Nik[hef

T

NN ENNNNRRRRENCICCICICICI, |

INTRODUCTION TO QUANTUM CHROMODYNAMICS

Date: 2010-08-15 04:53:16 CEST

PARTICLE PHYSICS 2 S



BRIEFLY ABOUT ME...

PhD in 2007 from NKUA, Greece
2003-2010: At CERN (fellow)
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2015 - Today: Guest professor at
UU and TU-Delft

Since 2024: Professor at
University of Maastricht
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e Panos.Christakoglou@cern.ch

Where can you find me

e Nikhef, Office N325, Science Park

105 Amsterdam
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COMMUNICATION

All communication from our side is done through the

mailing list pp2course-msc@nikhef.nl

List populated using the lists we got from the
coordinators of your programs

If you have not received a mail or if you know a case, g
contact me!!!

e Panos.Christakoglou@nikhef.nl
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TEACHING ASSISTANTS

noor.koster@nikhef.nl
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ABOUT YOUR HOMEWORK

Can be sent as a pdf file

* Reasonable file size (less than 5 MB)
e Readable
* Deadline 1 week after the homework is given.

Hand in, either:

e By mail to the TAs
e At the start of tutorial/exercise class in person

Particle Physics 2 - 2023/2024 Nik|het



MATERIAL

QCD material also posted on

my web page

Masters level courses

Particle Physics 2 - Quantum Chromo-Dynamics (QCD)

¢ Basic information
o Lectures given in the 2nd semester of the common master program
o The lectures are given on Mondays and Wednesdays between 09:00
and 13:00 in H331 at Nikhef
o The course is given together with Marcel Merk who focuses on the
CP part
o Prerequisites
m Subatomic physics (bachelor)
= Introduction to QFT
m Particle Physics 1

QCD syllabus

Particle Physics 2 - 2023/2024

Office hours
- Every Tuesday between 11:00
and 13:00 @ Nikhef (Office
N327)

- Every Thursday between
11:00 and 13:00 @UU
(Leonard S.
Orsteinlaboratorium - Office
259)
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http://pchrist.web.cern.ch/Teaching/Masters/
https://surfdrive.surf.nl/files/index.php/s/3712fce33f651e02bfc292780a975036

LITERATURE

The lecture notes use material mainly from these books
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LITERATURE

The lecture notes use material mainly from these books
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Quantum
Chromodynamics
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Quantum
Chromodynamics
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LITERATURE

The lecture notes use some, limited material also from these sources

CTE Q

The Coordinated Theoretical-Experimental Project on QCD

QCD and Euantum Field Theory in a Nutshell

Second Edition

Collider Physics

’Members ’Workshops Summer Schools ’PDFs ’ Handbook ’ Preprints ’0ther CTEQ Pages | HEP Links I

R.K.ELLIS, WL STIRLING
AND B.R WEBBER

CTEQ is a multi-institutional collaboration devoted to a broad program of research projects and cooperative enterprises in high-energy physics centered on Quantum Chromodynamics (QCD) and its
implications in all areas of the Standard Model and beyond.

CAMEBRIDGE MONOGRAPHS
ON FARTICLE FHYSIOS, NUULEAK PFHYSIOS
AND COSMOLOGY
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OFFICE HOURS

You have questions or comments about the lectures?
* | reserved two hours every Tuesday. between 12:00 and 14:00
 Address: Nikhef, Science Park 105, Room N325 or my zoom room
e Readjusted if needed e.g. everybody shows up at the same time

You could also send a mall

| promise to try to answer as fast as possible

* Note my teaching duties
e Also other responsibilities e.g. research (ALICE @ LHC), committees, BSc/MSc/
PhD supervision,..., and maybe a life

| will be more than glad to receive your comments, suggestions and ideas
on how to improve the course!
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BIRTH OF PARTICLE PHYSICS

The list of elementary particles has changed many 7 < Thomson {1896-1340)

times over time

* The electron was the only particle that was always iIn
that list!

* The first elementary particle to be ever identified

 Discovered by Sir Joseph John Thomson in 1887

e Thomson was awarded the Nobel prize for this discovery but
also for his work on the conduction of electricity in gases

e This discovery was done while Thomson investigated whether
or not particle rays could be deflected by an electric field
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SUBNUCLEAR STRUCTURE

In 1932 Chadwick discovered the neutron and it became clear that

the nucleus consisted of protons and neutrons

Soon more particles started popping up from experiments

James Chadwick (1891 - 1974) 1890 1900 1910 1920
. . . | | | | | | | | | | | N I N I N B A . |
The Nobel Prize in Physics 1935 |"""{"f|""ﬁ"'l i A
e P
1920 1930 1940 1950
| D Y N N N S N A | | D Y N N N S N | | N N N N S N S .
n et u.i nt 1(i
1950 1960
| | S N S I N . | | |
Foundationarehive. 0A0s* PV IRl p v, @ ...and many
James Chadwick Klaz- T =0 oé 1 more!
Lo

Who ordered these”? \What are thel
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properties? Are there any patterns?
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GELL-MANN'S QUARK MODEL

KT . The Nobel Prize in Physics 1969
‘\\ S = 0 ,,I \p @ Murray Gell-Mann ’
/
\\ // \\\ Share this: B EIEIE] 4
\\ -+ // ZU \\
\ “ -l . . .
P" =l 2 : > - The Nobel Prize in Physics
/'/ /
/ N 1969
/ q=1 \\ // qg=1
‘_0 S = _2 \l "y
I\" Ef 31)

Fig. 1.4: The meson (left) and the baryon (right) octets. Murray Gell-Mann

Prize share: 1/1

A~ A” AT A ™
s =1 The Nobel Prize in Physics 1969 was awarded to Murray Gell-Mann
. . . *
! / "for his contributions and discoveries concerning the classification
of elementary particles and their interactions".

Hint for quark fractional
charge and a new

quantum number —
Fig. 1.5: The baryon octet (left) and decuplet (right). C O I O u r( ? )
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EVIDENCE OF COLOUR

LA A =T
e Orsay
@ Frascati
& Novosibirsk
x SLAC-LBL
© DASP
% CLEO
A DHHM

L A B S
3 >
s6 Sy T P
MEEERE f 14
6 ki
) }
olete™ = qq " T. i w i %
R = ( ) :NCZZ ;ﬁh W A
¥

1 g+

i ‘qf u+d+s+c
4
_ 2 | O‘S(QQ) zaw
= Nez (1 ' ) AN

¥

o CELLO

X JADE

+ MARK J
v PLUTO

A TASSO

0 1 1 1 1 I | 1 1 | l 1 1 1 1 l

Fig. 11.3 Ratio R of (11.6) as a function of the total e e center-of-mass energy. (The sharp peaks correspond to the production of narrow

1 resonances just below or near the flavor thresholds.)
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ARE NUCLEONS ELEMENTARY?

@ The Nobel Prize in Physics 1961
Robert Hofstadter, Rudolf M&ssbauer

e-p scattering: Repeat similar

experiment as Rutherford did
N ~1909 The Nobel Prize in Physics

1961

Share this: EAEAEAEA ] 14

\\ \\

s N .70m 1O
- buMP Robert Hofstadter Rudolf Ludwi
&\\\\\\\\\\\\\\\ T\J\\ N Prize share: 1/2 Ml:jssbaL:lermg
TARGETS asl 08> ' ‘Q‘\\\x-\\‘\'\ i Prize share: 1/2
88l B62 - 8 GeVv

AN J SPECTROME TER

VIR LTSI SIS

083 N The Nobel Prize in Physics 1961 was divided equally between
gcqﬂﬁt:égv / o\ Robert Hofstadter "for his pioneering studies of electron scattering
PLAN VIEW HooosCopes € DISCRIMINATOR in atomic nuclei and for his thereby achieved discoveries

concerning the structure of the nucleons" and Rudolf Ludwig
Maossbauer “for his researches concerning the resonance
absorption of gamma radiation and his discovery in this connection
of the effect which bears his name".

Photos: Copyright © The Nobel Foundation
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ARE NUCLEONS ELEMENTARY?

The Nobel Prize in Physics 1990
Jerome |. Friedman, Henry W. Kendall, Richard E. Taylor

Share this: 1 E8 £ Ul =
o SLAC-MIT experiment The Nobel Prize in Physics
1990

-

e

e ’A.
-

e- - - T _—S_u‘n‘{dn‘!.', .
= T

S

Photo: T. Nakashi
Jerome |. Friedman Henry W. Kendall ot Marasmime

Richard E. Taylor
Prize share: 1/3

Prize share: 1/3 Prize share: 1/3

>
LS
Far Mal

The Nobel Prize in Physics 1990 was awarded jointly to Jerome .
Friedman, Henry W. Kendall and Richard E. Taylor "for their
pioneering investigations concerning deep inelastic scattering of
electrons on protons and bound neutrons, which have been of
essential importance for the development of the quark model in
particle physics”.

Photos: Copyright @ The Nobel Foundation
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DEEP INELASTIC SCATTERING

Bjorken’'s scaling hypothesis
e |f scattering is caused by point-like constituents, then
the structure functions should be independent of Q2

Feynman's parton model
e a proton consists of constituents
* the term “parton” was used by Feynman at the early

stages of his formulation and stands until our days
 Physicists were reluctant to talk about quarks at that
stage, let alone about gluons

Particle Physics 2 - 2023/2024

James Bjorken
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DISCOVERY OF QUARKS AND GLUONS

| Positron-Electron Tandem Ring Accelerator:  |[TASSO experiment @ |
eIectron p03|tron CO||ISIOnS between 1978 and 1986 PETRA@DESY

PATE 16-JUL-04 VERSION .8 | TNiGaERe G008} 014

23 Particle Physics 2 - 2023/2024 Nik|hef



DIS EXPERIMENTS

DESY (Deutsches Elektronen-Synchroton) Laboratory, Hamburg, (1992-2007)

ot 21.5GeV 920 GeV 5 \s~318 GeV
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PERIODIC TABLE OF PARTICLE PHYSICS

Three generations
of matter (fermions)

_eptons

electron
neutrino

<0.17 MeV/c?

AT

muon
neutrino

L_H_..‘..‘.,__‘___
JOLLOITN

<15.5 MeV/c?

0
AL

tau
neutrino

electron

105.7 MeV/c?

» HL

Y2
muon

1.777 GeVv/c?
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FORCES AND MEDIATORS

Developing QF Ts that describe
the interactions between these
elementary particles
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THE STANDARD MODEL

antum EIectroDynamic‘ A
(QED) \

= A

@ The Nobel Prize in Physics 1965
Sin-Itiro Tomonaga, Julian Schwinger, Richard P. Feynman

Share this: B EAEIEI ] 29

. The Nobel Prize in Physics

| \\
) Sin-Itiro Tomonaga Julian Schwinger Richard P. Feynman
Prize share: 1/3 Prize share: 1/3 Prize share: 1/3 {

The Nobel Prize in Physics 1965 was awarded jointly to Sin-Itiro ¥
Tomonaga, Julian Schwinger and Richard P. Feynman "for their 5
fundamental work in quantum electrodynamics, with

deep-ploughing consequences for the physics of elementary

| particles”.

Photos: Copyright © The Nobel Foundation
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k Unification
(GSW)

@ The Nobel Prize in Physics 1979
Sheldon Glashow, Abdus Salam, Steven Weinberg

Share this: EAEAEIEAE] 35

The Nobel Prize in Physics
1979

S Vo4
= L

Sheldon Lee Abdus Salam Steven Weinberg
Glashow Prize share: 1/3 Prize share: 1/3
Prize share: 1/3

The Nobel Prize in Physics 1979 was awarded jointly to Sheldon Lee
Glashow, Abdus Salam and Steven Weinberg “for their
contributions to the theory of the unified weak and
electromagnetic interaction between elementary particles,
including, inter alia, the prediction of the weak neutral current”.

Photos: Copyright © The Nobel Foundation

Strong interactions
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SYMMETRIES AND GAUGE TRANSFORMATIONS

Conserved quantities Gauge transformation Symmetry group

|/ . ; \ ’ \
1] L] f
/
n ' L
’” V!
! )

0000000
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FOCUS ON STRONG INTERACTIONS

Conserved quantities Gauge transformation Symmetry group Field

| | o
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ASYMPTOTIC FREEDOM

The coupling constant is denoted by as and as In

the case of QED is not a constant " oty 2009
 |n contrast to QED though, we will see that the %O + 4 Decp Inclastic Scatiering '
strong coupling constant changes quite rapidly as a | »® Heavy Quarkonia
function of the distance between the interacting \
particles 0'3'
e At short distances as becomes quite small, allowing the
quarks e.g. within a proton to move freely without 2 Sy
L
iInteracting much with their neighbouring quarks. ‘\‘%-f;-z.\\\. o
e This phenomenon is called asymptotic freedom 0.1 T
e Its existence was postulated in 1973 by Frank Wilczek, =QCD  a,(My)=0.1184 = 0.0007
David Gross, and independently by David Politzer the same : P QrGev ™

year. All three shared the Nobel Prize in physics in 2004
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THE BIRTH OF QCD

VoLuME 30, NUMBER 26 PHYSICAL REVIEW LETTERS 25 JuNE 1973

The Nobel Prize in Physics 2004
David ). Gross, H. David Politzer, Frank Wilczek

The Nobel Prize in Physics
2004

David J. H. David Frank
Gross Politzer Wilczek

The Nobel Prize in Physics 2004 was awarded jointly to David J.
Gross, H. David Politzer and Frank Wilczek “for the discovery of
asymptotic freedom in the theory of the strong interaction”.

1y, Nambu and G, Jona-Lasino, Phys. Rev, 122, 345
(1961); S. Coleman and E, Weinberg, Phys. Rev, D 7,
1888 (1973).

15K, Symanzik (to be published) has recently suggested
that one consider a A¢' theory with a negative A to
achieve UV stability at A=0., However, one can show,
using the renormalization-group equations, that in such
theory the ground-state energy is unbounded from below
(S. Coleman, private communication).

%w, A, Bardeen, H. Fritzsch, and M. Gell-Mann,
CERN Report No. CERN=-TH-1538, 1972 (to be pub-
lished).

""H. Georgi and S. L. Glashow, Phys. Rev. Lett. 28,
1494 (1972); S. Weinberg, Phys. Rev. D 5, 1962 (1972).

"For a review of this program, see S, L. Adler, in
Proceedings of the Sixteenth International Conference
on High Energy Physics, National Accelerator Labora-
tory, Batavia, Illinois, 1972 (to be published).

Reliable Perturbative Results for Strong Interactions?*

H. David Politzer
Jefferson Physical 1aboratories, Havvard University, Cambridge, Massachusetts 02138
(Received 3 May 1973)

An explicit calculation shows perturbation theory to be arbitrarily good for the deep
Fuclidean Green’s functions of any Yang-Mills theory and of many Yang-Mills theories
with fermions. Under the hypothesis that spontaneous symmetry breakdown is of dynami-
cal origin, these symmetric Green’s functions are the asymptotic forms of the physical-
ly significant spontaneously broken solution, whose coupling could be strong.
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Ultraviolet Behavior of Non-Abelian Gauge Theories*

David J. Grosst and Frank Wilczek
Joseph Henry Labovatories, Princeton University, Princeton, New Jersey 08540
(Received 27 April 1973)

It is shown that a wide class of non-Abelian gauge theories have, up to calculable loga-
rithmic corrections, free-field—theory asymptotic behavior. It is suggested that Bjorken
scaling may be obtained from strong-interaction dynamics based on non-Abelian gauge

symmetry,

Non-Abelian gauge theories have received much attention recently as a means of constructing unified
and renormalizable theories of the weak and electromagnetic interactions.! In this note we report on
an investigation of the ultraviolet (UV) asymptotic behavior of such theories. We have found that they
possess the remarkable feature, perhaps unique among renormalizable theories, of asymptotically ap-
proaching free-field theory. Such asymptotically free theories will exhibit, for matrix elements of
currents between on-mass-shell states, Bjorken scaling. We therefore suggest that one should look to
a non-Abelian gauge theory of the strong interactions to provide the explanation for Bjorken scaling,
which has so far eluded field-theoretic understanding.

The UV behavior of renormalizable field theories can be discussed using the renormalization-group
equations,”® which for a theory involving one field (say g¢") are

[m3/8m+ B(g) 8/8g —ny ()T 1, Ag; Py, ..., P)=0. (1)
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THE STANDARD MODEL
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QCD VS QED

Similar formulation between QED and QCD but with
fundamental differences s
e in QED there is one charge (i.e. electric charge) in QCD we
have three (i.e. colour) 073 -
* There are three kind of colours in QCD,: red (R), green (G) and ‘g : | :
blue (B). G 0
e Gluons have two colours, carrying one unit of color and one of
anticolor.

e There are 3x3 = 9 possibilities for the gluons but as we will see
later there are only 8.
e Since the gluons carry color, they can also couple directly to other
gluons making the existence of gluon-gluon vertices possible.
 Another difference comes from the fact that particles decaying - - —
strongly have typical lifetimes of 10-23sec tson 12@9\2/? 20 100200
 Finally, the coupling strength...
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QUANTUM CHROMODYNAMICS - QCD

q g

Fig. 1.14: The basic diagram that represents the most elementary process in QCD.

g g

4 4

Fig. 1.15: The lower order diagram that describes the interaction between two quarks.
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FEYNMAN RULES OF QCD

e Labeling: We label every external line with the ingoing and outgoing momenta Py...., Py, adding also an arrow
indicating whether a particle is approaching or moving away from the vertex. If the diagram includes antiparticles, we
still label them as particles but with the reverse direction of the arrow. We then label the 4-momenta for all internal
lines (..., q; and we give an arbitrary direction to the relevant arrow.

e External lines: Each external line contribute the following factors:

Incoming quark — u* - ¢
Outgoing quark — 7@ - ¢’

Incoming anti-quark — v - ¢’
Outgoing anti-quark — v-c¢

Incoming gluon — g -a*
Outgoing gluon — & -a**

where u and v are the relevant Dirac spinors. In the previous c are the matrices that represent the colour:

1 0 0
O)forR,{1}|forG,{0]|forB
0 0 1

and a are the 8-element column matrices, one for each gluon state (i.e. @ goes from | to 8):

A A A A A A
0 0 ! 0 0 0 0 0
)= 8 J2) = g 13) = g J4) = (1) 15) = ? 16) = 8 7= 8 [8) = 8
0 0 0 0 0 ! 0 0
0 0 0 0 0 0 1 0
o/ o/ o/ o/ o/ o/ o/ \y

e Vertices: For each vertex we note down in the diagram the coupling constant factor = g,. This factor is connected to
the coupling constant via the equation

gs = Vana,

For a quark-gluon vertex (see fig. 3.4) the factor is of the form:

“i8;a
217‘“
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where the parameters A“ are the Gell-Man A -matrices of SU(3).
For a 3-gluon vertex (see fig. 3.4) the factor is of the form:

—g.fPY [8uv (k1 —k2)p +gvp (K2 —K3)u +gou (ks —ky) "]

where the factors f"ﬂ" are the structure constants of SU(3) and k; are the 4-momenta of each internal line (with
i=1,23).

Finally, for a 4-gluon vertex (see fig. 3.4) the factor is of the form:
—"83 [faﬂnfﬁn (8uo8vp — Bup8&vo) +ja6nf#m (8uv8op — Buc8vp) +fa'mj6311 (8up8&ve — 8uvEop )]

e Propagators: For each internal line, we give a factor of

_ig+m)
kA

gluon: —igyy 5%

where ¢ = 7vg".
e J-functions and integration: The remaining steps are identical as in the general rules described before.

Figure 3.4 presents the lines for the basic particles and anti-particles but also the propagators for the strong interactions.

External lines
quarks anti-quarks gluons
. ) DO00000
Vertices

quark-gluon vertex 3-gluon vertex 4-gluon vertex

2= X

Fig. 3.4: The most characteristic lines for the Feynman diagrams in strong interactions.
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CONFINEMENT

For small values of momentum transfer, large spatial range, the strong

Interactions are exceptionally strong
 Quarks are bound together within hadrons

Breaking the colour string between a quark-antiquark pair is not easy

e At some point, it is energetically more favourable to create a new pair of quarks and

antiquarks
 Quarks and gluons can not move freely

° ® o
g g
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PARTICLE ACCELERATORS
Studying QCD in the laboratory
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QCD: THE DOMINANT FORCE AT THE LHC
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MULTIBODY FACET OF QCD
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: - - EVIDENCE FOR A DENSE LIQUID

— f@HéBOS; e .llgt.(ma ’elt K “58 ey Two phenomena in particular point to the quark-gluon medium being a dense liquid state of matter: jet quenching and elliptic flow.
10:00-0*clock N R T Jet quenching implies the quarks and gluons are closely packed, and elliptic flow would not occur if the medium were a gas.
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QCD PHASE DIAGRAM
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Can we bring the QCD phase diagram at a textbook level version?
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Direct searches of parity violation in QCD
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QCD PHASE DIAGRAM
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LAST TUTORIAL SESSION OF QCD
Tuesday, February the 27th at 13:00

Discussion about MSc projects

My experience as a MSc student
* What to expect from a MSc project (in ALICE)

The future of (our) students after their MSc z

My experience as a PhD candidate
* \What does it mean to do an experimental PhD?
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Thank you for
your attention!
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