TECHNISCHE
UNIVERSITAT
WIEN

Vienna{Austria

Institut fur
Computertechnik
Institute of

Computer Technology

Self-Aware CPSs

Axel Jantsch

TU Wien, Vienna, Austria

oCPS Fall School
October 2019



Self-Aware Control Loop




The Problem

Varying Application
and User Demands
workload phasic behavior

user inputs
varylng compute memory, and communication

unctional Aberratlh

F . .
r— — — — ————" Non-functional Aberrations
SW/HW design errors Aging I
| 1 %\0'3'
Z | =
I=] s Gl .
i \ | S
Malicious attacks | 81
0.1~
| | °
| HW Faults e o 8‘ y Y ?
0 30 40 50
—_——— e — — Temperature (°C)

T



The Problem

e Large number of
resources

Varying Application
and User Demands
workload phasic behavior

user inputs
varylng compute memory, and communication

unctional Aberratlh

= ) .
r— — — — ————" Non-functional Aberrations
SW/HW design errors Aging I
| 1 %\0'3
B I3
m o AGE )
o/} [ ﬁ« | §0'27
Malicious attacks £2% | 81
0.1~
| o I
| wwraues cae= % 30 20 50
—_—— e —— — — Temperature (°C)
~
3



The Problem

e Large number of
resources

* Many tight constraints
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The Problem
e Large number of
resources
* Many tight constraints
¢ Varying application
demands, both within
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applications; t @

Functional Aberrations

Varying Application

and User Demands

workload phasic behavior

user inputs

varying compute memory, and communication
e

Taskn

r————————7" Non-functional Aberrations
SW/HW design errors Aging I
I i | %\0.3,
| E 5' _ ( Ace 5
| > I é : | EO-Z'
Malicious attacks | %0 |
Y- L
| =
| HWFaults * 7% 1 % % - = @
_——————— Temperature (°C)

T



Large number of
resources

Many tight constraints
Varying application
demands, both within
and between
applications;

Functional Aberrations:

® Design errors or
omissions;
® Malicious attacks;
* Aging;
® Soft errors;
Non-functional
Aberrations:

® Performance;

® Power consumption;
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The SoC Radar
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__Performance
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Cost

_|___----7""" Usability
Functionality

Santanu Sarma et al. “On-Chip Self-Awareness Using Cyberphysical-Systems-On-Chip (CPSoC)". In: Proceedings

of the 12th International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS). New
Delhi, India, Oct. 2014
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Self-Awareness Architecture
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Goals for Dynamic Task Mapping
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Dynamic Task Mapping
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Example 1: Performance Driven Task Mapping

MapPro Objectives:

* Maximize performance for all applications;
e Minimize communication latency in the new application;
¢ Minimize fragmentation.

Mohammad-Hashem Haghbayan et al. “MapPro: Proactive Runtime Mapping for Dynamic Workloads by Quantifying
Ripple Effect of Applications on Networks-on-Chip”. In: Proceedings of the International Symposium on Networks
on Chip. Vancouver, Canada, Sept. 2015



Example 1: Performance Driven Task Mapping
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MapPro: Heuristic to minimize application internal
communication delay and to minimize fragmentation.
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© First Node selection: Identifies a first node and a region for
a new application;

® Allocates specific cores around the first node;
© Maps tasks to cores.



Example 1: Performance Driven Task Mapping

0
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AWMD NMRD Congestion AWMD NMRD Congestion AWMD NMRD Congestion

Experiments with 12x12 - 16x16 networks.

AWMD: Average Weighed Manhattan Distance: Measures the communication cost based on traffic
volume.

NMRD: Normalized Mapped Region Dispersion is the normalized average of pairwise Manhattan
distances of all communication nodes of a mapped application: measures the compactness of a region.

External Congestion: Number of contended packets belonging to different applications.



Example 2: Power- and Thermal Constrained Task
Mapping

Application 2

The patterning algorithm disperses mapped cores to maximize
the Thermal Safe Power budget.
Anil Kanduri et al. “Dark Silicon Aware Runtime Mapping for Many-core Systems: A Patterning Approach”. In:

Proceedings of the International Conference on Computer Design (ICCD). New York City, USA, Oct. 2015,
pp. 610-617



Example 2: Efficient Budgeting

Tightly packed Cores

Neighbors accumulating temperature

Utilized Power Budget = 76.2 W

Spreadout Cores

27"
i0° & 60° 60"‘
fo w0
(14.6 o g x

Neighbors dissipating temperature

60° 61°

Utilized Power Budget = 87.6 W

v' 15% Better Utilization
v’ Activate more cores
v Reduce temperatures

v Minimize Dark Silicon



WIEN

Example 2: Power Budget Improvement

Percentage Power Budget Improvement for PAT over SC

m 90% Dark 50% Dark

Best Avg. Best Avg. Best
16x16 5.74 13.9 4.15 11.3 2.19 7.68
20x20 6.54 17.17 5.06 8.55 2.63 4.28

Percentage Power Budget Improvement for PAT over TSP-WC

m 90% Dark 50% Dark

Best Avg. Best Avg. Best
16x16 32.33 34.92 22.02 24.14 11.73 13.2
20x20 38.70 40.83 22.40 27.4 12.5 13.33
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Example 2: Throughput Gain

Percentage Throughput gain for PAT over SC

m 90% Dark 50% Dark

Best Avg. Best Avg. Best
16x16 7.27 15.64 4.59 13.92 2.42 8.58
20x20 8.5 20.99 5.88 10.21 2.89 4.54

v Surplus Budget » Added latency v' Minimal congestion

> Per Application Latency v" Per Chip Throughput



Example 3: Lifetime-Reliability-Driven Task
Mapping

¢ To main limitations of many-cores:

* Not enough power to turn on all cores (dark silicon)
® Increased susceptibility of IC to aging and wear-out

e Goal: Introduce lifetime reliability awareness in the runtime
resource management layer
® Guarantee specified level of reliability

e Satisfy the power budget
® Optimize performance

M. H. Haghbayan et al. “A lifetime-aware runtime mapping approach for many-core systems in the dark silicon era”.
In: Design, Automation Test in Europe Conference Exhibition (DATE). Mar. 2016, pp. 854—857



Example 3: Lifetime-Reliability-Driven Task
Mapping

Proposed approach based on two feedback controllers

e Short-term controller —— 0 —o
e Application mapping
o Select less aged cores
e Power control
e Long-term controller

¢ Reliability managerfrertt
¢ Compute current aging status
¢ Disable highly stressed cores

Power Budget 9,

Power wer
Monitor g

Runtime Mapping
Unit

Execution

.3  Reliabiliy [

ques

oo

Reliability
Requirement —|

]

NoC-based Many-core
System



Example 3: Lifetime-Reliability-Driven Task
Mapping

reliability
o o o o o
& 8 & & 2

o
o

MapPro: Reliability aware mapping:
lifetime=5.52 years lifetime=12 years

The plots show the reliability of cores at the end of the system’s lifetime.
The end of the system’s life is reached when the reliability of one core drops below 30%.



Challenges in Complex Many-Core SoCs

e A number and variety of objectives

® Partially contradicting
e At different time scales

Objectives change over time

The system state has to be known
Application objectives have to be known



Goal Management Levels

© Single objective; Design time;



Goal Management Levels

© Single objective; Design time;

® Multiple objectives; Design time;



Goal Management Levels

© Single objective; Design time;
® Multiple objectives; Design time;

© Multiple objectives; Run time;



Goal Management Levels

© Single objective; Design time;
® Multiple objectives; Design time;
© Multiple objectives; Run time;

@ Multiple, hierarchical objectives; Run time;



Hiararchical Goal Management

Goal 1: Maximize Lifetime

Q\ Goal 2: Meet Application
Primary Goals L/O Requirements
Sub—Goals i i 3 i E

Aging Controller ~ Power Controller QoS Controller



Goal Management Inputs

Hierarchical Dynamic Goal Manager
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Goal Management Inputs

System Application

~
Hierarchical Dynamic Goal Manager
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Goal Management Inputs

System Application
(1 . . 0
Hierarchical Dynamic Goal Manager
L J
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Goal Driven Autonomy
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Elham Shamsa et al. “Goal-Driven Autonomy for Efficient On-chip Resource Management: Transforming Objectives
to Goals”. In: Proceedings of the Design and Test Europe Conference (DATE). Florence, ltaly, Mar. 2019
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Terminology

Agent is an actor in the system, that pursues specific

objectives. B = {By, B, B3}

Application is an application running on the system.
A={A1,As, ..., An}.

Parameter: are entities measured and subject to control, like
power consumption and application performance.
E.g. Ppow(corel),
Poow(PLATFORM),
7Dperf(A2)-



Terminology

Objective function: either minimizes or maximizes a parameter
or puts a constraint on a parameter. E.g.
01 := Ppow(PLATFORM) — min,
02 := Ppow(PLATFORM) < Cy,
03 := Ppert(A1) > Co.
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Terminology

Objective function: either minimizes or maximizes a parameter
or puts a constraint on a parameter. E.g.
01 := Ppow(PLATFORM) — min,
02 := Ppow(PLATFORM) < Cy,
03 := Pperi(A1) > Co.
Obijective is a set of objective functions, e.g. O = {04, 02}.

O(By) ... objective of agent B4
O(A1) ... objective of application Aj.
Op(B,A) ... set of objective functions of

agents B and applications A rel-
evant for parameter P.

Opow({B2, B4}, {A1,As}) ... set of objective functions of
agents B, and B; and appli-
cations Ay and Az relevant to
power.
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Hierarchy Level: is a number assigned to actors; the higher the
level, the more important is the actor.
E.g. H(By) =3,
H(PLATFORM) = 2,
Hp(B) is the highest hierarchy level of any agent in
B which includes an objective function relevant for
parameter P:



Terminology

Hierarchy Level: is a number assigned to actors; the higher the
level, the more important is the actor.
E.g. H(By) =3,
H(PLATFORM) = 2,
Hp(B) is the highest hierarchy level of any agent in
B which includes an objective function relevant for
parameter P:

Hp(B) = max(H(B)) for which Op({B}, {}) # {}



Terminology

Priority of a parameter is the highest hierarchy level of the
involved agents: Pp = Hp.
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Agents: B = {USER, PLATFORM, APPLICATION}
Applications: There ar n applications active:
A= {A1>A2>~-7An}-
Parameters: Ppow; Ppert
Platform objectives:
O(PLATFORM) = {Ppow(PLATFORM) < TDP}



SoC Example

Agents: B = {USER, PLATFORM, APPLICATION}
Applications: There ar n applications active:
A={A1,As, ..., An}.
Parameters: Ppow; Ppert
Platform objectives:

O(PLATFORM) = {Ppow(PLATFORM) < TDP}
User Objectives:
{Ppert(PLATFORM) — max}
if user command = "High Performance"
{Ppow(PLATFORM) — min}
if user command = "Low Power"
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SoC Example

Agents: B = {USER, PLATFORM, APPLICATION}
Applications: There ar n applications active:
A={A1,As, ..., An}.
Parameters: Ppow; Ppert
Platform objectives:

O(PLATFORM) = {Ppow(PLATFORM) < TDP}
User Objectives:
{Ppert(PLATFORM) — max}
if user command = "High Performance"
{Ppow(PLATFORM) — min}
if user command = "Low Power"

O(USER) =

Application Objectives: A minimum (C7™") and a maximum

(C3®) performance constraint is given for each
application A:

OA = {Pperf(A) < C,Taxapperf(A) > C,Tin} 29



State Detection

State vector:

* Power: Violation: TDP< p
Potential Violation: 0.8 TDP< p < TDP
No Violation: p <0.8TDP

e User Command: High Performance
Low Power

e Performance per application: [ Min run time,
Max run time ]



H(PLATFORM)

H(USER)
H(APPLICATION)

Goal Hierarchy

5 if Poow,cur > 0.9TDP
25 if0.9TDP > Ppow,cur > 0.8 TDP
1 if Ppow,cur < 0.8TDP

2

1+

Nyiol
")



Priority Assignment

e Primary goals: thermal safety
e Secondary goals: User experience

e Tertiary goals: Application requirements



P Poow

H Poow

Priority



P Poow

Priority

Hpyow = max(H(USER), H(PLATFORM)



P Ppow
(A)
Pppen‘

Priority

M)
FOR
PLAT
(USER), H(

H

= max(

prow

prerf



Priority

Pp... = Hp,, = max(H(USER), H(PLATFORM)
Ppperf(A)

prerf
(max(H(USER), H(APPLICATION))
(if User Command = “"High Performance”)

H(APPLICATION))
(if User Command = “Low Power”)




Goal Enforcement

Selects action that most likely will satisfy the highest
priority goal;

Action = Resource allocation policy;

Initial action is randomly selected;

Actions are assessed in a reinforcement learning loop;
Reinforcement learning is based on a reward function.



Rewards

A function is assigned to every objective function.
A [min, max] interval is assumed for each reward function.
The reward function is normalized to [0, 1] — [0.1].

For minimizing and maximizing a linear reward function is
used.

For bounds a variant of the generalized logistic function is

used:
* R(x) = m_e;w
® For lower bound constraints: A=0.1,B=—-10,C = 1.
® For upper bound constraints: A=0.9,B=10,C = 1.



Reward Functions
Objective function Reward function

TU] y'" is y normalized to [0, 1].



Reward Functions
Objective function Reward function

y = f(x) — min Ruin(y') = —y’

TU] y'" is y normalized to [0, 1].




Reward Functions
Objective function Reward function

y = f(x) — min Ruin(y') = —y’

y = f(x) — max Roax(Y) =Yy

TU] y'" is y normalized to [0, 1].




Reward Functions
Objective function Reward function

y = f(x) — min Ruin(y') = —y’

y = f(x) — max Roax(Y) =Yy

Yy=1f(x)<Cnax Ruw(y)= m

TU] y'"is y normalized to [0, 1].




Reward Functions
Objective function Reward function

y = f(x) — min Ruin(y') = —y’

y = f(x) — max Roax(Y) =Yy

Yy=1f(x)<Cnax Ruw(y)= m

1

y = f(x) = Cin Ri(y') = (e 00 —on)t

TU] y'"is y normalized to [0, 1].




Reward Calculation

Reward = WoRy + WiRy + WoRs + ... + WLR,

With the objective functions for power and performance:

R = WPPOW ’ RPPOW + Z prerf(A) : Rpperf(A)
AcA



Reward Calculation for Power

Objective Functions for power with user command “Low Power”:

Oppou(B; A) = O(PLATFORM) U O(USER)
= {Ppow(PLATFORM) < TDP,
Poow(PLATFORM) — min}



Reward Calculation for Power

Objective Functions for power with user command “Low Power”:

Oppou(B; A) = O(PLATFORM) U O(USER)
= {Ppow(PLATFORM) < TDP,
Poow(PLATFORM) — min}

Reward function:
Tl

1
Rppow = §(Rmin(y/)+Rub(y,))

2V T i e os)

where y’ is the normalized Ppow,cur-



Reward Calculation for Power

Objective Functions for power with user command “High
Performance”:

Op,u(B, A) = O(PLATFORM) U O(USER)
= {Ppow(PLATFORM) < TDP}



Reward Calculation for Power

Objective Functions for power with user command “High
Performance”:

Op,u(B, A) = O(PLATFORM) U O(USER)
= {Ppow(PLATFORM) < TDP}

Reward function:
Rppow = RUb (.y/))

1
11 e10((/—09)

where y’ is the normalized Ppow,cur-



Reward Calculation for Performance

Objective Functions for performance with user command “Low
Power”:

Oppet(B, {A}) = Opy(USER) U Op,,,({A})
= {Pperf(A) < C,Taxappen‘(A) > C,Tin}



Reward Calculation for Performance

Objective Functions for performance with user command “Low
Power”:

Oppet(B, {A}) = Opy(USER) U Op,,,({A})
= {Pperf(A) < C,Taxappen‘(A) > C,Tin}

Reward function for A:
1
Rpoer(A) = §(R|b(y/)+ﬁ’ub(}"))

1 1
5(1 + e10((y'—0.9)

o
1 j
-1.0 -0.5

+1 T 6710((y’70.1))

where y’ is the normalized Pyt cur(A)-



Reward Calculation for Performance

Objective Functions for performance with user command “High
Performance”:

Oroer(B:{A}) = Op,(USER)U Op,,,({A})
= {Ppert(A) — max,
7Dperr(A) < C,TaX,Pperf(A) > C/Tin}



Reward Calculation for Performance
Objective Functions for performance with user command “High
Performance”:

Oroer(B:{A}) = Op,(USER)U Op,,,({A})
= {Ppert(A) — max,
7Dperr(A) < C,TaX,Pperf(A) > C/Tin}

Reward function for A:

1
Arer(A) = 3(Amax(y) + A(y") + Au(y)) 7|
I 1
= 3V T e o9
1 A

+1 T e—10((y/—0.1))

Ty where y’ is the normalized Ppert cur(A). @



Reward Calculation
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Weg - Bpgow + > Wi (A) - Rp (A)
AcA



Reward Calculation

R = WoXRO+W1XR1—|—W2><R2—|—...—|—Wn><Rn

= Wr  Brgu + Y Wp o (A) - Rp (A)
AcA

For the weights we use priorities:

Pp,., = Hp,, = max(H(USER), H(PLATFORM))
Ppperf(A) = prerf



Reward Calculation

R = WoXRO+W1XR1—|—W2><R2—|—...—|—Wn><Rn

= Wr  Brgu + Y Wp o (A) - Rp (A)
AcA

For the weights we use priorities:

Pp,., = Hp,, = max(H(USER), H(PLATFORM))
Ppperf(A) = prerf

Thus:

R = Pp,,  Rpg, + Z Pp,..(A) - Rp,.(A)
Ac A



Q-Learning

e Actions are task
migration, cluster
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Experiments
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Experiments with a set of microkernel benchmarks;

Hardkernel Odroid XU3 board,

with two clusters (4 big (A15) and 4 little (A7) CPU cores);

Performance in heartbeats/sec.

(a) Low Power Policy

(b) High Perf Policy

(c) GDA



Comparison

Tech. Obj md | Pwr viol. | Perf. viol. | Avg. pwr (W)
LP Power X 0% 27% 2.86
HP Perf. X 3% 0% 3.7
GDA | Dynamic v 0% 14% 3.1
CGDA | Dynamic v 1% 2% 3.4




(a)

(b)
Power (W)

Power (W)

(c)

Power (W)

Experiments - Power Evaluation

— CGDA  —— high perf. —-—- TDP

[=]

T
0 6 12 18 24 30 36 42 48 54
Time (s)



Experiments - Load Evaluation |

(a) (D) == CGDA
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High Load Scenario




Experiments - Load Evaluation Il

(a) (D) === CGDA
5 mmmmmmmmmm e 11 GDA
w !
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Self-Aware CPS

Summary
¢ Observation, Model building, Learning
e Goal management

* Framework for managing various different goals and
objectives;

® Goals can dynamically change;

® Actions are improved during operation based on
reinforcement learning.




Questions ?
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