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Al

 Artificial Intelligence (Al) is the branch of computer science that deals with
automating tasks that typically require human intelligence.

* |n the past years Al has been widely applied across different domains.
E.Q., health care, transportation, finance.

* Jo deploy Al systems, we test them against benchmarks (or validation sets).
 The goal is to outperform the previous existing models.

* E.g., In Machine Learning we usually resort to accuracy metrics. The
highest the accuracy, the better the model.



Since 2012, the amount of computing used for Al
training has been doubling every 6 months

e https://epoch.ai/blog/compute-trends
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* o create better Al systems we are currently adding
* More data
* More experiments

 Larger models



The Equation of Red Al

Cost(R) x E-D-H

Cost of a single (E)xample Number of (H)yperparameters

Size of (D)ataset

By Schwartz et al. (2020)



Issues of Red Al

 High costs (hardware, electricity, data access, etc.)
* Limited reproducibllity.

* Energy consumption.

» Carbon emissions.

« SMEs can hardly be competitive.

 Groundbreaking Al research is mostly done by tech giants.



A few examples of Red Al

 Google’s BERT-large

* 350 million features

* Trained for 2.5 days using 512 TPU chips, costing $60K+
 Open-GPT3 (how GPT-4/01)

* 550 tonnes CO2-eq (Patterson, 2021)

* 175 billion features

* APl is open but no-pretrained model is available
* AlphaGo

e 1920 CPUs, 280 GPUs, costing $35M



Red Al in Large Language Models (LLMs)

 OPT by Meta reports 75 tons CO2-eq (1/7 of OpenGPT’s footprint).
(Also 175billion params)

« However, Llama 3 reported 2,290 tons of CO2-eq (7.7M GPU hours
training )

 Open science: release includes both the pretrained models and the code
needed to train and use them.

 DeepSeek-V3 claims “only” 2.78M GPU hours

 Bloom by Huggingface reports 25 tons, 51 when considering embodied
and operational carbon footprint. (176billion params)



Red Al Green Al

 Energy

e Time

* Reproducibility
 Reusage

Accuracy: 0.999999999



How can we adopt Green Al

e Check whether Al is needed.

* Select green datacenters.

* Run on low carbon intensity hours.
* Opt for GPU-optimised solutions (?)
* Opt for low-power hardware (e.g., Nvidia Jetson boards)
* Or GPUs that provide energy metrics (e.g., NVIDIA GPUs via the nvidia-smi tool)
* Report energy/carbon metrics (e.g., embed in MLFlow?)
* Use pre-trained models (Transfer Learning)
* Preprocess dataset to reduce size.

* Improve parameter-tuning strategy.
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Reporting energy/carbon footprint

e We need benchmarks.

* AllenAl leaderboard
https://leaderboard.allenai.org

* No carbon metrics, yet

* Report comparable proxies for energy ez o o .
consumption.
@ e
» A Learning algorithms behave in a non- o s

deterministic

A Different data-points lead to different
energy consumption
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https://leaderboard.allenai.org

Reporting energy/carbon footprint

* Reporting measured energy consumption
* + Accurate
* + Easy to map to carbon emissions
- Hard to measure
* - Low replicabillity

* Reporting time / estimation based on time & hardware
* + Easy to measure
* + Correlates with energy consumption in most cases.
e - Difficult to compare with measurements from other setups

* E.g., floating point operations (FPOs) (?7)
* + comparable across different setups
* + cheap
e - does not factor in memory energy consumption
e - does not reflect carbon emissions
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Data-centric Al



Data-centric Al

 Emerging discipline that deals with systematically engineering data to build Al
systems.

e Shift from improving the training strategy to improving the data.

* |t is better to have small but reliable datasets than large but noisy
datasets.

* =>|mprove data collection, data labelling, and data preprocessing.

 More about data-centric Al by Andrew Ng:
https://www.youtube.com/watch?v=06-AZXmwH|o
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https://www.youtube.com/watch?v=06-AZXmwHjo

: Clean vs. noisy data
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Green Data-centric Al

 How do different ML algorithms compare
in terms of energy consumption?

« How does number of rows relate to the
energy consumption of ML models?

» How does number of features relate to
the energy consumption of ML models?

 What is the impact of reducing data in the
erformance of the model?

e Method -> results -> discussion
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Abstract—With the growing availability of large-scale datasets,
and the popularization of affordable storage and computational
capabilities, the energy consumed by AI is becoming a growing
concern. To address this issue, in recent years, studies have
focused on demonstrating how AI energy efficiency can be
improved by tuning the model training strategy. Nevertheless,
how modifications applied to datasets can impact the energy
consumption of Al is still an open question.

To fill this gap, in this exploratory research, we evaluate if
data-centric approaches can be utilized to improve AI energy
efficiency. To achieve our goal, we conduct an empirical experi-
ment, executed by considering 6 different AI algorithms, a dataset
comprising 5,574 data points, and two dataset modifications
(number of data points and number of features).

Our results show evidence that, by exclusively conducting
modifications on datasets, energy consumption can be drastically
reduced (up to 92.16%), often at the cost of a negligible or even
absent accuracy decline. As additional introductory results, we
demonstrate how, by exclusively changing the algorithm used,
energy savings up to two orders of magnitude can be achieved.

In conclusion, this exploratory investigation empirically
demonstrates the importance of applying data-centric techniques
to improve Al energy efficiency. Our results call for a research
agenda that focuses on data-centric techniques, to further enable
and democratize Green-Al

Index Terms—Energy Efficiency, Artificial Intelligence, Green
Al, Data-centric, Empirical Experiment

I. INTRODUCTION

We live in the era of artificial intelligence (AI): new intelli-
gent technologies are emerging every day to change people’s
lives. Many organizations identified the massive potential of
using intelligent solutions to create business value. Hence, in
the past years, the modus operandi is collecting as much data
as possible so that no opportunity is missed. Data science
teams are constantly looking for problems where AI can
be applied to existing data to train models that can provide
more personalized and optimized solutions to their operations
customers and operations [1].

Nevertheless, the energy consumption of developing Al ap-
plications is starting to be a concern. Previous studies observed
that Al-related tasks are particularly energy-greedy [2], [3]. In
fact, since 2012, the amount of computing used for Al training
has been doubling every 3.4 months [4]. Hence, a new sub-
field is emerging to make the development and application of
Al technologies environmentally sustainable: Green Al [5].

On a related note, Al practitioners have realised that the
current trend of collecting massive amounts of data is not

., AuthorN}@....com

necessarily yielding better models. Being able to collect high-
quality data is more important than collecting big data — a
trend coined as Data-centric A@ Instead of creating learning
techniques that squeeze every bit of performance, data-centric
Al focuses on leveraging systematic, reliable, and efficient
practices to collect high-quality data.

Therefore, in this study, we conduct an exploratory empir-
ical study on the intersection of Green Al and Data-centric
Al We investigate the potential impact of modifying datasets
to improve the energy consumption of training AI models. In
particular, we focus on machine learning, the branch of Al that
deals with the automatic generation of models based on sample
data — machine learning and AI are used interchangeably
throughout this paper. In addition to investigate the energy
impact of dataset modifications, we also analyze the inherent
trade-offs between energy consumption and performance when
reducing the size of the dataset — either in the number of
data points or features. Moreover, the analysis is performed
in six state-of-the-art machine learning model applied in the
detection of Spam messages.

Our results show that feature selection can reduce energy
consumption up to 76% while preserving the performance of
the model. The improvement in energy efficiency is more
impressive when reducing the number of data points: up to
92% in the case of Random Forrest. However, in this case, it
is not cost-free: the trade-off between energy and performance
needs to be considered. Finally, we also show that KNN
tends to be the most energy-efficient algorithm while ensemble
classifiers tend to be the most energy greedy.

This paper provides insights to define the most relevant
and energy-efficient modifications of datasets used during the
elaboration of the AI models while ensuring minimal accuracy
loss. We argue that more research in Data-centric Al will help
more practitioners in developing green Al models. To the best
of our knowledge, this is the first study to explore the potential
of preprocessing data to reduce the energy consumption of Al.

The entirety of our experimental scripts and results are made
available with an open-source license, to enable the indepen-
dent verification and replication of the results presented in this
study: https://github.com/GreenAlproject/ICT4S22.

The remainder of this paper is structured as follows. Sec-
tion [II| presents the related work on the energy consumption

Understanding Data-Centric Al https://landing.ai/data-centric-ai/. Ac-
cessed 24th January 2022.




Method

» Single object of study: natural language model to detect spam messages.

* 6 machine learning algorithms: SVM, Decision Tree, KNN, Random Forrest,
AdaBoost, Bagging Classifier.

* Reduce the number of rows. 10%, 20%, .., 100%
o Stratified random sampling (?)
* Reduce the number of features. 10%, 20%, .., 100%
 Feature importance metric based on the Chi-Square Test (Chi2)

* Estimate energy consumption using a RAPL-based tool. (?)
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Repeat 30 times

FiXx random seeds

v,
Data was not Normal => tailed Normal distribution.

19



Results: energy consumption of algorithms
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Results: energy vs data shape
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Results: performance vs data shape

SVM
.44 S = n__L. —9
0 1000 2000 3000 4000
Number of Datapoints
SVM
= = = = — = — — ——
0 2000 4000 6000 8000

Number of Features

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

Decision Tree

0 1000 2000 3000 400
Decision Tree
0 2000 4000 6000 8000

1.0

KNN

e ©

e ©

2000

4000

6000

8000

1.0

Random Forest

0 1000 2000 3000 4000
Random Forest
2000 4000 6000 8000

| [©

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

AdaBoost

0

1000 2000 3000 4000

AdaBoost

o—tr——r~n———=——~——9

0

2000 4000 6000 8000

Bagging Classifier

W

1.0

0.8

0.6

0.4

0.2

0 1000 2000 3000 4000

Bagging Classifier

1.0
—_— e ———
0.8
0.6

0.4+

0.2

0.0

0 2000 4000 6000 8000




Discussion

* Other data properties should be investigated.
 E.g., data types

 Reporting energy data is essential. It can lead to different model selection
without hindering model performance.

* There is a big opportunity in Model and Data Simplification.
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Data/Model Simplification
¢ (?) o ] o

e Data selection

 Data quantisation. Posit?

e Data distillation

» Coreset extraction (?)

e Model distillation Original Model Pruned Model
 Model quantisation

 Model pruning

24



Posit vs Float

Better for DL use cases
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https://spectrum.ieee.org/floating-point-numbers-posits-processor

How can we tune
learning
parameters
efficiently?
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2023 IEEE/ACM 2nd International Conference on Al Engineering — Software Engineering for Al (CAIN)

Uncovering Energy-Efficient Practices in Deep
Learning Training: Preliminary Steps Towards
Green Al

Tim Yarally*, Luis Cruz*, Daniel Feitosal June Sallou*, Arie van Deursen*
*Delft University of Technology, The Netherlands - timyarally @hotmail.com, { l.cruz, j.sallou, arie.vandeursen } @tudelft.nl
fUniversity of Groningen, The Netherlands - d.feitosa@rug.nl

Abstract— Modern Al practices all strive towards the same
goal: better results. In the context of deep learning, the term
“results” often refers to the achieved accuracy on a competitive
problem set. In this paper, we adopt an idea from the emerging
field of Green Al to consider energy consumption as a metric
of equal importance to accuracy and to reduce any irrelevant
tasks or energy usage. We examine the training stage of the
deep learning pipeline from a sustainability perspective, through
the study of hyperparameter tuning strategies and the model
complexity, two factors vastly impacting the overall pipeline’s
energy consumption. First, we investigate the effectiveness of
grid search, random search and Bayesian optimisation during
hyperparameter tuning, and we find that Bayesian optimisa-
tion significantly dominates the other strategies. Furthermore,
we analyse the architecture of convolutional neural networks
with the energy consumption of three prominent layer types:
convolutional, linear and ReLU layers. The results show that
convolutional layers are the most computationally expensive by
a strong margin. Additionally, we observe diminishing returns
in accuracy for more energy-hungry models. The overall energy
consumption of training can be halved by reducing the network
complexity. In conclusion, we highlight innovative and promising
energy-efficient practices for training deep learning models. To
expand the application of Green Al, we advocate for a shift in
the design of deep learning models, by considering the trade-off
between energy efficiency and accuracy.

Index Terms—green software, green ai, deep learning, hyper-
parameter tuning, network architecture

I. INTRODUCTION

Al practices are expensive and can have a significant
environmental impact. That is not surprising, since an im-
portant challenge within the Al community is improving
the accuracy of previously reported systems [30]. Now, a
new field is emerging to address this problem: Green Al,
with its roots planted deep into the discipline of Sustainable
Software Engineering. The software engineering community
has increasingly studied the energy efficiency of software
systems by developing energy estimation models [6], [25];
developing code analysis and optimisation tools to improve
energy efficiency [2], [9], [11], [26]; studying practices that
lead to green software [7], [10], [13] and so on. Recently,
a new trend is calling for software engineering approaches
that consider ‘data as the new code’, challenging practitioners
with new software systems that ship Al-based features. This
intersection between Green Software Engineering and Al
Engineering is where we find the origin of Green Al The

979-8-3503-0113-7/23/$31.00 ©2023 IEEE
DOI 10.1109/CAIN58948.2023.00012

25

initial contributions in this field consist of positional papers
that are calling for a new research agenda [3], [30], [34].
Since then, the community has developed into studying the
energy footprint of Al at different levels [37]. This involves
the measurement and reporting of energy consumption [14]
next to accuracy, but also the appreciation of research efforts
that do not necessarily rely on enterprise-sized data [36] or
training budgets.

This study focuses on deep learning, a subset of machine
learning and the driver behind many AI applications and
services. All experiments are performed with rudimentary
neural networks that comprise the building blocks of more
complex models. We train these networks on two popular
image vision problem sets: FashionMNIST [40] and CIFAR-
10 [21]. We adopt the idea of designing neural networks
with energy consumption as one of the main considerations.
Specifically, we direct our attention to the early phases of the
deep learning pipeline and formulate the following research
questions:

RQ.: Between Bayesian optimisation, random optimisation
and grid search; which strategy is the most energy-
efficient for training a neural network?

RQ@,: Can the complexity of a neural network be reduced
such that it consumes less energy while maintaining an
acceptable level of accuracy?

First, we analyse Bayesian optimisation, random optimisa-
tion and grid search, three popular optimisation strategies, to
identify best practices in terms of energy efficiency consider-
ations. Classically, grid search has served as the most popular
baseline optimisation strategy in the context of hyperparameter
tuning [5]. Nonetheless, there have been studies that present
random search as an alternative baseline that competes with
or even exceeds grid search in multi-dimensional optimisation
problems [4], [5], [24]. Bayesian optimisation is a more
powerful strategy that is also more difficult to implement and
parallelise. Apart from comparing these three strategies, we
demonstrate that further optimisation attempts past a specific
point are met with diminishing returns in performance that
might not be worth the additional cost of training. Training
times can vary greatly depending on the workload and network
architecture and there are no rules that state how many
optimisation rounds one should perform. This is where the

Authorized licensed use limited to: TU Delft Library. Downloaded on February 27,2024 at 16:11:02 UTC from IEEE Xplore. Restrictions apply.
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Hyper parameter tuning

 When training an ML model, there are several parameters that need to be
tuned.

 E.g., In SVM we have the Reqularization parameter C, the kernel function,
the degree of the kernel function, and depending on the case, many other.

 The common approach revolves around grid search. The user provides a

sequence of possible values for each parameter and the pipeline runs all
possible combinations.

 Our question: Can we save energy with alternative approaches?

 We studied Grid Search, Random Search and Bayesian
Optimisation.

27



Case Selection

Experimental Tooling
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Conclusions?

* Bayesian converges faster.

Resu ItS * No clear winner between Grid and Random
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DeepSeekMoE: Towards Ultimate Expert Specialization in
Mixture-of-Experts Language Models

Damai Dai*!?, Chenggi Deng', Chenggang Zhao*'~, RX. Xu', Huazuo Gao', Deli Chen', Jiashi Li',
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Abstract

In the era of large language models, Mixture-of-Experts (MoE) is a promising architecture for
managing computational costs when scaling up model parameters. However, conventional MoE
architectures like GShard, which activate the top-K out of N experts, face challenges in ensuring
expert specialization, i.e. each expert acquires non-overlapping and focused knowledge. In
response, we propose the DeepSeekMokE architecture towards ultimate expert specialization. It
involves two principal strategies: (1) finely segmenting the experts into mN ones and activating
mK from them, allowing for a more flexible combination of activated experts; (2) isolating X,
experts as shared ones, aiming at capturing common knowledge and mitigating redundancy
in routed experts. Starting from a modest scale with 2B parameters, we demonstrate that
DeepSeekMoE 2B achieves comparable performance with GShard 2.9B, which has 1.5x expert
parameters and computation. In addition, DeepSeekMoE 2B nearly approaches the performance
of its dense counterpart with the same number of total parameters, which set the upper bound
of MoE models. Subsequently, we scale up DeepSeekMoE to 16B parameters and show that
it achieves comparable performance with LLaMA2 7B, with only about 40% of computations.
Further, our preliminary efforts to scale up DeepSeekMoE to 145B parameters consistently
validate its substantial advantages over the GShard architecture, and show its performance
comparable with DeepSeek 67B, using only 28.5% (maybe even 18.2%) of computations.

DeepSeekMoE

Preprint at ArXiv, 2024 https://arxiv.org/pdf/
2401.06066
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1. Introduction

Recent research and practices have empirically demonstrated that, with sufficient training data
available, scaling language models with increased parameters and computational budgets can
yield remarkably stronger models
2023a)). It is imperative to acknowledge, however, that the endeavor to scale
models to an extremely large scale is also associated with exceedingly high computational
costs. Considering the substantial costs, the Mixture-of-Experts (MoE) architecture
2017) has emerged as a popular solution. It can

*Contribution during internship at DeepSeek-Al.
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Mixture of Experts

| lama3.1 has 405B parameters, DeepSeek V3 671B

* Yet DeepSeek has quicker inference times and claims less energy
consumption (?)

 Divide the model into smaller blocks of experts
* Jokens get routed to certain experts based on the query
* Only part of the network is active during inference

 DeepSeek claims only 37B out of 671B parameters get active

31



DeepSeekMoE
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Comparable performance to
LLaMAZ2 7B effectively using
less half the parameters

Less computational power

Problems (?)

o Still need to load all the
parameters

 High memory -> high
embodied carbon



Green Al at FacebookMeta

Sustainable Al: Environmental Implications,
Challenges and Opportunities (2022)
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Sustainable AI: Environmental Implications,
Challenges and Opportunities

Carole-Jean Wu, Ramya Raghavendra, Udit Gupta, Bilge Acun, Newsha Ardalani, Kiwan Maeng,
Gloria Chang, Fiona Aga Behram, James Huang, Charles Bai, Michael Gschwind, Anurag Gupta, Myle Ott,
Anastasia Melnikov, Salvatore Candido, David Brooks, Geeta Chauhan, Benjamin Lee, Hsien-Hsin S. Lee,

Bugra Akyildiz, Maximilian Balandat, Joe Spisak, Ravi Jain, Mike Rabbat, Kim Hazelwood

Facebook Al

Abstract—This paper explores the environmental impact of
the super-linear growth trends for AI from a holistic perspective,
spanning Data, Algorithms, and System Hardware. We character-
ize the carbon footprint of AI computing by examining the model
development cycle across industry-scale machine learning use
cases and, at the same time, considering the life cycle of system
hardware. Taking a step further, we capture the operational and
manufacturing carbon footprint of AI computing and present an
end-to-end analysis for what and how hardware-software design
and at-scale optimization can help reduce the overall carbon
footprint of AL Based on the industry experience and lessons
learned, we share the key challenges and chart out important
development directions across the many dimensions of AL. We
hope the key messages and insights presented in this paper
can inspire the community to advance the field of Al in an
environmentally-responsible manner.

I. INTRODUCTION

Artificial Intelligence (AI) is one of the fastest growing
domains spanning research and product development and
significant investment in Al is taking place across nearly every
industry, policy, and academic research. This investment in
Al has also stimulated novel applications in domains such as
science, medicine, finance, and education. Figureﬂ analyzes
the number of papers published within the scientific disciplines,
illustrating the growth trend in recent yearsH

Al plays an instrumental role to push the boundaries of
knowledge and sparks novel, more efficient approaches to
conventional tasks. Al is applied to predict protein structures
radically better than previous methods. It has the potential to
revolutionize biological sciences by providing in-silico methods
for tasks only possible in a physical laboratory setting [1]. Al
is demonstrated to achieve human-level conversation tasks,
such as the Blender Bot [2], and play games at superhuman
levels, such as AlphaZero [3]. Al is used to discover new
electrocatalysts for efficient and scalable ways to store and
utilize renewable energy [4], predicting renewable energy
availability in advance to improve energy utilization [5],
operating hyperscale data centers efficiently [6], growing plants
using less natural resources [7], and, at the same time, being
used to tackle climate changes [8], [9]. It is projected that, in
the next five years, the market for Al will increase by 10x into
hundreds of billions of dollars [10]. All of these investments

!Based on monthly counts, Figuremestimates the cumulative number of
papers published per category on the arXiv database.
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Fig. 1. The growth of ML is exceeding that of many other scientific disciplines.
Significant research growth in machine learning is observed in recent years as
illustrated by the increasing cumulative number of papers published in machine
learning with respect to other scientific disciplines based on the monthly count
(y-axis measures the cumulative number of articles on arXiv).

in research, development, and deployment have led to a super-
linear growth in Al data, models, and infrastructure capacity.
With the dramatic growth of Al, it is imperative to understand
the environmental implications, challenges, and opportunities
of this nascent technology. This is because technologies tend to
create a self-accelerating growth cycle, putting new demands
on the environment.

This work explores the environmental impact of Al from
a holistic perspective. More specifically, we present the
challenges and opportunities to designing sustainable Al
computing across the key phases of the machine learning (ML)
development process — Data, Experimentation, Training, and
Inference — for a variety of Al use cases at Facebook, such
as vision, language, speech, recommendation and ranking. The
solution space spans across our fleet of datacenters and on-
device computing. Given particular use cases, we consider the
impact of Al data, algorithms, and system hardware. Finally,
we consider emissions across the life cycle of hardware systems,
from manufacturing to operational use.

Al Data Growth. In the past decade, we have seen an
exponential increase in Al training data and model capacity.
Figure [2(b) illustrates that the amount of training data at
Facebook for two recommendation use cases — one of the
fastest growing areas of ML usage at Facebook— has increased
by 2.4x and 1.9x in the last two years, reaching exabyte scale.
The increase in data size has led to a 3.2 increase in data
ingestion bandwidth demand. Given this increase, data storage
and the ingestion pipeline accounts for a significant portion of




Carbon footprint mapped to the Al lifecycle
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Data Experimentation Training Inference

* There are 4 main overarching stages where carbon emissions need to be isolated: data
collection, experimentation, training, inference.

* At Facebook, recommendation systems split energy consumption evenly between
training and inference; text translation models have a 35%/65% split. (Operational cost)

* Operational/embodied cost split: 30%/70%
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Open issues according to Meta

* A vast portion of projects only use GPUs at 30%. |
Should be higher to attenuate embodied carbon. Based on 10K Al projects
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Know when to retrain models

Neither too early nor too late

The Al Model will be
updated fewer times and
Adaptation Techniques only when necessary.

Blind Adaptation

Informed Adaptation

'ﬁ' “Batajan  Datafeb DataMar DataApr DataMay

~Data Dec Model update Model update Model update
'ﬁ "DataJan  DataFeb  DataMar  DataApr  DataMay
~Data Dec I I I Model update

Check if Check if Check if
data change data change datachange
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ABSTRACT

The rapid adoption of artificial intelligence (Al) and machine learn

ing (ML) has generated growing interest in understanding their
environmental impact and the challenges associated with design
ing environmentally friendly ML-enabled systems. While Green Al
rescarch, e, research that tries to minimize the energy footprint
of Al is receiving increasing attention, very few concrete guide
lines are available on how ML-enabled systems can be designed to
be more environmentally sustainable. In this paper, we provide a
catalog of 30 green architectural tactics for ML-enabled systems to
fill this gap. An architectural tactic is a high-level design technique
to improve software quality, in our case environmental sustainabil
ity. We derived the tactics from the analysis of 51 peer-reviewed
publications that primarily explore Green Al and validated them
using a focus group approach with three experts, The 30 tactics we
identified are aimed to serve as an initial reference guide for further
exploration into Green Al from a soltware engineering perspec
tive, and assist in designing sustainable ML-enabled systems. To
enhance transparency and facilitate their widespread use and ex
tension, we make the tactics available online in casily consumable
formats, Wide-spread adoption of these tactics has the potential
to substantially reduce the societal impact of ML-enabled systems
regarding their energy and carbon footprint
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Lay Abstract: Machine learning (ML) is a technology field that
wants to provide software with functionality similar to human
like intelligence, e g., for understanding text or describing images
However, creating and using systems with ML needs a lot more
computing power than non-ML systems, which is bad for the envi
ronment. Companies therefore need concrete advice on how they
can create ML systems that are environmentally sustainable. In
this paper, we provide a catalog of 30 green architectural tactics
for these systems, An architectural tactic is a high-level design
technique to improve software quality, in our case environmental
sustainability. To achieve this, we analyzed 51 scientific papers and
later discussed with 3 experts to improve and extend our catalog, It
many companies start using these tactics, the energy footprint of
systems with ML can be greatly reduced.

1 INTRODUCTION

Artificial intelligence (Al) and machine leaming (ML) have shown
significant potential in digital innovations, with a growing number
of different ML applications expanding across a wide spectrum of
industries, from healthcare to agriculture and management [41]
This rapid growth of ML applications has also drawn attention to its
environmental footprint. Several studies have evaluated the carbon
emissions of ML |6, 31). It is widely acknowledged that training
and using ML models at scale is computationally demanding, which
leads to greenhouse gas emissions, For example, training a typical
transformer-based natural language processing (NLP) model pro-
duces greenhouse gas emissions equivalent to five average cars in
their lifetime [51). These considerations have led to new concepts
such as Green Al and Sustainability of Al Traditional Al has aimed
to achieve high accuracy while disregarding energy efficiency, but
Green Al emphasizes the environmental footprint of Al and fo-
cuses on minimizing computation while still producing accurate
results [47]. Sustainability of Al refers to the environmental impact
of the Al model itself, and highlights the responsible development




Architectural tactics

Green Architectural Tactics for ML-Enabled Systems

Data-centric Algorithm design Model optimization Model training Deployment Management

T1: Apply sampling T6: Choose an energy- T12: Set energy T18: Use quantization- T21: Consider federated 7T28: Use informed
techniques efficient algorithm consumption as a model aware training learning adaptation*
T2: Remove redundant  T7: Choose a lightweight constraint T19: Use checkpoints ~ T22: Use computation  T29: Retrain the model
data algorithm alternative T13: Consider graph during training partitioning if needed
T3: Reduce number of  18: Decrease model substitution T20: Design for T23: Apply cloud fog T30: Monitor
data features complexity T14: Enhance model memory constraints® network architecture computing power
T4: Use input T9: Consider sparsity T24: Use energy-
quantization reinforcement learning  T15: Consider energy- efficient hardware
T5: Use data projection for energy efficiency aware pruning T25: Use power capping

T10: Use dynamic T16: Consider transfer T26: Use energy-aware

parameter adaptation learning scheduling

T11: Use built-in library T17: Consider T27: Minimize

functions™ knowledge distillation referencing to data®

The symbol * means the tactic was found with the help of the focus group.

Figure 2: Catalog of the 30 Synthesized Green Architectural Tactics for ML-Enabled Systems




Data-centric

Table 1: Data-Centric Green Tactics for ML-Enabled Systems ° Red uce d a't a Size

Tactic Description Target QA Source .
- s . -~
T1: Apply Use a smaller subset of the Energy [54][61] Sam pl 1N g

sampling original input dataset efficiency

techniques * Dimensionality reduction

T2: Remove Detect and remove Energy [5][13]
redundant data  redundant data from the efficiency
original input data

T3: Reduce Reduce the number of Energy [54]
number of data  input data features used efficiency
features

e Quantization

T4: Use input Convert input data to Accuracy” [1][26]
quantization smaller precision

T5: Use data Project data into a Performance® [45]
projection lower-dimensional

embedding

The * means energy efficiency was considered a secondary QA
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Algorithm Design

Table 2: Green Tactics Related to Algorithm Design

Tactic Description Target QA Source

T6: Choose an Choose the most Energy [25]
energy-efficient  energy-efficient algorithm efficiency
algorithm that achieves sufficient

level of accuracy

T7: Choose a If possible, choose lighter  Energy
lightweight alternatives of existing efficiency
algorithm algorithms

alternative

T8: Decrease Decrease the complexity Energy
model of an ML model efficiency

complexity

T9: Consider Use reinforcement Energy
reinforcement learning to optimize efficiency
learning for energy efficiency at run

energy time

efficiency

T10: Use Design parameters that Energy
dynamic are dynamically adapted efficiency
parameter based on the input data

adaptation

T11: Use built-in  Use built-in libraries for Performance*
library functions ML models if possible

The * means energy efficiency was considered a secondary QA
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» Carefully select your algorithm

e You don’t need the fanciest
techniques



Model Optimization

Table 3: Green Tactics Related to Model Optimization

Tactic

T12: Set energy
consumption as

a model
constraint

T13: Consider

graph
substitution

T14: Enhance
model sparsity

T15: Consider
energy-aware
pruning

T16: Consider

transfer learning

T17: Consider
knowledge

distillation

The * means energy efficiency was considered a secondary QA

Description

Consider energy
consumption as one

predetermined parameter

for optimizing the ML
model

Replace energy-intensive

model parts with similar,

but less
energy-consuming parts

Reduce the number of
model parameters or set

their values to zero

Prune neural networks
starting from the most
energy-intensive layer

Use pre-trained ML

models for other similar
tasks

Use knowledge from a

large ML model to train a

smaller model

Target QA

Energy
efficiency

Energy
efficiency

Energy
efficiency

Energy
efficiency

Energy
efficiency

Performance”®

Source

[59][66]

[68)

67)

[23](48]

[48][66]
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* Add energy to training parameters
* Reduce FLOPs
* Pruning, sparsity

 Take advantage of existing models



Model Training

Table 4: Green Tactics Related to Model Training

Tactic

T18: Use
quantization-
aware training

T19: Use
checkpoints
during training

T20: Design for
memory
constraints

Description Target QA Source

Convert high-precision Accuracy”
data types to lower 26,
precision during training 50]

Use checkpoints to avoid  Recoverability®
a knowledge loss in case [48)

of a premature
termination

Consider possible Recoverability®
memory constraints (48]

during training

The * means energy efficiency was considered as a secondary QA
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e Quantization
e SAVE TRAINING PROGRESS




Model Deployment

Table 5: Green Tactics Related to Model Deployment

Tactic

T21: Consider
federated

learning

T22 Use
computation
partitioning
T23: Apply
cloud fog
network
architecture

T24: Use
energy-efficient

hardware

T25: Use power
capping

T26: Use

energy-aware
scheduling

T27: Minimize
referencing to
data

Description

Train the model and
store data in

decentralized devices

Divide computations

between a client and a
cloud server

Use an architecture in
which the models are

processed between end
devices and cloud

Use energy-efficient,
ML-suitable hardware

Set energy consumption
limits for hardware

Dynamically optimize the
scheduling of ML tasks

Avoid unnecessary read
and write data operations

Target QA Source

Energy
efficiency [26]

Energy
efficiency (35]

Energy
efficiency [71]

Energy
efficiency

Energy
efficiency

Resource
utilization®

Energy
efficiency

The * means energy efficiency was considered a secondary QA
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* Distributed deployment

* Energy efficient hardware and
configurations



Model Management

 Reuse the model as much as possible

Table 6: Green Tactics Related to Management

Tactic Description Target QA Source

T28: Use Adapt the model based Energy 142]
informed on informed concept shift  efficiency

adaptation

T29: Retrain  In case of concept shift, Accuracy” |42]
the model if  retrain the existing ML

needed model instead of building
a new one

T30: Monitor Monitor computing Energy 110][30]
computing power of an ML model in  efficiency

power the long-term

The " means energy efficiency was considered a secondary QA
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Rethinking the Architecture: Spiking Neural Networks
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Rethinking the Architecture: Spiking Neural Networks
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Neuromorphic processor

Epilepsy prediction

Dlgita| Block (Limited cases)

l

Learning
Algorithms

Simulation platform: Software and model (Majority of cases)

Epilepsy prediction
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