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Post-quantum cryptography

Implemented on a classical, but resistant to attacks on a quantum computer.

• Shor’s quantum algorithm: solves integer factorisation and discrete logarithms in abelian groups in polynomial time.

‣ All* currently deployed public-key cryptosystems would be broken by an adversary in possession of a large 
quantum computer.

‣ All public-key cryptosystems need to be replaced. 
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Post-quantum cryptography

Implemented on a classical, but resistant to attacks on a quantum computer.

• Shor’s quantum algorithm: solves integer factorisation and discrete logarithms in abelian groups in polynomial time.

‣ All* currently deployed public-key cryptosystems would be broken by an adversary in possession of a large 
quantum computer.

‣ All public-key cryptosystems need to be replaced. 

‣ If the public-key cryptography component is broken, the entire infrastructure is broken because the handshake is 
compromised.

• Grover’s quantum algorithm: quadratic speedup of exhaustive search.

‣ Impact on symmetric cryptography (as a rule of thumb): double the key sizes.
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Computationally hard problems

MQ (multivariate quadratic) 
problem

Integer factorisation 
problem

Discrete log 
problem

Boolean satisfiability 
problem

Travelling salesman 
problem

Graph colouring 
problem

Isomorphism of polynomials 
problem

Code equivalence 
problem

Isogeny path 
problemSyndrome decoding 

problem
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The different flavours of PQC
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PQC families

Hash-based cryptography

Multivariate cryptography

Code-based cryptography

Lattice-based cryptography

Isogeny-based cryptography



Hash-based cryptography
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Hash-based cryptography

m h = H(m)

Used to build digital signature schemes with only one security assumption.

Worst-case complexity: !(2n)

m

n

Hard problem: find a pre-image of .h



O V
Multivariate cryptography



10

Multivariate cryptography

Example. f1 : x1x3 + x2x4 + x1 + x3 + x4 = 0
f2 : x2x3 + x1x4 + x3x4 + x1 + x2 + x4 = 0
f3 : x2x4 + x3x4 + x1 + x3 + 1 = 0
f4 : x1x2 + x1x3 + x2x3 + x3 + x4 + 1 = 0
f5 : x1x2 + x2x3 + x1x4 + x3 = 0
f6 : x1x3 + x1x4 + x3x4 + x1 + x2 + x3 + x4 = 0

Input:  multivariate quadratic polynomials  of  variables over a 
finite field . 
Question: find a tuple  in , such that .

m f1, …, fm n
"q

x = (x1, …, xn) "n
q f1(x) = … = fm(x) = 0

The MQ problem
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Multivariate cryptography

Binary search tree

0 1
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Multivariate cryptography

Binary search tree

Worst-case complexity: !(2n)

0 1
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Code-based cryptography
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Code-based cryptography

Encoding

Alice

Decoding

Bob

Given a syndrome , find  such that . s = He e wt(e) = t

The syndrome decoding problem

Hc = 0

Parity-check 
matrix Codeword: it is in 

the kernel of H

= Hc + He = 0 + He = He

Syndrome: depends 
only on the error vector.

= sH(c + e)

Small error: 
Hamming weight is t
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Code-based cryptography

=

H e s

Entry is 0

Entry is 1

Entry is 0 or 1
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Code-based cryptography

=

H e s

Entry is 0

Entry is 1

Entry is 0 or 1

 is equal to the sum of the columns where  is nonzero.s ei
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Code-based cryptography

=

Cost:  sums of  columns.(n
t ) t

Pick any group of  columns of , add them and 
compare with .

t H
s



Lattice-based cryptography
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Lattice-based cryptography

A lattice  is a discrete subgroup of .L ⊂ ℝn ℝn

dots: points on the lattice .c ∈ L

for every , there exists 
an open ball around  that 
contains no other elements 
from .

v ∈ L
v

L

Lattice basis:  -linearly independent vectors n ℝ b1, …, bn

L := {
n

∑
i=1

aibi |ai ∈ ℤ}

B = (b1
b2) = (4 0

3 5)
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Lattice-based cryptography

Input: an arbitrary basis  of a lattice L and 
a target vector . 
Question: Find a lattice vector  that is 
closest to .

B
t ∈ ℝn

v ∈ L
t

The Closest Vector Problem (CVP)
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Lattice-based cryptography

0 0

CVP input t = (1,11)

Hard problem

Good basis Bad basis

 (λ1, λ2) (4 0
3 5) = (1,11)

   t = − 1.4 b1+2.2 b2

 c = − 1b1+2b2

rounding

✓ 

 (λ1, λ2) (7 5
6 10) = (1,11)

   t = − 1.4 b′ 1+1.8 b′ 2

 c = − 1b′ 1+2b′ 2

rounding

✘



φ

x
Isogeny-based cryptography
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Isogeny-based cryptography

Elliptic curves

Q = xP

P



Q = 2P

,(x, y) ↦ (λ2 − 2x, λx + y)

λ = 3x2 + a
2y

22

Isogeny-based cryptography

Elliptic curves

P
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Isogeny-based cryptography

Isogenies: maps between elliptic curves

φ
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Isogeny-based cryptography

Isogenies: maps between elliptic curves

φ

3P = ! !

P

2PQ Q′ 

(x, y) ↦ ( x3 − 4x2 + 30x − 12
(x − 2)2 , x3 − 6x2 − 14x + 35

(x − 2)3 ⋅ y)
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Isogeny-based cryptography

Isogenies: maps between elliptic curves

φ

3P = ! !

P

2PQ Q′ 

(x, y) ↦ ( x3 − 4x2 + 30x − 12
(x − 2)2 , x3 − 6x2 − 14x + 35

(x − 2)3 ⋅ y)

Input: Two supersingular curves  and . 
Question: Find an isogeny  from  to .

E E′ 

φ E E′ 

The isogeny path problem
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Isogeny-based cryptography

• Degree of an isogeny: how ‘big’ the isogeny is

‣ Complexity of computing an isogeny: linear in the degree.

‣ Composing isogenies: the degrees multiply: .deg(φ ∘ ψ) = deg(φ) ⋅ deg(ψ)

• From a curve , there are  isogenies of degree .E (ℓ + 1) ℓ

?

E

, φ deg(φ) = d = ℓe1
1 ⋅ ℓe2

2 ⋯ℓen
n

-isogeny

ℓ1

-isogeny
ℓ1

… -isogeniesℓ1 -isogeny
ℓ2

…

-isogenyℓn
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Isogeny-based cryptography

Brute-forcing the (fixed-degree) isogeny path problem.

…

…E

E′ 

-isogeny2e



The Fiat-Shamir construction
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Pick a hard problem

3-Tensor Isomorphism



27

Pick a hard problem

3-Tensor Isomorphism



27

Pick a hard problem

3-Tensor Isomorphism



27

Pick a hard problem

3-Tensor Isomorphism



27

Pick a hard problem

3-Tensor Isomorphism



27

Pick a hard problem

3-Tensor Isomorphism



27

Pick a hard problem

3-Tensor Isomorphism



27

Pick a hard problem

3-Tensor Isomorphism
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ZK identification scheme

(A, B, T)
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ZK identification scheme

(A, B, T)

(Ã, B̃, T̃) ˜
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ZK identification scheme

(A, B, T)

(ÃA−1 , B
−1 B̃, T

−1 T̃)

(Ã, B̃, T̃) ˜
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ZK identification scheme

A A

Prover Verifier

(A, B, T)

(Ã, B̃, T̃)

(ÃA−1 , B
−1 B̃, T

−1 T̃)

˜

(A, B, T)
-0 -1
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ZK identification scheme

A A
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ZK identification scheme

A A

Prover Verifier
Pick a challenge  b ∈ {0,1}
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ZK identification scheme

A A

Prover Verifier
Pick a challenge  b ∈ {0,1}

Response

(A, B, T)

(Ã, B̃, T̃)

(ÃA−1 , B
−1 B̃, T

−1 T̃)

˜

Commit to ephemeral ˜

(A, B, T)
-0 -1
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ZK identification scheme

A A

Prover Verifier

Commit to ephemeral

Pick a challenge  b ∈ {0,1}

Response

 b = 0

 (Ã, B̃, T̃)

(A, B, T)

(Ã, B̃, T̃)

(ÃA−1 , B
−1 B̃, T

−1 T̃)

˜

˜

(A, B, T)
-0 -1
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ZK identification scheme

A A

Prover Verifier

Commit to ephemeral  

Pick a challenge  b ∈ {0,1}

Response

 (ÃA−1, B−1B̃, T−1T̃)

(A, B, T)

(Ã, B̃, T̃)

(ÃA−1 , B
−1 B̃, T

−1 T̃)

˜

˜

(A, B, T)
-0 -1

 b = 1
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The Fiat-Shamir transform

The goal is to transform an interactive identification scheme into a digital 
signature scheme.

Instead of the prover choosing a challenge, the challenge is 
determined by the hash of the message and commitments.

A A

Signing Verification

Alice Bob

•
•
•  

isometry  

com ← -̃
ch ← H(m, com)
resp ←

-b → -̃

•
•
• Check if 

 is an 
isometry 

ch ← H(m, com)
-̃ ← com

resp
-b → -̃

(com, resp)m

(A, B, T)
-0 -1



Timeline and challenges
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NIST standardisation timeline 
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NIST standardisation timeline 

CRYSTALS-KYBER CRYSTALS-
Dilithium

FALCON

SPHINCS+

x1x2 + x3 = 0
x2

1 x3 + x2 = 0

CROSS

Enh. pqsigRM

FuLeeca

LESS

MEDS

Wave

SQIsignEagleSign

HAETAE

HAWK

HuFu

Raccoon

SQUIRRELS

EHTv3/4

Biscuit

3WISE

DME-Sign

HPPC

MAYO

PROV

MQOM
MIRA

PERK

ALTEQ

eMLE-Sig 2.0

KAZ-SIGN

Preon

MiRitH

AIMer

FAEST

SPHINCS-α

Ascon-Sign

RYDE

SDitH

QR-UOV

SNOVA

TUOV

UOV

VOX

Xifrat1-Sign.I
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Challenges in PQC

• Security assessment

• Building advanced constructions

• Key/ciphertext/signature sizes and computational costs

• Physical security assessment



Thank you!
Q?


