TECHNISCHE
UNIVERSITAT
WIEN

Vienna{Austria

Institut fur
Computertechnik
Institute of

Computer Technology

Self-Aware CPSs

Axel Jantsch

TU Wien, Vienna, Austria

oCPS Fall School
October 2019

Self-Aware Control Loop

The Problem

Varying Application
and User Demands
workload phasic behavior

user inputs
varylng compute memory, and communication

unctional Aberratlh

F . .
r— — — — ————" Non-functional Aberrations
SW/HW design errors Aging I
| 1 %\0'3'
Z | =
I=] s Gl .
i \ | S
Malicious attacks | 81
0.1~
| | °
| HW Faults e o 8‘ y Y ?
0 30 40 50
—_——— e — — Temperature (°C)

T

The Problem

e Large number of
resources

Varying Application
and User Demands
workload phasic behavior

user inputs
varylng compute memory, and communication

unctional Aberratlh

=) .
r— — — — ————" Non-functional Aberrations
SW/HW design errors Aging I
| 1 %\0'3
B I3
m o AGE)
o/} [ﬁ« | §0'27
Malicious attacks £2% | 81
0.1~
| o I
| wwraues cae= % 30 20 50
—_—— e —— — — Temperature (°C)
~
3

The Problem

e Large number of
resources

* Many tight constraints

Varying Application
and User Demands
workload phasic behavior

user inputs
varying compute, memory, and communication

1

Functional Aberrations

r— ———————7 Non-functional Aberrations
SW/HW design errors Aging I
| 1 | %\0'3'
k- INCTIN
=Q i ﬁ« | §0'27
| Malicious attacks £2% | 81
0.1
»

| HW Faults Mfde%mwl

J

32

30 40 50
Temperature (°C)

T

The Problem
e Large number of
resources
* Many tight constraints
¢ Varying application
demands, both within
and between

applications; t @

Functional Aberrations

Varying Application

and User Demands

workload phasic behavior

user inputs

varying compute memory, and communication
e

Taskn

r————————7" Non-functional Aberrations
SW/HW design errors Aging I
I i | %\0.3,
| E 5' _ (Ace 5
| > I é : | EO-Z'
Malicious attacks | %0 |
Y- L
| =
| HWFaults * 7% 1 % % - = @
_——————— Temperature (°C)

T

Large number of
resources

Many tight constraints
Varying application
demands, both within
and between
applications;

Functional Aberrations:

® Design errors or
omissions;
® Malicious attacks;
* Aging;
® Soft errors;
Non-functional
Aberrations:

® Performance;

® Power consumption;

The Problem

Varying Application

Functional Aberratlons

rS W/HW design errors

I "
IE 5' ncey |

| @ B f,e " |
Malicious attacks /2% |

and User Demands

workload phasic behavior

user inputs

varylng compute, memow and communlcatlon

(OJ Taskm Task n
Taskl
Taskz

Non-functional Aberrations

So03

L

Slgoep PO\ger (m
s

82

30 40 50 60
Temperature (°C)

T

The SoC Radar

0

__Performance

Reliability

'
'

Cost

_|___----7""" Usability
Functionality

Santanu Sarma et al. “On-Chip Self-Awareness Using Cyberphysical-Systems-On-Chip (CPSoC)". In: Proceedings

of the 12th International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS). New
Delhi, India, Oct. 2014

]

Self-Awareness Architecture

Goal Management
Learning

Introspection

Goal

Ceaning Hierarchy

Desirability
Scale

very.
desirable

TU

WIEN

S)

Goal Managment

@ j

Goals for Dynamic Task Mapping

Per- Goal
» O application —
P Latency @‘b/ Oo
; e,
N %,
N © Time
System
| Throughput
Hierarchical
Dynamic Goal ~-
Manager ®
Life-time | Resource
Reliability Utilization
Varying System
Power and Workload and Aberrations
Energy User Demands and Constraints

i Performance Driven % Throughput Driven i Lifetime Reliability Driven

~J

Dynamic Task Mapping

“{"Application 1

Application 2

II

Application 1
Task Graph

Application 4

Example 1: Performance Driven Task Mapping

MapPro Objectives:

* Maximize performance for all applications;
e Minimize communication latency in the new application;
¢ Minimize fragmentation.

Mohammad-Hashem Haghbayan et al. “MapPro: Proactive Runtime Mapping for Dynamic Workloads by Quantifying
Ripple Effect of Applications on Networks-on-Chip”. In: Proceedings of the International Symposium on Networks
on Chip. Vancouver, Canada, Sept. 2015

Example 1: Performance Driven Task Mapping

N ||
10

9

v ||
10

g

8

7

6

5

1 App1

:
2

1

0

1 2 3 # & B F 8 & 10N

MapPro: Heuristic to minimize application internal
communication delay and to minimize fragmentation.

| W |

7

B

5

i Appl
l
-
o

D _

00 4 2 3 4 ® B T 8 & WA

i 9
u]
@ 7
6 &
& 5
4 4
3 3
2 2
1 1
o o

8l

Ly

© First Node selection: Identifies a first node and a region for
a new application;

® Allocates specific cores around the first node;
© Maps tasks to cores.

Example 1: Performance Driven Task Mapping

0

=MapPro SHIC ®INC mNN =MapPro SHIC ®INC ENN =MapPro © SHiC ®INC ENN
5 6
4 5
4
3
3
2
2
0 0
AWMD NMRD Congestion AWMD NMRD Congestion AWMD NMRD Congestion

Experiments with 12x12 - 16x16 networks.

AWMD: Average Weighed Manhattan Distance: Measures the communication cost based on traffic
volume.

NMRD: Normalized Mapped Region Dispersion is the normalized average of pairwise Manhattan
distances of all communication nodes of a mapped application: measures the compactness of a region.

External Congestion: Number of contended packets belonging to different applications.

Example 2: Power- and Thermal Constrained Task
Mapping

Application 2

The patterning algorithm disperses mapped cores to maximize
the Thermal Safe Power budget.
Anil Kanduri et al. “Dark Silicon Aware Runtime Mapping for Many-core Systems: A Patterning Approach”. In:

Proceedings of the International Conference on Computer Design (ICCD). New York City, USA, Oct. 2015,
pp. 610-617

Example 2: Efficient Budgeting

Tightly packed Cores

Neighbors accumulating temperature

Utilized Power Budget = 76.2 W

Spreadout Cores

27"
i0° & 60° 60"‘
fo w0
(14.6 o g x

Neighbors dissipating temperature

60° 61°

Utilized Power Budget = 87.6 W

v' 15% Better Utilization
v’ Activate more cores
v Reduce temperatures

v Minimize Dark Silicon

WIEN

Example 2: Power Budget Improvement

Percentage Power Budget Improvement for PAT over SC

m 90% Dark 50% Dark

Best Avg. Best Avg. Best
16x16 5.74 13.9 4.15 11.3 2.19 7.68
20x20 6.54 17.17 5.06 8.55 2.63 4.28

Percentage Power Budget Improvement for PAT over TSP-WC

m 90% Dark 50% Dark

Best Avg. Best Avg. Best
16x16 32.33 34.92 22.02 24.14 11.73 13.2
20x20 38.70 40.83 22.40 27.4 12.5 13.33

WIEN

Example 2: Throughput Gain

Percentage Throughput gain for PAT over SC

m 90% Dark 50% Dark

Best Avg. Best Avg. Best
16x16 7.27 15.64 4.59 13.92 2.42 8.58
20x20 8.5 20.99 5.88 10.21 2.89 4.54

v Surplus Budget » Added latency v' Minimal congestion

> Per Application Latency v" Per Chip Throughput

Example 3: Lifetime-Reliability-Driven Task
Mapping

¢ To main limitations of many-cores:

* Not enough power to turn on all cores (dark silicon)
® Increased susceptibility of IC to aging and wear-out

e Goal: Introduce lifetime reliability awareness in the runtime
resource management layer
® Guarantee specified level of reliability

e Satisfy the power budget
® Optimize performance

M. H. Haghbayan et al. “A lifetime-aware runtime mapping approach for many-core systems in the dark silicon era”.
In: Design, Automation Test in Europe Conference Exhibition (DATE). Mar. 2016, pp. 854—857

Example 3: Lifetime-Reliability-Driven Task
Mapping

Proposed approach based on two feedback controllers

e Short-term controller —— 0 —o
e Application mapping
o Select less aged cores
e Power control
e Long-term controller

¢ Reliability managerfrertt
¢ Compute current aging status
¢ Disable highly stressed cores

Power Budget 9,

Power wer
Monitor g

Runtime Mapping
Unit

Execution

.3 Reliabiliy [

ques

oo

Reliability
Requirement —|

]

NoC-based Many-core
System

Example 3: Lifetime-Reliability-Driven Task
Mapping

reliability
o o o o o
& 8 & & 2

o
o

MapPro: Reliability aware mapping:
lifetime=5.52 years lifetime=12 years

The plots show the reliability of cores at the end of the system’s lifetime.
The end of the system’s life is reached when the reliability of one core drops below 30%.

Challenges in Complex Many-Core SoCs

e A number and variety of objectives

® Partially contradicting
e At different time scales

Objectives change over time

The system state has to be known
Application objectives have to be known

Goal Management Levels

© Single objective; Design time;

Goal Management Levels

© Single objective; Design time;

® Multiple objectives; Design time;

Goal Management Levels

© Single objective; Design time;
® Multiple objectives; Design time;

© Multiple objectives; Run time;

Goal Management Levels

© Single objective; Design time;
® Multiple objectives; Design time;
© Multiple objectives; Run time;

@ Multiple, hierarchical objectives; Run time;

Hiararchical Goal Management

Goal 1: Maximize Lifetime

Q\ Goal 2: Meet Application
Primary Goals L/O Requirements
Sub—Goals i i 3 i E

Aging Controller ~ Power Controller QoS Controller

Goal Management Inputs

Hierarchical Dynamic Goal Manager

{
[oyel

Goal Management Inputs

Application

~
Hierarchical Dynamic Goal Manager

{
[oyel

Goal Management Inputs

System Application

~
Hierarchical Dynamic Goal Manager

{
[oyel

Goal Management Inputs

System Application
(1 . . 0
Hierarchical Dynamic Goal Manager
L J

Platform

Goal Driven Autonomy

Applications /(State Detector)\

Prlorlty Goal
Re-assigner Enforcer
{;WO Wi, £ N
Reward

Reward Calculation)/

Sensory data

¢ Operating System)

ntroller

Nominal

f Co
~

Kaijod pejosjes

Al15 | A15 | Al15 | AlS A7 A7 A7 A7

big cluster LITTLE cluster

Elham Shamsa et al. “Goal-Driven Autonomy for Efficient On-chip Resource Management: Transforming Objectives
to Goals”. In: Proceedings of the Design and Test Europe Conference (DATE). Florence, ltaly, Mar. 2019

Terminology

Agent is an actor in the system, that pursues specific
objectives. B = {By, B, B3}

Terminology

Agent is an actor in the system, that pursues specific
objectives. B = {By, B, B3}

Application is an application running on the system.
A — {A‘],Az7 ..,An}.

Terminology

Agent is an actor in the system, that pursues specific

objectives. B = {By, B, B3}

Application is an application running on the system.
A={A1,As, ..., An}.

Parameter: are entities measured and subject to control, like
power consumption and application performance.
E.g. Ppow(corel),
Poow(PLATFORM),
7Dperf(A2)-

Terminology

Objective function: either minimizes or maximizes a parameter
or puts a constraint on a parameter. E.g.
01 := Ppow(PLATFORM) — min,
02 := Ppow(PLATFORM) < Cy,
03 := Ppert(A1) > Co.

Terminology

Objective function: either minimizes or maximizes a parameter
or puts a constraint on a parameter. E.g.
01 := Ppow(PLATFORM) — min,
02 := Ppow(PLATFORM) < Cy,
03 := Pperi(A1) > Co.
Obijective is a set of objective functions, e.g. O = {04, 02}.

Terminology

Objective function: either minimizes or maximizes a parameter
or puts a constraint on a parameter. E.g.
01 := Ppow(PLATFORM) — min,
02 := Ppow(PLATFORM) < Cy,
03 := Pperi(A1) > Co.
Obijective is a set of objective functions, e.g. O = {04, 02}.

O(By) ... objective of agent B4

Terminology

Objective function: either minimizes or maximizes a parameter
or puts a constraint on a parameter. E.g.
01 := Ppow(PLATFORM) — min,
02 := Ppow(PLATFORM) < Cy,
03 := Pperi(A1) > Co.
Obijective is a set of objective functions, e.g. O = {04, 02}.

O(By) ... objective of agent B4
O(A1) ... objective of application Aj.

Terminology

Objective function: either minimizes or maximizes a parameter
or puts a constraint on a parameter. E.g.
01 := Ppow(PLATFORM) — min,
02 := Ppow(PLATFORM) < Cy,
03 := Pperi(A1) > Co.
Obijective is a set of objective functions, e.g. O = {04, 02}.

O(By) ... objective of agent B4
O(A1) ... objective of application Aj.
Op(B,A) ... set of objective functions of

agents B and applications A rel-
evant for parameter P.

Terminology

Objective function: either minimizes or maximizes a parameter
or puts a constraint on a parameter. E.g.
01 := Ppow(PLATFORM) — min,
02 := Ppow(PLATFORM) < Cy,
03 := Pperi(A1) > Co.
Obijective is a set of objective functions, e.g. O = {04, 02}.

O(By) ... objective of agent B4
O(A1) ... objective of application Aj.
Op(B,A) ... set of objective functions of

agents B and applications A rel-
evant for parameter P.

Opow({B2, B4}, {A1,As}) ... set of objective functions of
agents B, and B; and appli-
cations Ay and Az relevant to
power.

Terminology

Hierarchy Level: is a number assigned to actors; the higher the
level, the more important is the actor.

Terminology

Hierarchy Level: is a number assigned to actors; the higher the
level, the more important is the actor.
E.g. H(By) =3,

Terminology

Hierarchy Level: is a number assigned to actors; the higher the
level, the more important is the actor.
E.g. H(By) =3,
H(PLATFORM) = 2,

Terminology

Hierarchy Level: is a number assigned to actors; the higher the
level, the more important is the actor.
E.g. H(By) =3,
H(PLATFORM) = 2,
Hp(B) is the highest hierarchy level of any agent in
B which includes an objective function relevant for
parameter P:

Terminology

Hierarchy Level: is a number assigned to actors; the higher the
level, the more important is the actor.
E.g. H(By) =3,
H(PLATFORM) = 2,
Hp(B) is the highest hierarchy level of any agent in
B which includes an objective function relevant for
parameter P:

Hp(B) = max(H(B)) for which Op({B}, {}) # {}

Terminology

Priority of a parameter is the highest hierarchy level of the
involved agents: Pp = Hp.

SoC Example

Applications

State Detector)\

Prlorlty Goal
Re-assigner Enforcer

WO, W1, ...,

,3

ntroller

Low pow.
High perf.
Nominal

i

Reward

Reward Calculation)/

Sensory data

¢ Operating System)

/ Co
)

Aoljod pejoejes

A15 | A15 | Al15 | Al15 A7 A7 A7 A7

big cluster LITTLE cluster

SoC Example

Agents: B = {USER, PLATFORM, APPLICATION}

SoC Example

Agents: B = {USER, PLATFORM, APPLICATION}
Applications: There ar n applications active:
A={A1, Az, ..., An}.

SoC Example

Agents: B = {USER, PLATFORM, APPLICATION}
Applications: There ar n applications active:
A={A1, Az, ..., An}.
Parameters: Ppow; Ppert

SoC Example

Agents: B = {USER, PLATFORM, APPLICATION}
Applications: There ar n applications active:
A= {A1>A2>~-7An}-
Parameters: Ppow; Ppert
Platform objectives:
O(PLATFORM) = {Ppow(PLATFORM) < TDP}

SoC Example

Agents: B = {USER, PLATFORM, APPLICATION}
Applications: There ar n applications active:
A={A1,As, ..., An}.
Parameters: Ppow; Ppert
Platform objectives:

O(PLATFORM) = {Ppow(PLATFORM) < TDP}
User Objectives:
{Ppert(PLATFORM) — max}
if user command = "High Performance"
{Ppow(PLATFORM) — min}
if user command = "Low Power"

O(USER) =

SoC Example

Agents: B = {USER, PLATFORM, APPLICATION}
Applications: There ar n applications active:
A={A1,As, ..., An}.
Parameters: Ppow; Ppert
Platform objectives:

O(PLATFORM) = {Ppow(PLATFORM) < TDP}
User Objectives:
{Ppert(PLATFORM) — max}
if user command = "High Performance"
{Ppow(PLATFORM) — min}
if user command = "Low Power"

O(USER) =

Application Objectives: A minimum (C7™") and a maximum

(C3®) performance constraint is given for each
application A:

OA = {Pperf(A) < C,Taxapperf(A) > C,Tin} 29

State Detection

State vector:

* Power: Violation: TDP< p
Potential Violation: 0.8 TDP< p < TDP
No Violation: p <0.8TDP

e User Command: High Performance
Low Power

e Performance per application: [Min run time,
Max run time]

H(PLATFORM)

H(USER)
H(APPLICATION)

Goal Hierarchy

5 if Poow,cur > 0.9TDP
25 if0.9TDP > Ppow,cur > 0.8 TDP
1 if Ppow,cur < 0.8TDP

2

1+

Nyiol
")

Priority Assignment

e Primary goals: thermal safety
e Secondary goals: User experience

e Tertiary goals: Application requirements

P Poow

H Poow

Priority

P Poow

Priority

Hpyow = max(H(USER), H(PLATFORM)

P Ppow
(A)
Pppen‘

Priority

M)
FOR
PLAT
(USER), H(

H

= max(

prow

prerf

Priority

Pp... = Hp,, = max(H(USER), H(PLATFORM)
Ppperf(A)

prerf
(max(H(USER), H(APPLICATION))
(if User Command = “"High Performance”)

H(APPLICATION))
(if User Command = “Low Power”)

Goal Enforcement

Selects action that most likely will satisfy the highest
priority goal;

Action = Resource allocation policy;

Initial action is randomly selected;

Actions are assessed in a reinforcement learning loop;
Reinforcement learning is based on a reward function.

Rewards

A function is assigned to every objective function.
A [min, max] interval is assumed for each reward function.
The reward function is normalized to [0, 1] — [0.1].

For minimizing and maximizing a linear reward function is
used.

For bounds a variant of the generalized logistic function is

used:
* R(x) = m_e;w
® For lower bound constraints: A=0.1,B=—-10,C = 1.
® For upper bound constraints: A=0.9,B=10,C = 1.

Reward Functions
Objective function Reward function

TU] y'" is y normalized to [0, 1].

Reward Functions
Objective function Reward function

y = f(x) — min Ruin(y') = —y’

TU] y'" is y normalized to [0, 1].

Reward Functions
Objective function Reward function

y = f(x) — min Ruin(y') = —y’

y = f(x) — max Roax(Y) =Yy

TU] y'" is y normalized to [0, 1].

Reward Functions
Objective function Reward function

y = f(x) — min Ruin(y') = —y’

y = f(x) — max Roax(Y) =Yy

Yy=1f(x)<Cnax Ruw(y)= m

TU] y'"is y normalized to [0, 1].

Reward Functions
Objective function Reward function

y = f(x) — min Ruin(y') = —y’

y = f(x) — max Roax(Y) =Yy

Yy=1f(x)<Cnax Ruw(y)= m

1

y = f(x) = Cin Ri(y') = (e 00 —on)t

TU] y'"is y normalized to [0, 1].

Reward Calculation

Reward = WoRy + WiRy + WoRs + ... + WLR,

With the objective functions for power and performance:

R = WPPOW ’ RPPOW + Z prerf(A) : Rpperf(A)
AcA

Reward Calculation for Power

Objective Functions for power with user command “Low Power”:

Oppou(B; A) = O(PLATFORM) U O(USER)
= {Ppow(PLATFORM) < TDP,
Poow(PLATFORM) — min}

Reward Calculation for Power

Objective Functions for power with user command “Low Power”:

Oppou(B; A) = O(PLATFORM) U O(USER)
= {Ppow(PLATFORM) < TDP,
Poow(PLATFORM) — min}

Reward function:
Tl

1
Rppow = §(Rmin(y/)+Rub(y,))

2V T i e os)

where y’ is the normalized Ppow,cur-

Reward Calculation for Power

Objective Functions for power with user command “High
Performance”:

Op,u(B, A) = O(PLATFORM) U O(USER)
= {Ppow(PLATFORM) < TDP}

Reward Calculation for Power

Objective Functions for power with user command “High
Performance”:

Op,u(B, A) = O(PLATFORM) U O(USER)
= {Ppow(PLATFORM) < TDP}

Reward function:
Rppow = RUb (.y/))

1
11 e10((/—09)

where y’ is the normalized Ppow,cur-

Reward Calculation for Performance

Objective Functions for performance with user command “Low
Power”:

Oppet(B, {A}) = Opy(USER) U Op,,,({A})
= {Pperf(A) < C,Taxappen‘(A) > C,Tin}

Reward Calculation for Performance

Objective Functions for performance with user command “Low
Power”:

Oppet(B, {A}) = Opy(USER) U Op,,,({A})
= {Pperf(A) < C,Taxappen‘(A) > C,Tin}

Reward function for A:
1
Rpoer(A) = §(R|b(y/)+ﬁ’ub(}"))

1 1
5(1 + e10((y'—0.9)

o
1 j
-1.0 -0.5

+1 T 6710((y’70.1))

where y’ is the normalized Pyt cur(A)-

Reward Calculation for Performance

Objective Functions for performance with user command “High
Performance”:

Oroer(B:{A}) = Op,(USER)U Op,,,({A})
= {Ppert(A) — max,
7Dperr(A) < C,TaX,Pperf(A) > C/Tin}

Reward Calculation for Performance
Objective Functions for performance with user command “High
Performance”:

Oroer(B:{A}) = Op,(USER)U Op,,,({A})
= {Ppert(A) — max,
7Dperr(A) < C,TaX,Pperf(A) > C/Tin}

Reward function for A:

1
Arer(A) = 3(Amax(y) + A(y") + Au(y)) 7|
I 1
= 3V T e o9
1 A

+1 T e—10((y/—0.1))

Ty where y’ is the normalized Ppert cur(A). @

Reward Calculation

WoXRO+W1XR1—|—W2><R2—|—...—|—Wn><Rn

Weg - Bpgow + > Wi (A) - Rp (A)
AcA

Reward Calculation

R = WoXRO+W1XR1—|—W2><R2—|—...—|—Wn><Rn

= Wr Brgu + Y Wp o (A) - Rp (A)
AcA

For the weights we use priorities:

Pp,., = Hp,, = max(H(USER), H(PLATFORM))
Ppperf(A) = prerf

Reward Calculation

R = WoXRO+W1XR1—|—W2><R2—|—...—|—Wn><Rn

= Wr Brgu + Y Wp o (A) - Rp (A)
AcA

For the weights we use priorities:

Pp,., = Hp,, = max(H(USER), H(PLATFORM))
Ppperf(A) = prerf

Thus:

R = Pp,, Rpg, + Z Pp,..(A) - Rp,.(A)
Ac A

Q-Learning

e Actions are task
migration, cluster

Applicati
pplications / C State Detector) DVFS
() (O -
Il_Jse cmd .E Re-assigner Enforcer Re;\,at‘r?js are
OW pow. < W0, W1, ..., Wn Up ae ,
High perf. © Rt | €
figh per \(Reward Calculation) % e Actions with highest
e g rewards are
(¢ Operating System eXGCUted;

|A15|A15|A15|A15|| A7|A7 | A7|A7|

big cluster LITTLE cluster

e |nitially, actions are
selected randomly.

Experiments

_ Appl App2 App3 Appa AppS App6 App?
2 1200 1200 2 u u 1200 2
H e = } n
£ 1000 1000 1 18 1 1000 1
E
E 800 800 12 12 i 12 i 800 |2 H
0100200 300 %0 0 100200 30 %0 0 100 700 0100 200 300 400 500 600 700 800 400 500 600 700 800 400500600 700800500
Time (s) Time (s) Time (s) Time (s) Time (s) Time (s) ime (s)
2 1200 1200 2 2 2 1200 2
i e —— —
£ w000} 000 |~ 18 1) | | 1000 1w
E
£ o w0 2 2 2 w0 I =
o0 200 30 100 200 30 o6 200 00 200 300 400 500 600 700 800 400 500 600 700 800 400500600 700800500
Time (s) Time (s) Time (s) Time (s) Time (s) Time (s)
2 1200 1200 =7 2 2 T a7 1200 2
I | W o } ———
£ 1000 1000 = | 1 18 1 1000 1
E
£ w0 2 2 » w00 | »
00 70 30 100 200 300 400 T %0 00 20 0 400 500 600 700 800 400 500 600 700 800 400500600 700800500
Time (s) Time (s) Time (s) Time (s)

Experiments with a set of microkernel benchmarks;

Hardkernel Odroid XU3 board,

with two clusters (4 big (A15) and 4 little (A7) CPU cores);

Performance in heartbeats/sec.

(a) Low Power Policy

(b) High Perf Policy

(c) GDA

Comparison

Tech. Obj md | Pwr viol. | Perf. viol. | Avg. pwr (W)
LP Power X 0% 27% 2.86
HP Perf. X 3% 0% 3.7
GDA | Dynamic v 0% 14% 3.1
CGDA | Dynamic v 1% 2% 3.4

(a)

(b)
Power (W)

Power (W)

(c)

Power (W)

Experiments - Power Evaluation

— CGDA —— high perf. —-—- TDP

[=]

T
0 6 12 18 24 30 36 42 48 54
Time (s)

Experiments - Load Evaluation |

(a) (D) == CGDA
5f-——=z==== V= 1 —— GDA
= —-=- _minre
— 4 g 10 g--———-----—— Q-
= e -—- max req.
= —
o 3 [}
= =
[=] .
& 74 — CGDA | %
. —— GDA &
--- TDP
0 T T T T T T
4] 20 40 60 20 40 60
Time (s) Time (s)

High Load Scenario

Experiments - Load Evaluation Il

(a) (D) === CGDA
5 mmmmmmmmmm e 11 GDA
w !
s 4 E10tp——rm——— === _minreq. |
= 2 === max req.
b 3 S
LY [ua]
= T
° =
a 2 — CGDA E
1 —— GDA a
--- TDP
0 T T T T T T T
0 20 40 60 0 20 40 60
Time (s) Time (s)

Low Load Scenario

Goal Driven Autonomy
Applications

(State Detector)

z(Pr|or|ty) (Goal J
Re-assigner Enforcer
Low pow. 0 WO, W1, ., Wn

High perf. ($] Reward

)
&
Nominal (Reward Calculation))&
Q
B
l%m g
C Operating System

IA15|A15|A15|A15|| A7IA7 | A7|A7|

big cluster LITTLE cluster

Elham Shamsa et al. “Goal-Driven Autonomy for Efficient On-chip Resource Management: Transforming Objectives
to Goals”. In: Proceedings of the Design and Test Europe Conference (DATE). Florence, Italy, Mar. 2019

Axel Jantsch et al. “Hierarchical Dynamic Goal Management for loT Systems”. In: Proceedings of the IEEE
International Symposium on Quality Electronic Design (ISQED 2018). USA, Mar. 2018

Amir M. Rahmani, Axel Jantsch, and Nikil Dutt. “HDGM: Hierarchical Dynamic Goal Management for Many-Core
Resource Allocation”. In: I[EEE Embedded Systems letters 10.3 (Sept. 2018)

Self-Aware CPS

Summary
¢ Observation, Model building, Learning
e Goal management

* Framework for managing various different goals and
objectives;

® Goals can dynamically change;

® Actions are improved during operation based on
reinforcement learning.

Questions ?

References |

Robin Arbaud, David Juhasz, and Axel Jantsch. “Management of
Resources for Mixed-Critical Systems on Multi-Core Platforms with
explicit consideration of Communication”. In: Proceedings of the
Euromicro Conference on Digital System Design (DSD). invited
tutorial. Sept. 2018.

Nikil Dutt, Axel Jantsch, and Santanu Sarma. “Towards Smart
Embedded Systems: A Self-Aware System-on-Chip Perspective”. In:
ACM Transactions on Embedded Computing Systems, Special Issue
on Innovative Design Methods for Smart Embedded Systems 15.2
(Feb. 2016). invited, pp. 22-27.

Nikil Dutt, Amir M. Rahmani, and Axel Jantsch. “Empowering
Autonomy through Self-awareness in MPSoCs”. In: Proceedings of the
IEEE NEWCAS Conference. Strasbourg, France, June 2017.

Mohammad-Hashem Haghbayan et al. “MapPro: Proactive Runtime
Mapping for Dynamic Workloads by Quantifying Ripple Effect of
Applications on Networks-on-Chip”. In: Proceedings of the
International Symposium on Networks on Chip. Vancouver, Canada,
Sept. 2015.

References i

M. H. Haghbayan et al. “A lifetime-aware runtime mapping approach
for many-core systems in the dark silicon era”. In: Design, Automation
Test in Europe Conference Exhibition (DATE). Mar. 2016, pp. 854—-857.

Axel Jantsch et al. “Hierarchical Dynamic Goal Management for loT
Systems”. In: Proceedings of the IEEE International Symposium on
Quality Electronic Design (ISQED 2018). USA, Mar. 2018.

Axel Jantsch, Nikil Dutt, and Amir M. Rahmani. “Self-Awareness in
Systems on Chip — A Survey”. In: IEEE Design Test 34.6 (Dec. 2017),
pp. 1-19.

Axel Jantsch and Kalle Tammemé&e. “A Framework of Awareness for
Artificial Subjects”. In: Proceedings of the 2014 International
Conference on Hardware/Software Codesign and System Synthesis.
CODES "14. New Delhi, India: ACM, 2014, 20:1-20:3.

Anil Kanduri et al. “Dark Silicon Aware Runtime Mapping for Many-core
Systems: A Patterning Approach”. In: Proceedings of the International
Conference on Computer Design (ICCD). New York City, USA, Oct.
2015, pp. 610-617.

S. Kounev et al., eds. Self-Aware Computing Systems. Springer, 2017.

References lll

Hedyeh A. Kholerdi, Nima TaheriNejad, and Axel Jantsch.
“Enhancement of Classification of Small Data Sets Using
Self-awareness - An Iris Flower Case-Study”. In: Proceedings of the
IEEE International Symposium on Circuits and Systems (ISCAS).
Florence, ltaly, May 2018.

Peter R. Lewis et al. “Architectural Aspects of Self-aware and
Self-expressive Computing Systems”. In: IEEE Computer (Aug. 2015).

Peter R. Lewis et al., eds. Self-Aware Computing Systems: An
Engineering Approach. Springer, 2016.

Kasra Moazzemi et al. “Trends in On-Chip Dynamic Resource
Management”. In: Proceedings of the Euromicro Conference on Digital
System Design (DSD). invited. Prague, Czech Republic, Sept. 2018.

T. R. Mick et al. “Design Methodology for Responsive and Robust
MIMO Control of Heterogeneous Multicores”. In: IEEE Transactions on
Multi-Scale Computing Systems PP.99 (2018), pp. 1-1.

References IV

Amir M. Rahmani et al. “SPECTR - Formal Supervisory Control and
Coordination for Many-core Systems Resource Management”. In:
Proceedings of the 23rd ACM International Conference on
Architectural Support for Programming Languages and Operating
Systems. Williamsburg, VA, USA, Mar. 2018.

Amir M. Rahmani, Axel Jantsch, and Nikil Dutt. “HDGM: Hierarchical
Dynamic Goal Management for Many-Core Resource Allocation”. In:
IEEE Embedded Systems letters 10.3 (Sept. 2018).

Santanu Sarma et al. “On-Chip Self-Awareness Using
Cyberphysical-Systems-On-Chip (CPSoC)”. In: Proceedings of the
12th International Conference on Hardware/Software Codesign and
System Synthesis (CODES+ISSS). New Delhi, India, Oct. 2014.

Elham Shamsa et al. “Goal Formulation: Abstracting Dynamic
Objectives for Efficient On-chip Resource Allocation”. In: [EEE Nordic
Circuits and Systems Conference (NorCAS). Tallinn, Estonia, Oct.
2018.

Elham Shamsa et al. “Goal-Driven Autonomy for Efficient On-chip
Resource Management: Transforming Objectives to Goals”. In:
Proceedings of the Design and Test Europe Conference (DATE).
Florence, Italy, Mar. 2019.

JB OB USIMN) JOI MMM AN\

	Motivation
	Architecture for Awareness
	References
	References

