
D. Caffarri

Postdoc researcher at NIKHEF (Amsterdam)

davide.caffarri@nikhef.nl

How to analyze data with ALICE software

1

mailto:davide.caffarri@nikhef.nl?subject=

Structure of the software

 ROOT is the main analysis tool we use to analyze data at CERN.

 fully developed at CERN

 tool for statistical analysis, plotting, define data format, …

 here you can find the slides Panos presented about ROOT

 AliRoot is the 1st ALICE specific software developed by scientists of the
ALICE Collaboration

 C++ structured code

 Build “on top” of ROOT (that’s why we are somehow dependent on the
ROOT version when we install it)

 Mainly used for Reconstruction, Simulation, Calibration, General
Analysis framework.

 AliRoot version are tagged and deployed on the filesystem (CVMFS) or
GRID when big modifications are needed —> experts decide.

 Very likely you might not need to investigate or modify this code.

2

https://surfdrive.surf.nl/files/index.php/s/FfX34hPi6wQNYTZ#pdfviewer

Structure of the software

 AliPhysics is the 2nd ALICE specific software developed by scientists of
the ALICE Collaboration

 C++ structured code

 Build “on top” of AliRoot (that’s why we are somehow dependent units
version when we install it)

 Mainly used for single user analysis

 AlIPhysics version are tagged and deployed on the filesystem (CVFNS)
or GRID once per day—> done for analyzers

 Very likely you will deal with this code.

 The code is divided in directories, one per Physics Working Group

YOU!

3

About ALICE Structure

 Physics Working Groups are the groups that organize the physics
measurements and their interpretations within the ALICE Collaboration

 Each PWG incorporates a group of analysis that cover similar topics

 Yours will be Correlations and Fluctuations one (PWGCF)

 Each PWG is divided in Physics Analysis Group (PAG)

 This is the first step of the analysis approval “procedure” when you
want to show your results.

 Here you can present also technical problems and results that are still
work in progress.

 Usually the different PAGs share the similar structure of the code and
same analysis tool

 ex Balance Functions code is in

~/alice/AliPhysics/PWGCF/EBE/BalanceFunctions/Ali…

PWG PAG Specific analysis

Your class

4

Where are the data?

 Depending on which data you want/need to use you might structure
your code in different way.

 ALICE provide a “general analysis framework” that is what we suggest
to use to develop your analysis but some preliminary studies can be done
also in different ways.

 Data you use can be:

 On your laptop → very limited amount of data (few hundred of events).
Just use for testing that your code works, basic debug (i.e. your
histograms are filled properly, no basic segmentation violations, …)

 On Stoomboot → you can analyze in principle a full data sample, we
stored a couple of them there. Useful for code development,
comparisons and fast look at Quality Assurance results.

 On GRID → “our” large data distributed system. All data samples we
collected since 2009 and MC productions are available there. Useful if
you have to use the full data statistics.

5

ALICE data structure

 You will run your analysis on Analysis Objects Data (AOD) data

 they contain information already processed (you should not worry about
detector calibration) on the tracks (pT, eta, phi, …) that you have on each
event

 Each event contains all information about the collisions: centrality, primary
vertex position, Nb of tracks produced in the events, kinematic variables of
the tracks.

 A certain amount of events are stored in one run. A run is defined from the
data taking procedure (Online system). Very likely from a change in the
detector configuration. Not all runs are good, there might be problems in the
detector configuration. Run list to be used are defined by the Performance
WG after extensive QA and can be found here.

 A series of runs with similar characteristics are grouped in period. For
example all PbPb 2015 (Run2 data) where collected during the LHC15o
period.

But also foresee your QA plots in your analysis. It is always good to cross check!

6

https://twiki.cern.ch/twiki/bin/view/ALICE/AliDPGReconstructedDataTakingPeriodsSummary

Few things about C++

 Your analysis task will be a C++ class.

 A class contains variables and functions (called also methods) as members

 Member variables are usually accessed via methods

 Example:
class Rectangle {

private:

 int width, height;

public:

Rectangle (int, int);

int GetArea() {return height * width};

}

7

 Class can inherit from one other

 This avoid to repeat common code for all classes, but can make the code a
bit tricky
 Example:
class Polygon {

private:

 int width, height;

}

class Rectangle : public Polygon{

public:

Rectangle (int, int);

int GetArea() {return height * width};

}

class Triangle : public Polygon{

public:

Triangle (int, int);

int GetArea() {return (height * width)/2};

}

Few things about C++

 Rectangle is derived from the
base class Polygon and inherits its
members

 while studying already produced
code if you cannot find members
or methods check the base class

8

How to create your class

 We usually call the analysis code Analysis Task

 Following official code your main method will “automatically” loop over the events

 so you have to think of a code that does the same thing over all events

 All analysis are derived from AliAnalysisTaskSE

 This provide the common framework where we do the analysis

 you have to stick to some common rules on how build your analysis

AliAnalysisTaskSE::AliAnalysisTaskSE();

AliAnalysisTaskSE::AliAnalysisTaskSE(const char*);

AliAnalysisTaskSE::UserCreateOutputObjects();

AliAnalysisTaskSE::UserExec(Option_t*);

AliAnalysisTaskSE::Terminate(Option_t*);

Constructor

Copy Constructor

Histos definition

Analysis

End of the analysis

 Fixed format to build your class:

 header file .h → contains function prototypes

 implementation file .cxx → where the code is implemented

 AddTask.C → creates an instance of your class and configures it

9

#ifndef ALIANALYSISTASkMYTASK_H

#define ALIANALYSISTASKMYTASK_H

class AliAnalysisTaskMyTask : public AliAnalysisTaskSE {

public:

//constructors

AliAnalysisTaskMyTask();

AliAnalysisTaskMyTask(const char *name);

// destructor

virtual ~ AliAnalysisTaskMyTask();

//called once at the beginning of the runtime

virtual void UserCreateOutputObjects();

//called for each event

virtual void UserExec(Option_t* option);

//called at the end of the analysis

virtual void Terminate(Option_t* option);

ClassDef (AliAnalysisTaskMyTask, 1);

};

#endif

Header File AliAnalysisTaskMyTask.h

10

Header File AliAnalysisTaskMyTask.h
#ifndef ALIANALYSISTASKBFPSI_H

#define ALIANALYSISTASKBFPSI_H

class AliAnalysisTaskMyTask : public AliAnalysisTaskSE {

public:

//constructors

AliAnalysisTaskMyTask();

AliAnalysisTaskMyTask(const char *name);

// destructor

virtual ~ AliAnalysisTaskMyTask();

//called once at the beginning of the runtime

virtual void UserCreateOutputObjects();

//called for each event

virtual void UserExec(Option_t* option);

//called at the end of the analysis

virtual void Terminate(Option_t* option);

private:

AliAODEvent *fAOD; //! input event

TList* fOutputList; //! output list

TH1F *fHistPt; //! histogram

ClassDef (AliAnalysisTaskMyTask, 1);

};

#endif

• Class members must be defined in the
header!

• Pointers to objects that are initialized in
the UserCreateOutputObjects() should
have //!

• The Output List is used to have one
output objects with many different other
objects inside

11

Implementation AliAnalysisTaskMyTask.cxx
AliAnalysisTaskMyTask::AliAnalysisTaskMyTask():

AliAnalysisTaskSE(),

fAOD(0x0), fOutputList(0x0), fHistPt(0),

{

}

AliAnalysisTaskMyTask::AliAnalysisTaskMyTask(const char *name):

AliAnalysisTaskSE(),

fAOD(0x0), fOutputList(0x0), fHistPt(0),

{

DefineInput(0, TChain::Class());

DefineOutput(1, TList::Class());

}

• Two constructors where:

• we initialize the data members to

their default values,

• we said to the task what to expect as

input and output

12

Implementation AliAnalysisTaskMyTask.cxx
AliAnalysisTaskMyTask::AliAnalysisTaskMyTask():

AliAnalysisTaskSE(),

fAOD(0x0), fOutputList(0x0), fHistPt(0),

{

}

AliAnalysisTaskMyTask::AliAnalysisTaskMyTask(const char *name):

AliAnalysisTaskSE(),

fAOD(0x0), fOutputList(0x0), fHistPt(0),

{

DefineInput(0, TChain::Class());

DefineOutput(1, TList::Class());

}

AliAnalysisTaskMyTask::UserCreateOutputObjects() {

fOutputList = new TList();

fOutputList—>SetOwner(kTRUE);

fHistPt = new TH1F(“fHistPt”, “fHistPt”, 100, 0, 100);

fOutputList ->Add(fHistPt);

PostData(1, fOutputList);

}

• Create a list

• Create a hits and add it to

the list

• Add the list to the output

file

• Remember to include the
needed classes: TList and
TH1F in this case 13

Implementation AliAnalysisTaskMyTask.cxx

AliAnalysisTaskMyTask::UserExec(Option_t *){

AliAODEvent *fAOD = dynamic_cast<AliAODEvent *>(InputEvent());

if (!fAOD) return;

Int_t nTracks=fAOD->GetNumberOfTracks();

for(Int_t i=0; i< nTracks; i++){

AliAODTrack *track = static_cast<AliAODTrack*>(fAOD->GetTrack(i));

if (!track) continue;

fHistPt->Fill(track->Pt());

}

PostData(1, fOutputList);

}

• Take the event from the
analysis manager

• From the event get the
tracks and loop over
them

• Fill your output
histogram

• Save the updated output

14

Configuration macro: AddTaskMyTask.C

AliAnalysisTaskMyTask *AddMyTask(TString name =“name”){

AliAnalysisManger *mgr = AliAnalysisManager::GetAnalysisManager();

TString fileName = AliAnalysisManager::GetCommonFileName();

fileName+=“_MyTask”;

AliAnalysisTaskMyTask *task = new AliAnalysisTaskMyTask(name.Data());

mgr—>AddTask(task);

mgr—>ConnectInput(task, 0, GetCommmonInputContainer());

mgr->ConnectOutput(task, 1, mgr, CreateContainer(“MyOutputContainer”,
TList::Class(), AliAnalysisManager::kOutputContainer,
filename.Data());

return task;

}

• Get the analysis
manager

• Initialize your task

• Connect input
container (only
one)

• Connect all
output
containers.

15

How to run the analysis locally: runAnalysis.C

void runAnalysis(){

gROOT->ProcessLine(“.include $ROOTSYS/include”);

gROOT->ProcessLine(“.include $ALICE_ROOT/include”);

gROOT->ProcessLine(“.include $ALICE_PHYSICS/include”);

AliAnalysisManager *mgr = new AliAnalysisManager(“AnalysisMyTask”);

AliAODInputHandler *aodH = new AliAODInputHandler();

mgr->SetInputEventHandler(aodH);

gROOT->LoadMacro(“AliAnalysisTaskMyTask.cxx++g”);

gROOT->LoadMacro(“AddMyTask.C”);

AliAnalysisTaskMyTask *task = AddMyTask();

TChain *chain = new TChain(“aodTree”);

chain->Add(“…/../../AliAOD.root”);

mgr->StartAnalysis(“local”, chain);

}

• Say where are
the file to be
included

• Initialize the
analysis manager
and the type of
input you need

• Compile your
task, load your
configuration
macro.

• Initialize your
analysis task

• Define your input.

16

