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Course plan

» Week 1: Introduction to convexity

» Week 2: More on convex sets

» Week 3: Dual view of convex sets + more on convex functions
» Week 4: Dual view of convex functions

» Week 5: Duality and optimization

» Week 6: Introduction to algorithms, descend methods

» Week 7: Proximal methods, projected gradients

» Weeks 8 - 9: Fix point approach, averaged operators
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Dual view on convex functions

» Continuity and closedness
» Differentiability and subgradients
» Conjugate functions

» Prox operators
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Types of continuity

Let S C R", consider a function f:S — R" for some m > 1.

Def: f is lower semicontinuous in x if f(x) < Iim_jnf f(y),v(y) CS.
y X

Def: f is continuous in x €dom(f) if f(x)= lim f(y),V(y) C dom(f)

y—X

Def: f is Lipshitz-continuous with constant L > 0 if
IIf(x) — f(y)|l2 < L||jx — y||2 for all x,y € dom(f)
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Semicontinuity and closedness

Def: f:S — R is closed if its epigraph epi(f) is a closed set.

Thm: Function f : R” — R is closed if and only if
<= f is lower-semicontinuous
< level set V, =: {x € R": v > f(x)} is closed for any v € R
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Continuity and convexity

Thm: f:S—TR proper and convex = f continuous over ri(dom(f)).

Corollary: A convex function R” — R is continuous.
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Lipschitz continuity and fixed points

Def: f : R" — R" is a non-expansive mapping if it is Lipschitz
continuous with constant L < 1.

> If also ||F(x)—F(¥)|3 < (F(x)—f(y))" (x—y) for all x,y € dom(f),
f is called firmly non-expansive.

» If L <1, fis called a contraction.
Def: x is a fixed point of function f : R” — R" if f(x) = x.

Banach Fixed Point Thm: Let f be a contraction. Then f admits a
unique fixed-point, and an algorithm starting from some xp and
computing xx = f(xx_1) for k =1,... converges to that fixed point.

Extension to firmly-non-expansive: xx = f(xx_1) for k =1,...
converges to a fixed point if it exists.
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Differentiable functions

Def: f:R"” — R is differentialble in X € dom(f) if
lim |f(x)—f(>‘<)‘—Vf|(|>"<)T(x—>‘<)

] = L = 0 for all sequences {x} converging to X.
X—>X

Gradient Vf(x) := [af (x),..., ()'()] and directional derivative

1 "9 Oxn

V. f(x) = Ii?a M = VF(X) v exist in % for all v € R".
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Convex differentiable functions and optimization

Thm: Let S C R” be convex, f be differentiable over an open set
that contains S. Then f is convex over S if and only if

f(z) — f(x) > VFf(x)"(z—x) V¥x,z€S.

Corollary: for S and f as above,
» Vi(x*) =0 = x* minimizes f over R";

» x* minimizes f over S if and only if Vf(x*)T(z—x*) >0 VzeS.
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Convex twice differentiable functions

Thm: Let S C R" be convex and open, f be twice continuously
differentiable over S. Then f is convex over S if and only if

V2f(x) =0 VxeS.
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Subgradient and subdifferential

Def: g € R" is a subgradient of a convex f : R” — R in X € dom(f)
if f(z) —f(x)>g'(z—X) VzeR"

Def: subdifferential 9f(x) is the set of all subgradients of f in x:
Of():={geR": f(z) — f(X) > g'(z—X) VzeR"}.
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Properties of subdifferential

>

>

Of(x) is closed and convex as an intersection of closed subspaces.

If f is differentiable in X, then Of(X) = Vf(x).

0 fxeS

For S CR", Ns(x) = 0ds(x), where ds(x) = { _
oo  otherwise.

Let f be convex, A € R™™, and F(x) = f(Ax). If f is polyhedral
or Ja € R™ : Aa € ri(dom(f)), then OF(x) = ATOf (Ax).

Let f, h be convex and F = f + h be proper. If
ri(dom(f)) Nri(dom(h)) # O, then IF(x) = Of (x) + Oh(x).

If ) #S Cdom(f) is compact, f is convex, then |J, . 0f(x)#
and bounded; and f is Lipschitz continuous on S with constant

L= sup |gll.
g€U,es (%)
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Subdifferential in optimization

Let S CR", S # () be convex and f : R" — R be proper and convex.
We know:

» by definition x* minimizes f on R" if and only if 0 € Of(x*);

> min f(x) = min F(x), whereF(x) = f(x) + ds(x);

» ri(dom(f))Nri(S)#£0 = IF(x)=9f(x)+0ds(x)=If(x)+Ns(x).

Optimality Conditions Thm: Let ri(dom(f))Nri(S)#®. Then x*
minimizes f over S if and only if —9f(x*) N Ns(x*) # 0.
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Conjugate function

Def: conjugate (aka Fenchel conjugate) function of f : R” — R is

f*:R" = R, f*(y):= sup (x"y — f(x))
xER

Closed, convex (even if f is not convex), may be not proper.

Conjugacy Thm: **(x) := (f*)*(x) < f(x), Vx € R".
If f is closed, proper, convex, then f** = f.
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Examples of conjugate functions

—-b ify=
> f(x)=a"x+b, f*(y):{ e
00 otherwise

> f(x)=ixTx, F(y)=123yTy

0 iffyll2<1

> f(x) = lIxll2, F*(y) = otherwise

; by Holder's inequality,

if £(x) = [[xllp,p > 1, replace [|y[l2 in £* by [|yllq, 5+ 5 =1.

» f=20s, f*(y) =supx'y; and f*(y) = s+ if S is a convex cone.

xES
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Subgradients and conjugate functions

Conjugate Subgradient Thm: If f:R” — R is proper, convex, then:
y € 0f(x) <= x'y = f(x)+ f*(y) for any x,y € R"
<= x € If*(y) if f closed.

Corollary: f proper, convex, closed = arg min f(x) = 0f*(0).

x€ER"
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Projection Theorem

Def: projection x* of vector z on set S: x* = arg mig IIx — z||2
X€E

Thm: projection of any point z € R” on a non-empty closed convex
set S is unique and x* € R” is this projection if and only if

(z—x)T(x—x*)<0VxeS.
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Proximal operator

Def: Proximal operator of convex, proper, lowersemi-cont. f:R” —R
and €>0: prox, s :R"—=R" prox¢(z):=arg m]ilg f(x)+ 5|x—2z||3.
b b XG n

Finding prox is unconstrained convex problem, generalized projection:

proxs.(z) is equal to projection of z on S.

Thm: prox, ¢ exists and is unique for any closed and convex f
(extends projection thm).
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Examples of prox-operators for ¢ =1

> f(x)=0:proxq(z) =z
> f(x) = 3x"Px+q x+r:proxg(z) = (I, + P)"1(v —q)

» f(x)=|x|l1: prox; = T1, where T, :R" —R" is a soft-threshold
xi—e ifxi>e
operator T.(z); =40 ife>x;>—€e, i=1...,n
xi+e if —e>x
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Properties of prox-operators

Recall: proxf(z)::argmgl f(x)+3|Ix—z|3.
x€R"

» Fixed points of prox, are minimizers of f.

» prox, is firmly non-expansive = can iteratively find min of f.

> y = proxg(x) <= x—y € If(y).
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