
Luís Cruz 
L.Cruz@tudelft.nl 

2. Tools to Measure Software Energy 
(lab)
Sustainable Software Engineering 
CS4295

SustainableSE 2024

June Sallou

J.Sallou@tudelft.nl 

mailto:l.cruz@tudelft.nl
mailto:J.Sallou@tudelft.nl


1. Tools 
2. Hands-on 
3. Project 1



3

Hardware Power 
Monitors Energy Profilers



Hardware Power Monitors
• Connects directly to the power source of the device/

component.


• Some power monitors also replace the power source.


• Example:


• Monsoon Power Monitor (for IoT and smartphones). 


• Can be fully automated using a Python API.


• It measures and powers small electronic devices.


• There are many power/energy meters out there but for 
software use cases we need to be able to control them 
using an API.

4



Connecting Monsoon to a Smartphone

• 1. Disassemble the smartphone and find the 
connectors of the battery. 


• iFixit usually has nice tutorials and blueprints. 
https://www.ifixit.com

5

https://www.ifixit.com


Connecting Monsoon to a Smartphone

• 2. Extract the electronic component of the battery


• Modern batteries are connected through 4 terminals:


• Positive


• Negative


• BTEMP, battery temperature (used for safety)


• BST, battery system indicator (provides info about 
the battery)


• Hence, one cannot simply connect + and - pins

6



• 3. Connect the electronic component 
directly to the monitor.

Connecting Monsoon to a Smartphone

7



Connecting Monsoon to a Smartphone

• 4. Use the library PyMonsoon to control the power 
monitor.


• https://github.com/msoon/PyMonsoon


• 4.1. Set the monsoon to desired Voltage. Choose 
the typical voltage of the original battery. For the 
Nexus 5X, 3.8V was equivalent to its battery at 
around 60% capacity.


• 4.2. Start measuring

8

https://github.com/msoon/PyMonsoon


Connecting Monsoon to a Smartphone

• 5. Automate User Interface interaction


• The last thing you want to do is to manually interact with the smartphone 
while you measure energy consumption. Tests are less accurate, less 
reproducible, and, in this case, the screen cannot not be easily accessed.


• Tools to automate interaction with Android phones:


• To open, install, close apps: adb 

• To interact with the app: Appium, Robotium, UIAutomator, espresso, 
etc.


• Alternative: physalia is a library that automates all adb interactions and 
PyMonsoon calls.

9



Issue 1: USB cable!

• You need the USB cable to automate the interaction with the phone.


• When you connect the USB cable, measurements become 
unreliable.


• Solution: 

• Monsoon has a feature to control the USB connection (switch on/off)


• Option 1: Right before starting measurements, the USB connection is stopped.


• Works fine when when all the interaction instructions can be sent in advance and the time for the 
execution is already known.


• Option 2: using USB, set up a wireless ADB connection. Stop USB connections afterwards.


• How to: https://stackoverflow.com/a/3623727

10

https://stackoverflow.com/a/3623727


Issue 2: your app is not exclusive

• Many activities run in a smartphone device. E.g., getting push notifications, 
checking nearby bluetooth devices, etc.


• Moreover, brightness may change according to environment. Different 
screen brightness, different results.


• You need to reduce tasks to the bare minimum:


• Set brightness to a fixed value; turn off notifications, kill all user-owned 
processes, turn off cellular data, bluetooth, location services, account 
syncs; uninstall all unnecessary apps, etc.

11



When it comes to desktop/cloud software, the sources 
of noise are different but the same concerns apply. 

 
Each case is different – think it through!

⚠



Energy Profilers

• Simple setup! Quite reliable (if you choose the profiler wisely).


• Recently, they are starting to rely on internal power sensors.


• Still sensitive to noise from concurrent processes/tasks! ⚠

13



Examples of Energy Profilers



15

https://www.websitecarbon.com

https://www.websitecarbon.com


16

https://mlco2.github.io/impact/

https://mlco2.github.io/impact/


Intel Power Monitor
• Install: https://software.intel.com/content/www/us/en/

develop/articles/intel-power-gadget.html


• To collect: Logging > Log to File 

 

• It will store a CSV file with all the collected power data. 
(File location is specified in the settings)


• Based on Intel RAPL. Works with Intel-based Windows 
and Macs.


• Alternative-twin for M1-based Macs: Mx Power Gadget. 
https://www.seense.com/menubarstats/mxpg/

17 ⚠ No longer supported by Intel ⚠  

https://software.intel.com/content/www/us/en/develop/articles/intel-power-gadget.html
https://software.intel.com/content/www/us/en/develop/articles/intel-power-gadget.html
https://software.intel.com/content/www/us/en/develop/articles/intel-power-gadget.html
https://www.seense.com/menubarstats/mxpg/


18

🔗 https://luiscruz.github.io/
2021/07/20/measuring-energy.html

(Missing Apple m1 tools: mxpg, powermetrics)

https://luiscruz.github.io/2021/07/20/measuring-energy.html
https://luiscruz.github.io/2021/07/20/measuring-energy.html


19

EnergiBridge
https://github.com/tdurieux/energibridge

> target/release/energibridge -o results.csv --summary sleep 10

https://github.com/tdurieux/energibridge


Hands-on 1

• Install your energy profiler (EnergiBridge).


• Collect the energy data of using Coral BodyPix for 30 seconds. 
https://storage.googleapis.com/tfjs-models/demos/body-pix/index.html


• Report the total energy consumption.


• Extra-mile:


• Compare the energy consumption in different browsers.


• Check the spikes and drops in Power and Temperature.

20

https://storage.googleapis.com/tfjs-models/demos/body-pix/index.html


Retrospection
Hands-on 1

• Are the measurements repeatable?


• What were the confounding factors?


• How can we automate this process?

21



Energy testing
(Different from energy monitoring)

1. Create a reproducible scenario of the execution of your software. Preferably 
this should be an automated script – e.g., using a unit test framework.


2. Execute the scenario in a version of your software. Use the energy profiler to 
measure the energy consumption.


3. Improve your software in parts of the code that you suspect have low 
performance.


4. Execute the same scenario with the new version. Compare the energy data 
in this version with the previous one. 
Energy is lower, test passes; energy is higher test fails.

22



Hands-on 2

• Create a reproducible scenario. (Usually easier with command-line interfaces)


• Automatically start/stop energy profiling.

23



Project 1

• Deadline: March 1


•  Compare energy consumption in common software use cases.


• Examples:


• Different versions of the same app;


• Same use case but different apps


• Same version, same app, but different user settings (e.g., enable/disable GPU optimisation)


• Same version, same app, but different running environment


• Submission via PR (markdown).


• Blog-style report (markdown, approx 2500 words).


• Replication package.


• Points if the experiment is automated.

24



25

Pierre Lagarde. VLC Energy Optimization with GPU 
https://devblogs.microsoft.com/sustainable-software/vlc-energy-optimization-with-gpu/

https://devblogs.microsoft.com/sustainable-software/vlc-energy-optimization-with-gpu/


26

Kay Singh. Apple Silicon M1 Power Consumption Deep Dive Part 1: Safari vs Chrome 
https://singhkays.com/blog/apple-silicon-m1-video-power-consumption-pt-1/

(For project 1, you don’t need to dive deep into hardware details)

https://singhkays.com/blog/apple-silicon-m1-video-power-consumption-pt-1/

