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ABSTRACT
Individual (personalized) self-assessed emotion recognition has re-
ceived more and more attention recently, such as Human-Centered
Artificial Intelligence (AI). In most previous studies, researchers
utilized the physiological changes and reactions in the body evoked
by multi-media stimuli, e.g., video or music, to build a model for rec-
ognizing individuals’ emotions. However, this elicitation approach
is less impractical in the human-human interaction because the
conversation is dynamic. In this paper, we firstly investigate the in-
dividual emotion recognition task under three-person small group
conversations. while predicting personalized emotions from physi-
ological signals is well-studied, very few studies focus on emotion
classification (e.g., happiness and sadness). Most prior works only
focus on binary dimensional emotion recognition or regression,
such as valence and arousal. Hence, we formulate the individual
emotion recognition task into an individual-level emotion classi-
fication. In the proposed method, we consider the physiological
changes in each individual’s body and acoustic turn-taking dynam-
ics during group conversations for predicting individual emotions.
In the meanwhile, we assume that the emotional states of humans
might be affected by the expressive behaviors of other members
during group conversations. Also, we hypothesize that people have
a higher probability to feel specific emotions under the related
emotional atmosphere. Therefore, we design an ad-hoc technique
by simply summing up the Self-assessed emotional annotations of
all group members as the group emotional atmosphere (climate)
to help the model to predict individuals’ emotions. We propose a
Multi-modal Multi-label Emotion based on Transformer BLSTM
at Group Emotional Atmosphere Network (MMETBGEAN) that
explicitly considers individual changes and dynamic interaction via
physiological and acoustic features during a group conversation
and integrates group emotional atmosphere information for recog-
nizing individuals’ multi-label emotions. We assess the proposed
framework on our recently collected large Mandarin Chinese collec-
tive task group database, NTUBA. The results show that the method
outperforms the existing approaches on multi-modal multi-label
emotion classification on this database.
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1 INTRODUCTION
Predicting emotions is a critical technology in human-centered
applications and human-computer interactions. There is a wide
range of important cues to be modeled in emotion recognition, such
as facial expression, speech, spoken language, gesture and postures,
and physiological signals [10]. Physiological signals dominated by
the central nervous system (e.g., Electroencephalography (EEG))
and peripheral nervous system (e.g., Electrocardiography (ECG) and
Photoplethysmography (PPG)) are normally separate of humans’
will and not easily restrained [11, 60] compared to other signals
that can be controlled willingly. Hence, physiological signals may
supply more dependable cues for individuals’ emotions compared
to other expressive behavioral cues, such as visual cues and audio
cues.

While several approaches have been proposed to predict indi-
vidual self-assessed emotions from the physiological signals, most
previous studies utilized the laboratory elicited/induced corpus
[40], and this limits its potential for practical applications in the
real world. More specifically, these databases are recorded and
collected by triggering subjects with selected/intended emotional
stimuli (e.g., music, videos, images, movies, to name a few), and
this fixed and one-time stimulus scenario is not easy to be applied
and adapted in the human interaction situation, like during group
discussion, because of difficulty on modeling turn-taking dynam-
ics. We can imagine that the stimulus (expressive behaviors of
interlocutors/partners) could be changed over time in the group
discussion. Hence, the prior studies are not easy to handle this
situation. Besides, with consideration of privacy protection, it is ad-
vantageous to estimate emotions without the usage of visual facts.
Therefore, in this paper, we choose to use the turn-taking dynamic
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stimulus from speech (expressive behaviors) and the changes in the
physiological signals from PPG over time during the small group
conversation to train the proposed framework. Then, we evalu-
ate the proposed framework on a new large Mandarin Chinese
collective task group database, whose participants spontaneously
interact with each other in small groups, so the database is closer
to the real-world scenario than other public databases (e.g., DEAP
[23], MAHNOB-HCI [41], ASCERTAIN [42], and AMIGOS [29]) for
training the emotion detection model. Furthermore, most previous
studies on physiological-based emotion recognition [35, 39, 48]
regard the emotion classification as a single label task. However,
emotional feelings are naturally subjective, and people often in-
terpret the same situation in different ways based on different
emotional experiences. For example, when human are asked to
describe perceived emotion, they usually need more than one emo-
tion category to show their emotion perception. This might be due
to the ambiguous boundary between emotion categories [38] and
cause the existence of multiple emotional labels. Therefore, in this
paper, we formulate the emotion classification task as a multi-label
classification task.

To handle the above two issues, dynamic stimulus and multiple
self-assessed emotions, we introduce a new corpus that collects
the full conversations between a large number of three-person
groups. These subjects are asked to finish a shopping task task
with the limited budget together in the 30 minutes, so they have to
actively discuss it with each other. This database is very suitable
for our research because the corpus not only carefully records au-
dio recordings and physiological signals during group discussion
but also collects self-assessed emotion perception on each emotion
category in the 7-point Likert scale. The database gives us a chance
to investigate and model dynamic stimulus and changes of phys-
iological signals over time for predicting individual self-assessed
multi-label emotion classification. Moreover, the study [3] said that
the in-group mutual interactions can affect the group members’
emotions, and the group emotional atmosphere is also related to
the composition of individuals’ emotions. In addition, Qiao-Tasserit
et al. [36] showed that negative (comparing neutral) short videos
raised participants’ tendency to categorize unclear faces as fearful
during some minutes. Instead, positive clips (comparing neutral)
influenced categorization toward happiness only for those movies
perceived as most absorbing. That is, the research [36] reveals that
absorption of emotions significantly affect how people perceive
facial expressions. Therefore, inspired by the above-mentioned stud-
ies, we hypothesize that people have a higher probability to feel
specific emotions under the related group emotional atmosphere, so
we sum up the self-assessed emotion scores on the emotion category
of group members as the group emotional atmosphere. We propose
a novel graph-level Graph Neural Network to regress this group
emotional atmosphere scores jointly trained with the physiological
changes of individuals in the body and their vocal characteristics
of speech. Finally, we propose a Multi-modal Multi-label Emotion
based on Transformer BLSTM at Group Emotional Atmosphere Net-
work (MMETBGEAN) that explicitly considers individual changes
within acoustic and physiological features during a group conver-
sation and incorporates group emotional atmosphere information
for recognizing individual self-assessed multi-label emotions. The
contributions of this paper can be summarized as follows:

• We introduce a new small-group multi-modal collective task
corpus, utilized for building individual self-assessed emotion
classification.

• The proposed model has the ability to model the dynamic
stimulus from acoustic features and the changes of physiolog-
ical signals in the body to recognize individual self-assessed
multi-label emotions.

• We design a graph-level Graph Neural Network to regress
multi-target group emotional atmosphere scores with the
group-level physiological and acoustic descriptors.

2 RELATEDWORKS
2.1 Multi-label Emotion Classification
Multi-label emotion classification seizes more and more scholars’
attention because the boundaries between categorical emotions
are ambiguous, and some emotions are hard to split clearly, such
as sad and frustrated; excited and happy. The study [9] designed
a multi-label focal loss to incorporate emotion correlation infor-
mation into model training for detecting all associated emotions
expressed in a given piece of text. Additionally, the multi-label
classification problem has been transformed into a sequence gen-
eration task to detect multiple emotions in the images [9]. Also,
Ju et al. [20] and Zhang et al. [57] have proposed models to simul-
taneously model label-to-label and modality-to-label dependency
within multi-modal scenarios including text, audio, and video cues.
However, all data of most (if not all) databases the previous studies
utilized on multi-label emotion classification are annotated by ob-
servers, and there are very few databases consisting of multi-label
emotion annotations from subjects’ self-assessed feelings.

Different from the above-mentioned studies, we regard the self-
assessed multiple emotions as the learning targets. To the best
of our knowledge, this paper is the first attempt to conduct the
research on self-assessed multi-label emotion classification in group
conversations using multi-modal features.

2.2 Multi-modal Emotion Recognition
Emotion convey is a complex expression process, and it can be
in multiple channels, such as speech, spoken language, and fa-
cial expression. More and more computational studies on emotion
recognition exploit multiple signals to capture more emotional
cues by building multi-modal emotion recognition models. More
specifically, most recent research on multi-modal emotion recogni-
tion is mainly based on multi-modal fusion frameworks. The study
[43] utilized the addition of a parallel stream to the bidirectional
language model by integrating acoustic information into contex-
tualized lexical embeddings for emotion recognition. Mittal1 et al.
[33] used human gaits and faces cues, various socio-dynamic and
situational context information to build emotion detection mod-
els. Also, Mittal et al. [32] presented a learning-based method for
emotion recognition by combining face, text, and speech cues. Very
recently, Zhang et al. [58] have proposed a heterogeneous hierarchi-
cal message-passing network to effectively model feature-to-label,
modality-to-label, and label-to-label dependency using audio, text,
and video modalities for multi-label label emotion classification.
However, physiology plays a more important role when we attempt
to estimate human self-assessed emotions. The above studies all
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Figure 1: The procedures of collecting NTUBA database [50].

only considered and exploited expressive behavior cues outside the
body, and lack physiological changes in the body. Nevertheless, peo-
ple may show no changes in visible activity or expressive behaviors
even though they manifest changes in autonomic nervous system
activity [12]. On the other hand, the conventional studies on emo-
tion recognition using physiology only focus on single-modality by
combining visual stimulus [4] or multiple physiological signals [2].

Different from the above literature, we not only use emotional
cues from expressive acoustics but also capture the physiological
changes in the body for training the proposed model. More specifi-
cally, we use a graph-level prediction Graph Neural Network (GNN)
to model the mutual interactions between groupmembers over time
with the physiological and acoustic features.

2.3 Self-assessed Emotion Recognition from
Physiology

With the rapid development of wearable devices, the physiology
from wearable devices acquiring human essential signals has been
the other alternative to analyze individual self-assessed emotions.
Very recently, Komuro1 et al. [24] has proposed a customized emo-
tion recognition model (wireless sensors) for individuals according
to collected thermography signals and indoor surrounding data,
such as temperature and light intensity. However, their emotional
ground truths (happy, stress, relax, and sad) come from the third
party system, NEC Emotion Analysis Solution [1], not from the
participants. Also, Luo et al. [27] has presented a semi-supervised
joint domain adaption solution to minimize the cross-domain distri-
bution discrepancies between the multiple source subjects and the
target individuals based on the recordings of Electroencephalogram
(EEG) traces of subjects on an individual emotion recognition task
(valance and arousal). However, their data is collected by induc-
ing participants with one-minute video clips, and their method is
hard to be adapted in the group interaction scenario. To date, most
existing works on individual emotion recognition from physiol-
ogy [56, 59–61] still utilized the induced data, such as DEAP [23],
MAHNOB-HCI [41], ASCERTAIN [42], and AMIGOS [29]. While
these databases contain many various physiological signals includ-
ing EEG, ECG, galvanic skin response (GSR), and Electrodermal
activity (EDA), the emotional labels are only dimensional emo-
tion states (not categorical emotion states). Very few studies build
a physiology-based individual self-assessed emotion recognition
model with PPG signals.

Different from the above-mentioned works, we use the record-
ings of physiological signals of participants during group interac-
tion in our recently collected corpus, whose scenario is more close
to the real-world group conversation. To the best of our knowl-
edge, we are one of the first work to predict individual self-assessed
multi-label emotions with PPG signals during group discussion
comparing the previous physiology-based self-assessed emotion
recognition based on PPG signals.

3 PROBLEM FORMULATION
The main goal of this paper is to recognize individual self-assessed
multi-label emotions. We briefly explain the definition of this task
and its meaning as below.

3.1 The Definition of Individual Self-assessed
Emotion

We follow the definition of previous works [5, 55]. The individual
self-assessed emotion is an emotion perception rated by the sub-
jects themselves in this paper. Different from most prior studies
on emotion recognition, our learning targets come from subjects
themselves not from others. Also, the setting of ground truth is the
same as the studies [60], but the big difference from them is the
types of emotion representation. We use the categorical emotions,
but they use the dimensional emotions (valence and arousal).

4 METHODOLOGY
4.1 NTUBA Database
In this study, we used the National Taiwan University Business
Administration (NTUBA) database [50] collected by the College of
Management of National Taiwan University (NTU). The database is
a Mandarin multi-modal corpus, which includes audio, video, and
physiology recordings. The collection atmosphere was to explore
the relationship between group behaviors and group performances.
Each group was assigned a shopping task by following [51] of di-
verse scenarios where they were prompted to discuss with each
other and concluded the best solution in a limited 30 minutes. All
participants have signed informed consent and been fully informed
of all experimental procedures under the approved ethical guide-
lines (IRB approved). There were 80 three-person groups, who were
mostly undergraduate students at NTU. This corpus is particu-
larly useful for our study. Most group databases lack physiological
recordings or lack emotional annotations, while the NTUBA data-
base recorded thewhole three-person group conversations and their
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physiological and audio recordings, allowing us to study in-group
individual multi-modal multi-label emotion classification.

The collecting processes have 6 sessions in total shown in Figure
1. Researchers inquired about prior familiarity between group mem-
bers and instructed subjects to fill out the self-reported question-
naires at first. Then, the first task began and lasted for 30 minutes.
Afterward, the participants completed a midpoint survey about
the perceived group cohesion and performance. Furthermore, they
were asked to reflect on what they just completed the task and
discuss for 10 minutes how to perform better at the second round,
and then the second task began and lasted for 30 minutes. The
NTUBA carefully and simultaneously recorded audio, video, and
physiological signals during sessions. Finally, an endpoint survey
was self-assessed reported. In this paper, we only used the data in
the first task, which would have less influence on intervention (e.g.,
familiarity with each other) in this particular interaction setting.

In this article, we only utilized audio modality and one type of
physiological signal, Photoplethysmography (PPG), recorded using
the wrist-worn E4 sensor with a 64Hz sample rate. Also, the subjects
were inquired to annotate their subjective perceptions at the end
of each task in the degree of the group’s emotion. Specifically,
participants responded to 18 emotion categories with the 7-level
Likert scale score (1 = “strongly disagree” and 7 = “strongly agree”).
To conduct preliminary research, we adopted 8 emotions (𝐴𝑛𝑔𝑒𝑟 ,
𝐹𝑒𝑎𝑟 ,𝐻𝑎𝑝𝑝𝑖𝑛𝑒𝑠𝑠 ,𝐴𝑛𝑛𝑜𝑦𝑒𝑑 ,𝐸𝑥𝑐𝑖𝑡𝑒𝑑 ,𝑁𝑒𝑟𝑣𝑜𝑢𝑠 , 𝐹𝑟𝑢𝑠𝑡𝑟𝑎𝑡𝑒𝑑 , 𝑆𝑎𝑑𝑛𝑒𝑠𝑠)
in this paper. We use level 5 as a threshold to decide which emotion
is valid among the 8 emotions. For example, if he/she gives level
6 on fear and level 4 on anger, it means he/she has fear but no
anger, which is the ground truth for the individual multi-label
emotion classification task. On the other hand, on the group multi-
label emotion regression task, we generate the ground truth by a
simple aggregation, which preserves all original scales from group
members. Table 1 summarizes the statistics of the data samples
with multiple emotion labels and the number of samples in each
emotion category. More detailed label pre-processing is below:
Individual self-assessed emotion label:We transform original
emotional values from questionnaires into binary class by low class
(scores from 1 to 4) and high class (scores from 5 to 7).
Group emotional atmosphere score: We aggregate the scores
of members in each group as a single group-level score.

Table 1: The statistics on the NTUBA dataset.

Multi-label Number Emotion Number
Audio PPG Audio PPG

none 8 5 Anger 6 4
one 11 7 Fear 29 16
two 36 23 Happiness 127 78
three 67 40 Annoyed 125 80
four 53 35 Excited 118 77
five 14 8 Nervous 147 92
six 2 1 Frustrated 25 14

seven 1 1 Sadness 8 5
eight 0 0 - - -
Total 192 120 Total 585 366

Table 2: An overview of physiological low-level descriptors
extracted from NeuroKit and HeartPy.

Modality Low-Level Descriptors

PPG(35)

number_of_artifacts, RMSSD, meanNN, sdNN, CD, cvNN, CVSD,
medianNN, madNN, mcvNN, Triang, pNN50, pNN20, DFA_1,
ULF, VLF, LF, HF, VHF, LFn, HFn, LF/HF, LF/P, HF/P, FD_Petrosian,
Sample_Entropy, Entropy_Spectral_HF, Entropy_Multiscale_AUC,
Entropy_SVD, Total_Power, Total_Power_F,Shannon_h, Shannon,
Entropy_Spectral_LF, Entropy_Spectral_VLF, Fisher_Info

4.2 Multi-modal Features Extraction
4.2.1 Physiological Descriptor. We first pre-process individual
physiology data with a low-pass filter cut-off at 60Hz on PPG sig-
nals and then use several standard low-level physiological descrip-
tors (LLDs) listed in Table 2 to extract 35-dimensional features by
the NeuroKit [28] and HeartPy [45]. Furthermore, a standard z-
normalization is used participant-wise on each feature dimension
to alleviate the variance coming from individual differences.

4.2.2 AudioDescriptor. We follow [7] to extract 988-dimensional
acoustic features using “emobase.config” in the openSMILE toolkit
[13] because they have utilized this feature set to develop a speech
emotion recognition model in Mandarin Chinese corpus. It contains
988-dimensional acoustic features, which are further normalized
for each speaker using z-score normalization. The further detailed
information please refer to [13].

4.3 Task Definition
We define the following notations to describe two multi-label emo-
tion recognition tasks including classification and regression. Given
the label space with L emotion labels 𝐿 = {𝑒𝑚𝑜1, ..., 𝑒𝑚𝑜𝐿}, and
the multi-modal feature 𝑋𝐴 (from audio) and 𝑋𝑃 (from physiology)
containing the timestamp of length 𝑇 . Two tasks aim to assign
a subset 𝑦 consists of 𝐿′ labels in the emotion label space 𝐿, e.g.,
{𝑦1, ..., 𝑦𝐿′}. Each data sample in two tasks could have multiple
labels (one or more), but the labels are binary (𝑦 ∈ 0, 1) and posi-
tive real number (𝑦 ∈ R+) in multi-label emotion classification and
regression respectively. We assume that 𝑍 is the raw output of the
neural network, and define the model predictions and data sample
target as 𝑦𝑝 and 𝑦𝑡 in the following loss equation respectively.

4.3.1 Objective Function for IndividualMulti-label Emotion
Classification. The 𝑦𝑝 can be estimated by passing 𝑍 in the Sig-
moid activation function (𝜎) [31], and the loss can be computed as
below.

𝑦𝑝 = 𝜎 (𝑍 ) = 1
1 + 𝑒𝑥𝑝 (−𝑍 ) . (1)

𝐿𝑜𝑠𝑠𝐼 (𝑦𝑝 , 𝑦𝑡 ) = − 1
𝐿
∗
𝑁∑
1
𝑦𝑡 [𝑖] ∗ 𝑙𝑜𝑔((1 + 𝑒𝑥𝑝 (−𝑦𝑝 [𝑖]))−1)

+ 𝑦𝑡 [𝑖]) ∗ 𝑙𝑜𝑔( 𝑒𝑥𝑝 (−𝑦𝑝 [𝑖])
(1 + 𝑒𝑥𝑝 (−𝑦𝑝 [𝑖]])) .

(2)

4.3.2 Objective Function forGroupMulti-label EmotionRe-
gression. We follow the study [49] to use a loss function based
on concordance correlation coefficient (CCC) [25] for group multi-
label emotion regression in this paper. The 𝑦𝑝 can be estimated by
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Figure 2: The proposed Multi-modal Multi-label Emotion based on Transformer BLSTM at Group Emotional Atmosphere
Network (MMETBGEAN) for individualmulti-label emotion classification. First, we define each person as 𝑃𝑖

𝑗
, which represents

the person is from the 𝑗𝑡ℎ groupwith the 𝑖𝑡ℎ groupmember. The acoustic and physiological features are retrieved as inputs.We
employ a standard Transformer encoder and one BLSTM block to describe the individual time-series information. Then, we
build a group-level graph to encode the group-level representations by the group multi-label emotion regression. Finally, the
outputs of component I (𝑓 𝑎 and 𝑓 𝑝 ) and component II (𝑓 𝑔) are simply concatenated as the inputs to generate the final output
predictions.

passing 𝑍 in the ReLU activation function (𝑅) [17], and the loss can
be computed as below.

𝑦𝑝 = 𝑅(𝑍 ) =𝑚𝑎𝑥 (0, 𝑍 ). (3)

𝐿𝑜𝑠𝑠𝐺 (𝑦𝑝 , 𝑦𝑡 ) = 1 −
𝜎𝑦𝑝𝑦𝑡

𝜎𝑦𝑝𝜎𝑦𝑡
∗

2𝜎𝑦𝑝𝑦𝑡

𝜎2
𝑦𝑝

+ 𝜎2
𝑦𝑡

+ (`𝑦𝑝 − `𝑦𝑡 )2
. (4)

4.4 Computational Framework
We propose a novel Multi-modal Multi-label Emotion based on
Transformer BLSTM at Group Emotional Atmosphere Network
(MMETBGEAN) for recognizing individual self-assessed multi-label
emotions shown in Figure 2, which contains three components and
two tasks given acoustic and PPG features as inputs. We briefly
explain and introduce each component as bellow. We first retrieve
all the inputs from the people, and each person is defined as 𝑃𝑖

𝑗
,

which represents the person is from the 𝑗𝑡ℎ group with the 𝑖𝑡ℎ
seat. Component II and III describe the two tasks, group multi-label
emotion regression and individual multi-label emotion classifica-
tion, respectively. All trainable parameters are optimized by the
objective function as below:

𝐿𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠𝐼 + 𝐿𝑜𝑠𝑠𝐺 . (5)

4.4.1 Component I: Individual Representations Encoding.
To model an individual’s time-series changes in the PPG and acous-
tic features during group conversations, we are inspired by the
TRANS-BLSTM-1 model in [19] to design a model shown in Figure
2 (Component I) based on an encoder part of standard Transformer
[46] and a Bidirectional Long Short Term Memory (BLSTM) layer.

We hypothesize that the Transformer and BLSTM layers may be
complementary to produce a better joint model. More specifically,
Component I contains an encoder of standard Transformer, one
BLSTM layer with a weighted time-pooling attention mechanism
proposed by [30], and then one feedforward layer. Different from
[19], we add the BLSTM layer and one feedforward layer (BLSTM-
DNN) after the entire encoder of standard Transformer, not to
replace the feedforward layer with a BLSTM layer. Additionally, we
add a weighted time-pooling attention mechanism on the output
of BLSTM, which has been proposed and used for speech emotion
recognition [6, 30], for better performance. There are two Trans-
former BLSTMs in Component I given acoustic and PPG features
as inputs separately, and the outputs of two Transformer BLSTMs
are denoted by 𝑓 𝑎 and 𝑓 𝑝 in the paper respectively.

Since we employ an encoder of standard Transformer to build
Component I, we summarize its particular mechanism. The encoder
maps an input representations 𝑋 = (𝑥1, ..., 𝑥𝑛) to a sequence of
continuous representations 𝑍 = (𝑧1, ..., 𝑧𝑛). The shape size of
𝑋 is (batch size, the length of timestamp, the number dimension
of input feature). The self-attention is suitable for us to model the
changes in the physiology and acoustics according to varying time,
and the attention mechanism can compute the relations between
timestamps. We introduce a self-attention operation to focus on
these timestamps for employing relevant features. Given X as input
of the encoder, we follow [46] to compute “Scaled Dot-Product
Attention” (contains queries and keys of dimension 𝑑𝑘 , and values
of dimension 𝑑𝑣 ) representation H in the following. The definition
of Q, K, and V for query, key, and value is in [46].
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H = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (

(
XW𝑄 (XW𝐾 )𝑇

)
√
𝑑𝑘

)CW𝑉 . (6)

In the proposed model, we deploy the multi-head attention ver-
sion, which can be computed as:

Hj = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (

(
W𝑄

𝑗
X(W𝐾

𝑗
X)𝑇

)
√
𝑑𝑘

)W𝑉
𝑗 X, (7)

Z = 𝐶𝑜𝑛𝑐𝑎𝑡 (Hj, ..., Hh)W𝑂 , (8)

where𝑊𝑄 ∈ R𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘 ,𝑊𝐾 ∈ R𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘 ,𝑊𝑉 ∈ R𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑣 ,
𝑊𝑂 ∈ Rℎ𝑑𝑣×𝑑𝑚𝑜𝑑𝑒𝑙 are learn-able parameter matrices. Additionally,
ℎ and 𝑑𝑚𝑜𝑑𝑒𝑙 means the number of heads and the number dimen-
sions of outputs of an encoder, respectively. Besides, we add the
standard “positional encodings” in [46] to the input embeddings
by summing. Since we believe that emotional sections are in order,
we inject positional information about the relative order in the
sequence, which means timestamp in this paper.

Now, given the output of an encoder of Transformer 𝑍 , the
BLSTM layer then generates an output sequence 𝑦 = (𝑦1, ..., 𝑦𝑡 ).
𝑇 is equal to the (maximum) length timestamp of input features
(acoustic and physiological features), and 𝑡 is at each timestamp.
We introduce a weighted-pooling with local attention proposed by
[30] as below. A softmax function is performed to the results to get
a set of final weights for the frames which sum to unity:

𝛼𝑡 =
𝑒𝑥𝑝 (𝑢𝑇𝑦𝑡 )∑𝑇
𝑖=1 𝑒𝑥𝑝 (𝑢𝑇𝑦𝑖 )

, (9)

where 𝑢 is the attention parameter vector.
The above attention weights are utilized in a weighted average

in sequence to get the output representation:

𝑍𝐵𝐿𝑆𝑇𝑀 =
∑𝑇

𝑖=1
𝛼𝑡𝑦𝑡 . (10)

Finally, given 𝑍𝐵𝐿𝑆𝑇𝑀 , the feedforward layer then generates
an output representation 𝑓 𝑎 and 𝑓 𝑝 according to types of input
features.

4.4.2 Component II: Group-level Representations Encoding.
To model the group emotional atmosphere, we utilize the self-
supervised GAT (SuperGAT) layer in “MX” version [21] to build
a graph-level prediction graph neural network (GNN) for regress-
ing group multi-label emotional atmosphere scores. Component II
consists of three SuperGAT layers, one global mean pooling layer,
one feedforward layer, and then one prediction layer with ReLU
activation function. The global mean pooling layer is for averaging
all nodes in a graph for a prediction over a whole graph. The goal
of component II is to regress group emotions by an entire graph
instead of single nodes or edges. Each group member is linked to
a node, and the edges in the graph are the bonds between group
members. In graph regression, an attributed graph is given as an
input, and a real-valued output variable is predicted. Each graph
represents one group in the NTUBA, and the outputs of component
I, 𝑓 𝑎 and 𝑓 𝑝 , are simply concatenated as the nodes’ attributes. The
input attributed graph is self-loop and unidirectional.

The SuperGAT works under the assumption that two nodes are
more relevant to each other than others if two nodes are linked.

Since SuperGAT performs well on nodes and links level prediction
tasks, we adapt it to apply on the graph perdition task in this
paper. We clearly describe the MX mechanism of SuperGAT in the
following.

Given a graphG = (V,E), 𝑁 is the number of nodes and 𝐹 𝑙 is the
number of features at layer 𝑙 . Graph attention layer takes a set of
features H𝑙 = {h𝑙1, , ..., h

𝑙
𝑁
} (H1 is equal to𝐶𝑜𝑛𝑐𝑎𝑡 (𝑓 𝑎, 𝑓 𝑝 ) in this

paper). To compute h𝑙+1
𝑖

, the model multiplies the trainable weight
matrix W𝑙+1 ∈ R𝐹 𝑙+1×𝐹 𝑙 to H𝑙 , linearly combines the features of its
first-order neighbors (including itself) 𝑗 ∈ N𝑖 ∪ {𝑖} by attention
coefficients 𝛼𝑙+1

𝑖 𝑗
, finally applies a non-linear activation 𝜌 . That is,

h𝑙+1𝑖 = 𝜌

(∑
𝑗 ∈N𝑖∪{𝑖 }

𝛼𝑙+1𝑖 𝑗 W𝑙+1h𝑙𝑗
)
, (11)

where the two types of attention𝛼𝑖 𝑗 are computed as (the LeakyReLU
function is proposed by [54])

𝛼𝑙+1𝑖 𝑗 =
𝑒𝑥𝑝 (LeakyReLU(el+1ij ))∑

𝑘∈N∪{𝑖 } 𝑒𝑥𝑝 (LeakyReLU(𝑒𝑙+1𝑖𝑘
))
, (12)

𝑒𝑙+1𝑖 𝑗 = (a𝑙+1)𝑇
[
W𝑙+1h𝑙𝑖 | |W

𝑙+1h𝑙𝑗
]
· 𝜎

(
(W𝑙+1h𝑙𝑖 )

𝑇W𝑙+1h𝑙𝑗
)
, (13)

where a𝑙+1 ∈ R2𝐹 𝑙+1 is the coefficients computed by the original
GAT [47].

The self-supervised task in the SuperGAT layer is a link predic-
tion using the attention values as input to predict the likelihood
𝜙𝑖 𝑗 (shown in the below) that an edge exists between nodes, and it
can softly drop neighbors that are not likely linked while implicitly
assigning importance to the remaining nodes.

𝜙𝑖 𝑗 = 𝜎

(
(Wh𝑖 )𝑇Wh𝑗

)
. (14)

Finally, the outputs of the SuperGAT layers are as the inputs to
one global mean pooling layer, one feedforward layer, and then the
prediction layer with the ReLU activation function. We take the
embeddings before the prediction layer, denoted by 𝑓 𝑔 , for the next
component III.

4.4.3 Component III: Individual Self-assessedEmotionClas-
sification. The outputs of component I (𝑓 𝑎 and 𝑓 𝑝 ) and compo-
nent II (𝑓 𝑔) are simply concatenated as the inputs of component III,
which consists of three feedforward layers and then one prediction
layer with a sigmoid activation function. Notice that each person in
the one group has the same embeddings from component II. Given
the inputs (𝐶𝑜𝑛𝑐𝑎𝑡 (𝑓 𝑎, 𝑓 𝑝 , 𝑓 𝑔)), the component III then generates
the final output predictions.

5 EXPERIMENT
5.1 Experimental Setup
5.1.1 Implementation Details. The dimension of PPG features
(𝑑𝑝 ) and acoustic features (𝑑𝑎) are 35 and 988 respectively. The num-
ber of nodes of three feedforward (dense) layers in component III
is [𝑑 , 𝑑/2, 𝑑/4]. The model is trained with a fixed-length timestamp
defined as a function on the various window and step sizes. We use
zero-padding to transform the length of timestamp of each data
sample into the same size if the length is less than the maximum
timestamp.
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Table 3: The summarized results of models of two categories on multi-label emotion classification task; the five metrics are
Hamming Loss (𝐻𝐿), multi-label Accuracy (𝐴𝑐𝑐), macro-𝐹1 measure (𝐹1), macro-Precision (𝑃), and macro-Recall (𝑅).

Category Approach 𝐻𝐿(↓) 𝐴𝑐𝑐 (↑) 𝐹1 (↑) 𝑃 (↑) 𝑅(↑)

Multi-label
BR [37] 0.185 ± 0.027 0.238 ± 0.042 0.404 ± 0.030 0.339 ± 0.016 0.500 ± 0.021
CC [26] 0.212 ± 0.011 0.162 ± 0.038 0.377 ± 0.009 0.339 ± 0.007 0.433 ± 0.015
LP [44] 0.229 ± 0.020 0.152 ± 0.047 0.401 ± 0.034 0.376 ± 0.056 0.444 ± 0.022

Multi-label &
Multi-modal

MMET 0.179 ± 0.030 0.365 ± 0.053 0.379 ± 0.046 0.388 ± 0.042 0.420 ± 0.053
MMETB 0.168 ± 0.021 0.402 ± 0.035 0.422 ± 0.055 0.424 ± 0.028 0.441 ± 0.050
MMETBGEAN 0.152 ± 0.019 0.458 ± 0.033 0.502 ± 0.040 0.495 ± 0.021 0.513 ± 0.011

Moreover, several hyper-parameters are chosen by grid-searched.
The learning rate is set among [0.005, 0.001] with the learning rate
adjusting mechanism, the cosine warm-up scheduler [18], and the
number of warm-ups is 20. The number of multi-head attentions
is 8, the number of BLSTM nodes is fixed as [2, 4, 8], batch size
is fixed as [8, 16], the max epoch is 1000, the drop out is set to
0.2, and optimizer is ADAMAX [22]. The whole framework is im-
plemented using the Pytorch toolkit [34], Pytorch Geometric [15],
and PyTorch Lightning [14]; the hyperparameters are chosen by an
early-stopping criterion via monitoring validation loss according
to different tasks. Once the training is finished, we select the model
with the lowest Hamming Loss as the final model to evaluate the
performance on the validation set. Since the NTUBA has no testing
set, we use a 5-fold cross-validation evaluation method, and each
fold is split based on the group-independent and class-balanced in
the experiments.

5.1.2 Evaluation Metrics. We follow the study [53] to present
five evaluation metrics to measure the performances of all ap-
proaches on multi-label emotion detection tasks in this paper. The
five metrics have been universal used in some multi-label classifi-
cation problems [16, 20, 52], which are Hamming Loss (𝐻𝐿), multi-
label Accuracy (𝐴𝑐𝑐), macro-𝐹1 measure (𝐹1), macro-Precision (𝑃 ),
and macro-Recall (𝑅). To be noticed that smaller 𝐻𝐿 corresponds to
better classification quality, while larger 𝐴𝑐𝑐 , 𝑃 , 𝑅, and 𝐹1 measure
represents better classification quality.

5.2 Model Comparison
For a penetrating comparison, we conduct various baseline ap-
proaches in two categories. Since some baseline approaches are
unable to model time-series information, we compute 15 statistical
functionals1 on the timestamp dimension to extract session-level
individual features.

The baseline models in the first category (“Multi-label”) have
been used to treat the multi-label classification task without the
ability to premeditate the dependence of multi-modality. For these
approaches, the multi-modal inputs are simply concatenated as
their inputs. We briefly introduce each baseline model as below.
(1) BR2 [37], Binary Relevance, which ignores the correlations
between labels by transforming the multi-label task into multiple
single-label binary classification problem, (2) CC2 [26], Classifier
1max/min value and respective relative position within input, mean/median value,
standard deviation, first percentile, ninety-ninth percentile, the difference between
ninety-ninth percentile and first percentile, skewness, kurtosis, quartile 1, quartile 3,
and interquartile range
2http://scikit.ml/

Chains, which converts the multi-label task into a chain of binary
classification problem and takes high-order label correlations into
account, (3) LP2[44], Label Powerset, which creates one multi-class
classifier for each combination of labels proven in the training set.

The baseline model in the second category (“Multi-label & Multi-
modal”) has ability to model temporal context by multi-modal
jointly training strategy for multi-label classification. In this pa-
per, we hypothesize that the BLSTM layer and the group emotion
constrain can improve the model performance, so we do the abla-
tion study to remove these special components compared with the
proposed model. Therefore, the first baseline model is (4)MMET,
which removes BLSTM block and group constraints. The other one
is (5) MMETB, which removes the group constraints representa-
tions.

5.3 Emotion Classification Results
Table 3 sums up the experimental results. The proposed model,
MMETBGEAN, surpasses the baseline methods. The model abso-
lutely improves 9.3%, 12.3%, 10.7% and 9.3% for 𝐴𝑐𝑐 , 𝐹1, 𝑃 , and 𝑅

respectively than theMMET. Also, there are several observations.
First of all, the proposed approach exists a large discrepancy across
modalities, and these discrepancy results could come from either
subject differences or group composition; however, they deterio-
rate multi-label emotion recognition performance when using BR,
CC, LP without any multi-modality jointly learning techniques.
This suggests that the physiological and acoustic features do not di-
rectly embed discriminate emotional information themselves. This
is mainly because the intricate dependency between two modalities
requires a sophisticated algorithm to learn and model, and the early
fusion approaches inescapably lead to performance loss.

Moreover, we observe that the improvement compared with
other baselines is not obvious in this task while our ablated model
MMETB has been regarded as the strongest baseline. We explain
that the multi-modal multi-label approaches could only minimize
the discrepancy of multi-modal data because they mainly focus
on mapping the individual feature distribution conditioned on pre-
dicted labels. Additionally, MMETB is unsuccessful to think about
the local variations (like conversation dynamics in groups), which
is particularly crucial for individual emotion detection during group
interactions. In contrast, the proposed MMETBGEAN mainly uti-
lizes the group constraint based on a graph neural network (GNN)
tomodel the links of multi-modal representations under in-group in-
dividuals, which helps in getting improved results on the individual
multi-label emotion classification task during group conversations.

http://scikit.ml/
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(a) Testing features extracted by the MMETB model.

(b) Testing features extracted by the proposed MMETBGEAN.

Figure 3: Scatter plot of the results by t-SNE for testing features derived from MMETB model and MMETBGEAN model with
respect to the 2 classes of Yes (Red) and No (Blue).

6 ANALYSIS
To understand the potential modulation of group emotional atmo-
sphere representations toward multi-label individual responses, we
specifically analyze the multi-faceted on the proposed model. We
demonstrate that the indispensable multi-modal elements on the
classification task, and then we investigate the performance of the
regression task based on the different graph convolutional layers.
Moreover, we visualize the representations with t-Distributed Sto-
chastic Neighbor Embedding (t-SNE) (Figure 3a and 3b) along with
multi-label emotions to show the effectiveness of integrating the
group constrained representations.

6.1 Ablation Study
To demonstrate the indispensable of a multi-modal method for
multi-label emotion classification, we show the performance of
Single-modal Multi-label Emotion based on Transformer BLSTM at
Group Emotional Atmosphere Network (SMETBGEAN) approach
which only models a single modality. Table 4 shows the perfor-
mance of SMETBGEAN and MMETBGEAN approaches. We ob-
serve that SMETBGEANwith physiological modality outperforms
the counterparts with the acoustic modality, which suggests that
the physiological modality consists of more emotional information
than the audio one on the individual multi-label emotion classifi-
cation task. Additionally, the proposed MMETBGEAN achieves
the highest performance, and it shows that the complementary
between two modalities. This finding is consistent with our moti-
vation and hypothesis that emotional information is conveyed in
different channels.

6.2 Visualization
To illustrate the power of the proposed model, we plot the repre-
sentations of data encoded with the strongest baseline without the
group representation factor –MMTB and the proposed method –
MMETBGEAN by using t-SNE. To explicitly show the effect on
different emotions, we display the t-SNE according to each emotion
category one-by-one. Figure 3 (a) shows that these representations
are indistinguishable under mostly emotions. In contrast, in Figure
3 (b), due to the group constraint, the encoded representations in

Table 4: Performance of single-modal model (SMETBGEAN)
andmulti-modalmodel (MMETBGEAN) onmulti-label emo-
tion classification task in the NTUBA dataset.

Approach Modality 𝐻𝐿 𝐴𝑐𝑐 𝐹1 𝑃 𝑅

SMETBGEAN Audio 0.177 0.380 0.386 0.374 0.408
PPG 0.169 0.402 0.451 0.389 0.440

MMETBGEAN Audio+PPG 0.152 0.458 0.502 0.495 0.433

the emotion “𝐻𝑎𝑝𝑝𝑖𝑛𝑒𝑠𝑠”, “𝐴𝑛𝑛𝑜𝑦𝑒𝑑”, “𝐸𝑥𝑐𝑖𝑡𝑒𝑑” and “𝑁𝑒𝑟𝑣𝑜𝑢𝑠” are
indeed more distinguishable even though the distinction of some
emotions are still not obvious. Overall, the group constraint indeed
improves recognition power, and it indicates that we should take the
group constraint into account when modeling group conversations
on the individual multi-label emotion classification task.

7 CONCLUSION
In the study, we present a novel framework with graph-based group
constraints for in-group individual multi-label emotion classifica-
tion, namedMulti-modalMulti-label Emotion based on Transformer
BLSTM at Group Emotional Atmosphere Network (MMETBGEAN).
The MMETBGEAN explicitly considers individual changes within
PPG and acoustic features during group conversations and incor-
porates the group emotion intensity information by the SuperGAT
layers for an individual multi-label emotion classification. The ex-
periments show that the proposed method evaluated on the NTUBA
reaches promising results on the multi-label emotion classification
task. To our best knowledge, this is one of the first works to conduct
a research for individual multi-modal multi-label emotion classifi-
cation in group conversations. However, our work still has a few
limitations. For instance, the NTUBA is indeed relatively small.
Nevertheless, there is no existing database that contained physio-
logical data collected. In the future work, we will train the models
to directly learn the self-assessed emotion scores (7-point Likert),
and we plan to employ the personalities and interaction dynamics
under group conversations to deepen group composition analy-
sis [3], such as the effect of compositional personalities on group
emotions and conversational temporal dynamics [8] respectively.
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