Homework 7 - CAO 2024

- 5. Let $h \in \Gamma_0$ prove that prox_h is $\frac{1}{2}$ -averaged.
- 6. Proximal gradient of quadratic optimization. Let m < n. Let H be an $n \times n$ positive semidefinite matrix. Let $A \in \mathbb{R}^{m \times n}$ be a matrix of rank m (i.e. A has independent rows). And let $b \in \mathbb{R}^m$. We are interested on using proximal gradient to solve the quadratic optimization problem:

$$\min_{x:Ax \le b} \frac{1}{2} x^T H x. \tag{QP}$$

Let $X := \{x : Ax \leq b\} \neq \emptyset$. Notice that problem (QP) can be written as $\min_x g(x) + \delta_X$, where $g : \mathbb{R}^n \to \mathbb{R}$ is defined by $g(x) = \frac{1}{2}x^T Hx$.

In the next problems, express your solution (in simplified form) in terms of H, A and b.

(a) Compute ∇g and $\operatorname{prox}_{\delta_X}$.

In addition, for the following problems, consider separately (if necessary) the case when H is positive definite and the case when H is positive semidefinite but not positive definite.

- (b) Write down the proximal gradient operator $F_{PG}: \mathbb{R}^n \to \mathbb{R}^n$, where η_k the step size is fixed (i.e. $\eta_k = \eta$ for all k).
- (c) Find the fixed-points of F_{PG}
- (d) Let λ_{max} be the largest eigenvalue of H. Show that if $\eta < \lambda_{\text{max}}$ then F_{PG} is averaged. (This implies the proximal gradient method converges with rate $O(1/\sqrt{k})$.)
- (e) Give some (natural) condition(s) under which F_{PG} satisfies the error bound condition. This implies linear convergence rate for the proximal gradient. Give (a bound on) the rate of convergence.