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Course plan

I Week 1: Introduction to convexity

I Week 2: More on convex sets

I Week 3: Dual view of convex sets + more on convex functions

I Week 4: Dual view of convex functions

I Week 5: Duality and optimization

I Week 6: Introduction to algorithms, descend methods

I Week 7: Proximal methods, projected gradients

I Weeks 8 - 9: Fix point approach, averaged operators
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Dual view on convex functions

I Continuity and closedness

I Differentiability and subgradients

I Conjugate functions

I Prox operators
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Types of continuity

Let S ⊆ Rn, consider a function f :S → Rm
for some m ≥ 1.

Def: f is lower semicontinuous in x if f (x)≤ lim inf
y→x

f (y),∀(y) ⊂ S .

Def: f is continuous in x ∈dom(f ) if f (x) = lim
y→x

f (y), ∀(y)⊂dom(f )

Def: f is Lipshitz-continuous with constant L > 0 if
‖f (x)− f (y)‖2 ≤ L‖x − y‖2 for all x , y ∈ dom(f )
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Semicontinuity and closedness

Def: f : S → R is closed if its epigraph epi(f ) is a closed set.

Thm: Function f : Rn → R is closed if and only if
⇐⇒ f is lower-semicontinuous
⇐⇒ level set Vγ =: {x ∈ Rn : γ ≥ f (x)} is closed for any γ ∈ R
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Continuity and convexity

Thm: f :S→R proper and convex ⇒ f continuous over ri(dom(f )).

Corollary: A convex function Rn → R is continuous.
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Lipschitz continuity and fixed points

Def: f : Rn → Rn is a non-expansive mapping if it is Lipschitz
continuous with constant L ≤ 1.

I If also ‖f (x)− f (y)‖2
2≤ (f (x)− f (y))>(x−y) for all x , y ∈dom(f ),

f is called firmly non-expansive.

I If L < 1, f is called a contraction.

Def: x is a fixed point of function f : Rn → Rn if f (x) = x .

Banach Fixed Point Thm: Let f be a contraction. Then f admits a
unique fixed-point, and an algorithm starting from some x0 and
computing xk = f (xk−1) for k = 1, . . . converges to that fixed point.

Extension to firmly-non-expansive: xk = f (xk−1) for k = 1, . . .
converges to a fixed point if it exists.
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Differentiable functions

Def: f :Rn → R is differentialble in x̄ ∈dom(f ) if

lim
x→x̄

|f (x)−f (x̄)−∇f (x̄)>(x−x̄)|
‖x−x̄‖ = 0 for all sequences {x} converging to x̄ .

Gradient ∇f (x̄) :=
[
∂f
∂x1

(x̄), . . . , ∂f∂xn (x̄)
]

and directional derivative

∇v f (x̄) := lim
α↓0

f (x̄+αv)−f (x̄)
α = ∇f (x̄)>v exist in x̄ for all v ∈ Rn.
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Convex differentiable functions and optimization

Thm: Let S ⊆ Rn be convex, f be differentiable over an open set
that contains S . Then f is convex over S if and only if

f (z)− f (x) ≥ ∇f (x)>(z − x) ∀x , z ∈ S .

Corollary: for S and f as above,

I ∇f (x∗) = 0 =⇒ x∗ minimizes f over Rn;

I x∗ minimizes f over S if and only if ∇f (x∗)>(z − x∗) ≥ 0 ∀z ∈ S .
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Convex twice differentiable functions

Thm: Let S ⊆ Rn be convex and open, f be twice continuously
differentiable over S . Then f is convex over S if and only if

∇2f (x) � 0 ∀x ∈ S .
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Subgradient and subdifferential

Def: g ∈ Rn is a subgradient of a convex f : Rn → R in x̄ ∈ dom(f )
if f (z)− f (x̄) ≥ g>(z − x̄) ∀z ∈ Rn.

Def: subdifferential ∂f (x̄) is the set of all subgradients of f in x̄ :

∂f (x̄) := {g ∈ Rn : f (z)− f (x̄) ≥ g>(z − x̄) ∀z ∈ Rn}.
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Properties of subdifferential
I ∂f (x̄) is closed and convex as an intersection of closed subspaces.

I If f is differentiable in x̄ , then ∂f (x̄) = ∇f (x).

I For S ⊆ Rn, NS(x̄) = ∂δS(x̄), where δS(x) =

{
0 if x ∈ S

∞ otherwise.

I Let f be convex, A ∈ Rn×m, and F (x) = f (Ax). If f is polyhedral
or ∃α ∈ Rm : Aα ∈ ri(dom(f )), then ∂F (x) = A>∂f (Ax).

I Let f , h be convex and F = f + h be proper. If
ri(dom(f )) ∩ ri(dom(h)) 6= ∅, then ∂F (x) = ∂f (x) + ∂h(x).

I If ∅ 6=S ⊆dom(f ) is compact, f is convex, then
⋃

x∈S ∂f (x) 6=∅
and bounded; and f is Lipschitz continuous on S with constant
L= sup
g∈

⋃
x∈S ∂f (x)

‖g‖2.
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Subdifferential in optimization

Let S ⊆ Rn,S 6= ∅ be convex and f : Rn → R be proper and convex.
We know:

I by definition x∗ minimizes f on Rn if and only if 0 ∈ ∂f (x∗);

I min
x∈S

f (x) = min
x∈Rn

F (x), whereF (x) = f (x) + δS(x);

I ri(dom(f ))∩ri(S) 6=∅ =⇒ ∂F (x) =∂f (x)+∂δS(x) =∂f (x)+NS(x).

Optimality Conditions Thm: Let ri(dom(f ))∩ri(S) 6=∅. Then x∗

minimizes f over S if and only if −∂f (x∗) ∩ NS(x∗) 6= ∅.
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Conjugate function

Def: conjugate (aka Fenchel conjugate) function of f : Rn → R is

f ∗ : Rn → R, f ∗(y) := sup
x∈Rn

(x>y − f (x))

Closed, convex (even if f is not convex), may be not proper.

Conjugacy Thm: f ∗∗(x) := (f ∗)∗(x) ≤ f (x), ∀x ∈ Rn.
If f is closed, proper, convex, then f ∗∗ = f .
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Examples of conjugate functions

I f (x) = a>x + b, f ∗(y) =

{
−b if y = a

∞ otherwise

I f (x) = 1
2x
>x , f ∗(y) = 1

2y
>y

I f (x) = ‖x‖2, f
∗(y) =

{
0 if ‖y‖2 ≤ 1

∞ otherwise
; by Hölder’s inequality,

if f (x) = ‖x‖p, p ≥ 1, replace ‖y‖2 in f ∗ by ‖y‖q, 1
p + 1

q = 1.

I f = δS , f
∗(y) = sup

x∈S
x>y ; and f ∗(y) = δS∗ if S is a convex cone.
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Subgradients and conjugate functions

Conjugate Subgradient Thm: If f :Rn → R is proper, convex, then:

y ∈ ∂f (x) ⇐⇒ x>y = f (x) + f ∗(y) for any x , y ∈ Rn

⇐⇒ x ∈ ∂f ∗(y) if f closed.

Corollary: f proper, convex, closed =⇒ arg min
x∈Rn

f (x) = ∂f ∗(0).
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Projection Theorem

Def: projection x∗ of vector z on set S : x∗ = arg min
x∈S
‖x − z‖2

Thm: projection of any point z ∈ Rn on a non-empty closed convex
set S is unique and x∗ ∈ Rn is this projection if and only if

(z − x∗)>(x − x∗) ≤ 0 ∀x ∈ S .
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Proximal operator

Def: Proximal operator of convex, proper, lower semi-cont. f :Rn→R
and ε>0: proxε,f :Rn→Rn, proxε,f (z) := arg min

x∈Rn
f (x)+ ε

2‖x−z‖
2
2.

Finding prox is unconstrained convex problem, generalized projection:

proxδS (z) is equal to projection of z on S .

Thm: proxε,f exists and is unique for any closed and convex f
(extends projection thm).
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Examples of prox-operators for ε = 1

I f (x) = 0 : proxf (z) = z

I f (x) = 1
2x
>Px + q>x + r : proxf (z) = (In + P)−1(v − q)

I f (x) = ‖x‖1 : proxf = T1, where Tε :Rn→Rn is a soft-threshold

operator Tε(z)i =


xi − ε if xi ≥ ε
0 if ε ≥ xi ≥ −ε
xi + ε if − ε ≥ xi

, i = 1, . . . , n.
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Properties of prox-operators

Recall: proxf (z) := arg min
x∈Rn

f (x)+ 1
2‖x−z‖

2
2.

I Fixed points of proxf are minimizers of f .

I proxf is firmly non-expansive =⇒ can iteratively find min of f .

I y = proxf (x) ⇐⇒ x − y ∈ ∂f (y).
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