRIGHT AND DISCLAIMER

©2024 Advanced Micro Devices, Inc. All rights reserved.

AMD, the AMD Arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this publication are for
identification purposes only and may be trademarks of their respective companies.

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors. The
information contained herein is subject to change and may be rendered inaccurate releases, for many reasons, including but not limited to product and roadmap
changes, component and motherboard version changes, new model and/or product differences between differing manufacturers, software changes, BIOS
flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD
assumes no obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes
from time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED 'AS IS." AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND
ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD SPECIFICALLY
DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT
WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM
THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

	Slide 1: Efficient Hardware for Neural Network Processing Building Inference Engines for Quantized Neural Networks Using Brevitas and
	Slide 2: AMD Research and Advanced Development (RAD)
	Slide 3: Agenda
	Slide 4: The FINN Project
	Slide 5: FINN Project: A Brief Timeline
	Slide 6: Two Key Techniques for Customization in FINN
	Slide 7: Customized Dataflow Processing versus More Generic Architectures
	Slide 8: Matrix of Processing Engines (MPEs) Specializing for AI in General
	Slide 9: Dataflow - Specializing for Individual Topologies
	Slide 10: Dataflow Processing: Scaling to Meet Performance and Resource Requirements
	Slide 11: Customizing Arithmetic to Minimum Precision
	Slide 12: FINN Framework: From DNN to FPGA Deployment
	Slide 13: Status and Roadmap
	Slide 14: Status Summary
	Slide 15: FINN Compiler Updates
	Slide 16: FINN Technical Roadmap: Capabilities
	Slide 17: FINN Technical Roadmap: Ease of Use
	Slide 18
	Slide 19

