An overview of post-quantum cryptography

Monika Trimoska

Security in Times of Surveillance 2024
May 31, Eindhoven

TU/e

Post-quantum cryptography

ζ
Implemented on a classical, but resistant to attacks on a quantum computer.

- Shor's quantum algorithm: solves integer factorisation and discrete logarithms in abelian groups in polynomial time.
- All* currently deployed public-key cryptosystems would be broken by an adversary in possession of a large quantum computer.
- All public-key cryptosystems need to be replaced.

Post-quantum cryptography

Implemented on a classical, but resistant to attacks on a quantum computer.

Post-quantum cryptography

Implemented on a classical, but resistant to attacks on a quantum computer.

Post-quantum cryptography

Implemented on a classical, but resistant to attacks on a quantum computer.

- Shor's quantum algorithm: solves integer factorisation and discrete logarithms in abelian groups in polynomial time.
- All* currently deployed public-key cryptosystems would be broken by an adversary in possession of a large quantum computer.
- All public-key cryptosystems need to be replaced.
- If the public-key cryptography component is broken, the entire infrastructure is broken because the handshake is compromised.
- Grover's quantum algorithm: quadratic speedup of exhaustive search.
- Impact on symmetric cryptography (as a rule of thumb): double the key sizes.

Computationally hard problems

In this talk

1

The different flavours of PQC

Cryptographic design example

The different flavours of PQC

PQC families

Hash-based cryptography

Multivariate cryptography

Lattice-based cryptography

Isogeny-based cryptography

Hash-based cryptography

Hash-based cryptography

Worst-case complexity: $\mathcal{O}\left(2^{n}\right)$
Hard problem: find a pre-image of h.
\longrightarrow Used to build digital signature schemes with only one security assumption.

Multivariate cryptography

Multivariate cryptography

The MQ problem

Input: m multivariate quadratic polynomials f_{1}, \ldots, f_{m} of n variables over a finite field \mathbb{F}_{q}.
Question: find a tuple $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ in $\mathbb{F}_{q^{\prime}}^{n}$ such that $f_{1}(\mathbf{x})=\ldots=f_{m}(\mathbf{x})=0$.

Example. $f_{1}: x_{1} x_{3}+x_{2} x_{4}+x_{1}+x_{3}+x_{4}=0$

$$
\begin{aligned}
& f_{2}: x_{2} x_{3}+x_{1} x_{4}+x_{3} x_{4}+x_{1}+x_{2}+x_{4}=0 \\
& f_{3}: x_{2} x_{4}+x_{3} x_{4}+x_{1}+x_{3}+1=0 \\
& f_{4}: x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}+x_{3}+x_{4}+1=0 \\
& f_{5}: x_{1} x_{2}+x_{2} x_{3}+x_{1} x_{4}+x_{3}=0 \\
& f_{6}: x_{1} x_{3}+x_{1} x_{4}+x_{3} x_{4}+x_{1}+x_{2}+x_{3}+x_{4}=0
\end{aligned}
$$

Multivariate cryptography

$$
\begin{aligned}
& x_{1} \cdot x_{2}+x_{1} \cdot x_{3}+x_{3} \cdot x_{4}+x_{3}=0 \\
& x_{2} \cdot x_{3}+x_{2} \cdot x_{4}+x_{1}+x_{2}+1=0 \\
& x_{1} \cdot x_{2}+x_{2} \cdot x_{3}+x_{2} \cdot x_{4}+x_{1}+x_{4}=0 \\
& x_{1} \cdot x_{4}+x_{2} \cdot x_{3}+x_{2}+x_{3}+x_{4}=0
\end{aligned}
$$

Binary search tree

Multivariate cryptography

Worst-case complexity: $\mathcal{O}\left(2^{n}\right)$

$$
\begin{aligned}
& 1 \cdot 0+1 \cdot 0+0 \cdot 1+0=0 \\
& 0 \cdot 0+0 \cdot 1+1+0+1=0 \\
& 1 \cdot 0+0 \cdot 0+0 \cdot 1+1+1=0 \\
& 1 \cdot 1+0 \cdot 0+0+0+1=0
\end{aligned}
$$

Binary search tree

Code-based cryptography

Code-based cryptography

The syndrome decoding problem
Given a syndrome $\mathbf{s}=\mathbf{H e}$, find \mathbf{e} such that $w t(\mathbf{e})=t$.

Code-based cryptography

Code-based cryptography

\mathbf{s} is equal to the sum of the columns where e_{i} is nonzero.

Code-based cryptography

\longrightarrow Cost: $\binom{n}{t}$ sums of t columns.

Lattice-based cryptography

Lattice-based cryptography

Lattice-based cryptography

Lattice-based cryptography

Isogeny-based cryptography

$\bigcirc 0<$

Isogeny-based cryptography

\longrightarrow Elliptic curves

Isogeny-based cryptography

\longrightarrow Elliptic curves

$$
\begin{aligned}
& (x, y) \mapsto\left(\lambda^{2}-2 x, \lambda x+y\right) \\
& \lambda=\frac{3 x^{2}+a}{2 y}
\end{aligned}
$$

Isogeny-based cryptography

Isogenies: maps between elliptic curves

Isogeny-based cryptography

\longrightarrow Isogenies: maps between elliptic curves

Isogeny-based cryptography

\longrightarrow Isogenies: maps between elliptic curves

The isogeny path problem

Input: Two supersingular curves E and E^{\prime}. Question: Find an isogeny φ from E to E^{\prime}.

$$
(x, y) \mapsto\left(\frac{x^{3}-4 x^{2}+30 x-12}{(x-2)^{2}}, \frac{x^{3}-6 x^{2}-14 x+35}{(x-2)^{3}} \cdot y\right)
$$

Isogeny-based cryptography

- Degree of an isogeny: how 'big' the isogeny is
- Complexity of computing an isogeny: linear in the degree.
- Composing isogenies: the degrees multiply: $\operatorname{deg}(\varphi \circ \psi)=\operatorname{deg}(\varphi) \cdot \operatorname{deg}(\psi)$.

- From a curve E, there are $(\ell+1)$ isogenies of degree ℓ.

Isogeny-based cryptography

\longrightarrow Brute-forcing the (fixed-degree) isogeny path problem.

The Fiat-Shamir construction

Pick a hard problem

\longrightarrow 3-Tensor Isomorphism

$$
\mathcal{C} \subseteq \mathbb{F}_{q}^{m \times n \times k}
$$

Pick a hard problem

\longrightarrow 3-Tensor Isomorphism

$$
\mathbf{T} \in \mathrm{GL}_{k}(q)
$$

$$
\mathbf{A} \in \mathrm{GL}_{m}(q)
$$

$$
\mathbf{B} \in \mathrm{GL}_{n}(q)
$$

Pick a hard problem

\longrightarrow 3-Tensor Isomorphism

$$
\mathbf{T} \in \mathrm{GL}_{k}(q)
$$

$\mathbf{A} \in \mathrm{GL}_{m}(q)$

$\mathbf{B} \in \mathrm{GL}_{n}(q)$

Pick a hard problem

\longrightarrow 3-Tensor Isomorphism

$$
\mathbf{T} \in \mathrm{GL}_{k}(q)
$$

$$
\mathbf{A} \in \mathrm{GL}_{m}(q)
$$

$$
\mathbf{B} \in \mathrm{GL}_{n}(q)
$$

Pick a hard problem

\longrightarrow 3-Tensor Isomorphism

$$
\mathbf{T} \in \mathrm{GL}_{k}(q)
$$

$\mathbf{A} \in \mathrm{GL}_{m}(q)$
$\mathbf{B} \in \mathrm{GL}_{n}(q)$

Pick a hard problem

\longrightarrow 3-Tensor Isomorphism

$$
\mathbf{T} \in \mathrm{GL}_{k}(q)
$$

$$
\mathbf{A} \in \mathrm{GL}_{m}(q)
$$

$$
\mathbf{B} \in \mathrm{GL}_{n}(q)
$$

Pick a hard problem

\longrightarrow 3-Tensor Isomorphism

$$
\mathbf{T} \in \mathrm{GL}_{k}(q)
$$

$\mathbf{A} \in \mathrm{GL}_{m}(q)$
$\mathbf{B} \in \mathrm{GL}_{n}(q)$

Pick a hard problem

\longrightarrow 3-Tensor Isomorphism

$$
\frac{\mathcal{D} \subseteq \mathbb{F}_{q}^{m \times n \times k}}{}
$$

ZK identification scheme

ZK identification scheme

ZK identification scheme

ZK identification scheme

Prover

($\mathbf{A}, \mathbf{B}, \mathbf{T}$)

Verifier

ZK identification scheme

Prover

($\mathbf{A}, \mathbf{B}, \mathbf{T})$

ZK identification scheme

ZK identification scheme

Prover

($\mathbf{A}, \mathbf{B}, \mathbf{T}$)
\longleftarrow Pick a challenge $b \in\{0,1\}$

Response

Verifier

ZK identification scheme

Prover

($\mathbf{A}, \mathbf{B}, \mathbf{T}$)

Pick a challenge $b \in\{0,1\}$

Verifier

ZK identification scheme

Prover

($\mathbf{A}, \mathbf{B}, \mathbf{T}$)

Pick a challenge $b \in\{0,1\}$

Verifier

The Fiat-Shamir transform

The goal is to transform an interactive identification scheme into a digital signature scheme.
\longrightarrow
Instead of the prover choosing a challenge, the challenge is determined by the hash of the message and commitments.

Timeline and challenges

NIST standardisation timeline

June 2023
July 2020 deadline for additional signatures submissions

November 2017
deadline for submissions
69 out of 82 submission accepted
announced 3rd round candidates

call for proposals
January 2019
announced 2nd round candidates
26 proposals

July 2022
announced algorithms to be standardized

+ call for additional signatures

NIST standardisation timeline

June 2023
July 2020 deadline for additional signatures submissions

NIST standardisation timeline

Challenges in PQC

- Security assessment
- Key/ciphertext/signature sizes and computational costs
- Physical security assessment

Ward Beullens

IBM Research, Zurich, Switzerland
Research, Zurich, Switz
wbeézurich. ibm. com

Abstract. This work introduces new key recovery attacks against the Rainbow signature scheme, which is one of the three finalist signature schemes still in the NIST Post-Quantum Crypeo graphy standardization
project. The new attacks outperform previously known attacks for all the project. The new attacks outperform previously known attacks for all the
parameter sets submitted to NIST and make a key-recovery practical for parameter sets submitted to NIST and make a key-recovery practical for
the SL 1 parameters. Concretely. given a Rainbow public key for the

An efficient key recovery attack on SIDH
Wouter Castryck ${ }^{1,2 \oplus}$ and Thomas Decru ${ }^{1} \odot$
${ }^{2}$ Vakgroep Wiskunde: Algebra en Meetkunde, Universiteit Gent, Belgium

Abstract. We present an efficient key recovery attack on the Supersingular Isogeny Dififie Hellman protocol (SIDH). The attack is base on Kan's "reducibity crite
curres and for strongly relies on the torsion point fiom products of curves and strongly relies on the torsion point images that Alice and
Bob exchange during the protocol. If we assume knowledge of the endoBorphism ring of the starting curve then the classical running time
polynomial in the input size (hewisticyly) polynomial in the input size (heuristically), apart from the factorization
of a small number of integers that only depend on the system parameters.

- Building advanced constructions

Thank you!
 Q?

