EINDHOVEN
UNIVERSITY OF
TECHNOLOGY

Do We Still Need This?
Managing Variability in Modern Software Systems

Jacob Kruger

Eindhoven University of Technology, The Netherlands

June 24, 2024

Modern systems: driven by software and variant-rich

Figures: https://github.com/SoftVarE-Group/Course-on-Software-Product-Lines

) TU/e

https://github.com/SoftVarE-Group/Course-on-Software-Product-Lines

Modern cars: driven by software and variant-rich

Figures: https://github.com/SoftVarE-Group/Course-on-Software-Product-Lines

) TU/e

https://github.com/SoftVarE-Group/Course-on-Software-Product-Lines

Modern cars: driven by software and variant-rich

Figures: https://github.com/SoftVarE-Group/Course-on-Software-Product-Lines

https://github.com/SoftVarE-Group/Course-on-Software-Product-Lines

Modern Linux: driven by software and variant-rich

Size of the Code Base

v5.19
~ 25.000.000 (-

20.000.000 -

15.000.000 |-

10.000.000 |-

Lines of Source Code (SLOC

5.000.000 -

L L
2005 2010 2015 2020 2025
Year

Figures: https://github.com/SoftVarE-Group/Course-on-Software-Product-Lines

) TU/e

https://github.com/SoftVarE-Group/Course-on-Software-Product-Lines

Modern Linux: driven by software and variant-rich

Size of the Code Base Number of Features
v5.19 20.000
G 25.000.000]
9 v4.18
) i ¢ 15.000
= 20.000.000 E va.0
el o
S &
> 15.000.000 - - v3.0
8 S 10.000 | .
3 23
¥ 10.000.000 . E
[s}
= v2.6.12
8 5.000
£ 5.000.000 .
0 1 L O 1 1
2005 2010 2015 2020 2025 2005 2010 2015 2020 2025
Year Year

Figures: https://github.com/SoftVarE-Group/Course-on-Software-Product-Lines

) TU/e

https://github.com/SoftVarE-Group/Course-on-Software-Product-Lines

But organizations often start with one system and cloning

Kriiger: Understanding the Re-Engineering of Variant-Rich Systems: An Empirical Work on Economics, Knowledge, Traceability, and

3 Practices. Dissertation, 2021 TU/e

But organizations often start with one system and cloning

» A successful system gets adapted by cloning

O ¢ e

Kriiger: Understanding the Re-Engineering of Variant-Rich Systems: An Empirical Work on Economics, Knowledge, Traceability, and

3 Practices. Dissertation, 2021 TU/e

But organizations often start with one system and cloning

» A successful system gets adapted by cloning

« Maintenance challenges lead to decision to re-engineer a platform

. @ ®
. PN
Phe / Q
3 L@ / \
— %
———®
e
VAN
¥ 7/ \
o «—e °®
. § y
O o o

Kriiger: Understanding the Re-Engineering of Variant-Rich Systems: An Empirical Work on Economics, Knowledge, Traceability, and

3 Practices. Dissertation, 2021 TU/e

Re-engineering into or between platforms is (still) common

Getting Rid of Clone-And-Own: Moving to a Software Product
Line for Temperature Monitoring

Elias Kuiter Jacob Kriiger Sebastian Krieter
Otto-von-Guericke-University Harz University of Applied Sciences Harz University of Applied Sciences
Magdeburg, Germany Otto-von-Guericke-University Otto-von-Guericke-University
kuiter@ovgu.de i & Germany d Germany
jkrueger@ovgu.de skrieter@hs-harz.de

Thomas Leich
Harz University of Applied Sciences
METOP GmbH

Wernigerode & Magdeburg, Germany

tleich@hs-harz.de
ABSTRACT

Due to its fast and simple applicability, clone-and-own is widely
used in industry to develop software variants. In cooperation with
different companies for thermoelectric products, we implemented
multiple variants of a heat monitoring tool based on clone-and-own.
After encountering redundancy-related problems during develop-
ment and maintenance, we decided to migrate towards a software
product line. Within this paper, we describe this case study of mi-
grating cloned variants to a software product line based on the ex-
tractive approach. The resulting software product line encapsulates
variability on several levels, including the underlying hardware
tems, interfaces, and use cases. Currently, we support monitoring
hardware from three different companies that use the same core sys-
tem and provide a 1. We sh

and encountered problems with cloning and migration towards a
software product line—focusing on feature extraction and modeling
in particular. Furthermore, we provide a lightweight, web-based
tool for modeling. configuring. and implementing software product

Gunter Saake
Otto-von-Guericke-University
Magdeburg, Germany
gunter.saake@ovgu.de

ACM Reference Format:

Kuiter, Jacob Kriiger, Sebastian Krieter, Thomas Leich, and Gunter

iake. 2018. Getting Rid of Clone-And-Own: Moving to a Software Product
f ure Monitoring. In SPLC '18: 22nd International Systems

and Software Product Line Conference, September 10~14, 2018, Gothenburg,

‘Sweden. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3233027.

3233050

1 INTRODUCTION

Software product lines are a systematic approach to reuse and man-
age software artifacts [2, 36). These artifacts correspond to features
- user-visible functionalities of a set of variants - that are modeled
within variability models [15, 42] to define their dependencies. A
selection of features that fulfills all these dependencies is a valid con-
figuration. Based on such a configuration, a tool can automatically
instantiate a variant from the implemented artifacts.

Using software product lines promises several benefits, for in-
stance, reduced costs for development and maintenanc

TU/e

Re-engineering into or between platforms is (still) common

Getting Rid of Clone-And-Own: Moving to a Software Product
Line for Temperature Monitoring

Elias Kuiter
Otto-von-Guericke-University
Magdeburg, Germany
Kuiter@ovgu.de

Tho

Harz Universit
ME’

Wernigerode &
tleich

ABSTRACT
Due to its fast and simple applicability, cl
used in industry to develop software variar
different companies for thermoelectric pro
multiple variants of a heat monitoring tool t
After encountering redundancy-related pr

ment and maintenance, we decided to mig)
product line. Within this paper, we descrit
grating cloned variants to a software prodi
tractive approach. The resulting software pi
variabilty onseverallvels,including th u

Handware rom thece diferent companies th
tem and provide a configurable front-end. W
and encountered problems with cloning ar
software product line—focusing on feature ¢
articular. Furthermore, we provide a |
tool for modeling. configuring. and implem:

in

Decision Making for Managing Automotive Platforms:
An Interview Survey on the State-of-Practice

Philipp Zellmer Jacob Kriiger Thomas Leich
philipp.zellmer2@volkswagen.de jkruger@tue.nl tleich@hs-harz.de
Volkswagen AG & Harz University Eindhoven University of Technology Harz University

Wolfsburg & Wernigerode, Germany

ABSTRACT

‘The automotive industry is changing due to digitization, a grow-
ing focus on software, and the increasing use of electronic con-
trol units. Consequently, automotive engineering is shifting from
hardware-focused towards software-focused platform concepts to
address these challenges. This shift includes adopting and integrat-
ing methods like electrics/electronies platforms, software product-
line engineering, and product generation. Although these concepts
are well-known in their respective research fields and different
industries, there is limited research on their practical effective-
ness and issues—particularly when implementing and using these
concepts for modern automotive platforms. The lack of research
and practical experiences challenges particularly decision mak-
ers, who cannot build on reliable evidence or techniques. In this
paper, we address this gap by reporting on the state-of-practice

migerode, Germany

ACM Reference Format:

Philipp Zellmer, Jacob Kriiger, and Thomas Leich. 2024. Decision Making
for Managing Automotive Platforms: An Interview Survey on the State-of-
Practice. In Companion Proceedings of the 32nd ACM International Conference
on the Foundations of Software Engineering (FSE Companion '24), July 15
19, 2024, Porto de Galinhas, Brazil. ACM, New York, NY, USA, 11 pages.
hitps:/doi.org/10.1145/3663529.3663851

1 INTRODUCTION

To remain competitive, automotive manufacturers must contin-
uously enhance their product portfolios by incorporating novel
features into their vehicles. Traditionally, the focus was on hard-
ware but new customer
preferences, and legal standards demand the integration of a ris-
ing number of software features into the existing hardware plat-

TU/e

Re-engineering into or between platforms is (still) common

Getting Rid of Clone-And-Own: Moving to a Software Product

Line for Temperature Monitoring

Elias Kuiter
Otto-von-Guericke-University
Magdeburg, Germany
Kuiter@ovgu.de

Tho

Harz Universit
ME’

Wernigerode &
tleich

ABSTRACT
Due to its fast and simple applicability, cl
used in industry to develop software variar
different companies for thermoelectric pro
multiple variants of a heat monitoring tool t
After encountering redundancy-related pr
ment and maintenance, we decided to mig)
product line. Within this paper, we descrit
grating cloned variants to a software prodi
tractive approach. The resulting software pi
ility on several levels, including the u
terfa ses. Currently,
hardware from three different companies th
tem and provide a configurable front-end. W
and encountered problems with cloning a1

software product line—focusing on feature ¢
in particular. Furthermore, we provide a |
tool for modeling, configuring. and implem:

Decision Making for Managing Automotive Platforms:
An Interview Survey on the State-of-Practice

Philipp Zellmer
philipp zellmer2@volkswagen.de
Volkswagen AG & Harz Universit
Wolfsburg & Wernigerode, Germar

ABSTRACT

‘The automotive industry is changing due
ing focus on software, and the increasing
trol units. Consequently, automotive engir
hardware-focused towards software-focusc
address these challenges. This shift include
ing methods like electrics/electronics platfi
line engineering, and product generation.
are well-known in their respective reseal
industries, there is limited research on tl
ness and issues—particularly when implerr
concepts for modern automotive platform
and practical experiences challenges parl
ers, who cannot build on reliable evidencs
paner. we address this gap by reporting ¢

Insights into Transitioning towards Electrics/Electronics Platform
Management in the Automotive Industry

Thomas Leich

tleich@hs-harz.de

Harz University
Wernigerode, Germany

Lennart Holsten Jacob Kriiger
lennart.holsten@volkswagen.de jkruger@tue.nl

Volkswagen AG & Harz University Eindhoven University of Technology

Wolfsburg & Wernigerode, Germany Eindhoven, The Netherlands

ABSTRACT 1 INTRODUCTION

In the automotive industry, platform strategics have proved effec- Similar to other industries, innovations in the automotive domain
tive for streamlining the development of complex, highly variable are driven more and more by digital features that build on software.
cyber-physical systems. Particularly software-driven innovations The consequent trends emerging in the automotive industry (e.g..

Moving to a systematic platform is useful

® c&o
. platform

40

20+

costs for a variant in %

des'ign pllan im'pl.

Akesson, Nilsson, Kriiger, Berger: Migrating the Android Apo-Games into an Annotation-Based Software Product Line. SPLC'19

5 Debbice, Lignell, Kriiger, Berger: Migrating Java-Based Apo-Games into a Composition-Based Software Product Line. SPLC'19 TU
Kriiger, Berger: An Empirical Analysis of the Costs of Clone- and Platform-Oriented Software Reuse. ESEC/FSE'20 e
Kriiger, Berger: Activities and Costs of Re-Engineering Cloned Variants Into an Integrated Platform. VaMoS'20

Moving to a systematic platform is useful

® c&o
.platform 501
ES
R £
c 2
= 401 a
c (V)
© 2 071
= ()
© E
> &
©) o
S o
£ 204 S
2 5-50 1
3 B
© £
° [V
.
0 -100
deslign pllan imlpl, feature variant

(5) (9)

Akesson, Nilsson, Kriiger, Berger: Migrating the Android Apo-Games into an Annotation-Based Software Product Line. SPLC'19

5 Debbice, Lignell, Kriiger, Berger: Migrating Java-Based Apo-Games into a Composition-Based Software Product Line. SPLC'19 TU
Kriiger, Berger: An Empirical Analysis of the Costs of Clone- and Platform-Oriented Software Reuse. ESEC/FSE'20 e
Kriiger, Berger: Activities and Costs of Re-Engineering Cloned Variants Into an Integrated Platform. VaMoS'20

Moving to a systematic platform is useful (but challenging)

® c&o
I8l piatform 201 activity type team1 team?2
f = product-line training 16.00 90.00
= 401 2 domain analysis 18.00 82.00
8 g 01 preparatory analysis 49.25 40.00
g g feature identification 22.25 22.00
AL 1 E architecture identification 2.00 5.00
£ 201 2 ol feature location 50.00 7.00
[g feature modeling 7.00 10.00
© | § transformation 103.50 180.00
® quality assurance 103.50 60.00

04 -100 A
design plan impl. fe?él)”e Va(réa;"t

Akesson, Nilsson, Kriiger, Berger: Migrating the Android Apo-Games into an Annotation-Based Software Product Line. SPLC'19

5 Debbice, Lignell, Kriiger, Berger: Migrating Java-Based Apo-Games into a Composition-Based Software Product Line. SPLC'19 TU
Kriiger, Berger: An Empirical Analysis of the Costs of Clone- and Platform-Oriented Software Reuse. ESEC/FSE'20 e
Kriiger, Berger: Activities and Costs of Re-Engineering Cloned Variants Into an Integrated Platform. VaMoS'20

Recommendations and guides can facilitate re-engineering

6 TU/e

Recommendations and guides can facilitate re-engineering

b @ o

Bty Commendl)

Bt Doviopment) (Anayze Doman

CAdopt Tooling) (Scope Platform
>

i
it Varaiy

Analyze Platform
Requirements.

s Ve
Y
Commamm

Refactor Platforn

dentfy and Locate
Features
(Adwpt Ao)

Contowe Bstraction]

implement Platform.
(A2 Variation Pomts)

Extract and Design
Archiecture

Derive Variant

Propose Asset

Anlyze Asset
Requirements
Scope Asset

Reuse Exiig
Plaom?

Confgure

dentify Assets

Adoption Process

Tmplement Asset

‘Add Vriation Points

(Ciodd Variabily)

o

Evolution Process

Management Process

@ start Node

O saniy

Activity Edge

oncurent Actvities gt Asse? ntgrte Vi
¢ e ___ Relesse Varant

Decision Node

(] Situational Alternative

Kriiger, Mahmood, Berger: Promote-pl: A Round-Trip Engineering Process Model for Adopting and Evolving Product Lines. SPLC'20 /

Recommendations and guides can facilitate re-engineering

integrated & geegeny) plennsd ey
existing

Pl variant(s)

derived evolved

variant - variant
evolution

Kriiger, Mahmood, Berger: Promote-pl: A Round-Trip Engineering Process Model for Adopting and Evolving Product Lines. SPLC'20

6 TU/e

Recommendations and guides can facilitate re-engineering

» Support for feature modeling

o Process for maturity assessment

integrated (o nEeepe i (el e
latform Al
P variant(s)
derived evolved
variant variant

evolution

Kriiger, Mahmood, Berger: Promote-pl: A Round-Trip Engineering Process Model for Adopting and Evolving Product Lines. SPLC'20

Nesi¢, Kriiger, Stanciulescu, Berger: Principles of Feature Modeling. ESEC/FSE'19

6 Lindohf, Kriiger, Herzog, Berger: Software Product-Line Evaluation in the Large. Empirical Software Engineering, 2020 TU/e

Recommendations and guides can facilitate re-engineering

» Support for feature modeling

o Process for maturity assessment

o Studies built on industry collaborations/cases

o« VW

o AXis

« Saab
Danfoss
pure-systems
ABB

integrated (o nEeepe i (el e
existing

platform variant(s)

derived
variant

evolved
variant

evolution

Kriiger, Mahmood, Berger: Promote-pl: A Round-Trip Engineering Process Model for Adopting and Evolving Product Lines. SPLC'20

Nesi¢, Kriiger, Stanciulescu, Berger: Principles of Feature Modeling. ESEC/FSE'19

6 Lindohf, Kriiger, Herzog, Berger: Software Product-Line Evaluation in the Large. Empirical Software Engineering, 2020 TU/e

Having a platform? Still, not everything is perfect

Ensuring program comprehension?

Assuring software quality?

Analyzing variability?

Aligning hardware and software releases?
Deprecating (variable) features or a platform?

Re-engineering variability safely?

TU/e

char_u *
fix_fname(fname)
char_u xfname;

#ifdef UNIX
return FullName_save(fname, TRUE);

Comprehension and quality are key

oRNOUAWN R
-~

#else
q if (!vim_isAbsName(fname)

° InS|ghts: || strstr((char x)fname, "..") != NULL
Lo || strstr((char *)fname, "//") != NULL
L1 # ifdef BACKSLASH_IN_FILENAME

® Feature traces are helprI 12 || strstr((char *)fname, "\\\\") != NULY

L3 # endif
L4 # if defined(MSWIN) || defined(DJIGPP)
L5 || vim_strchr(fname, '~') != NULL
16 # endif
L7)
18 return FullName_save(fname, FALSE);
19
20 fname = vim_strsave(fname);
21

22 # ifdef USE_FNAME_CASE
23 # ifdef USE_LONG_FNAME

24 if (USE_LONG_FNAME)
25 # endif

26 {

27 if (fname != NULL)
28 fname_case(fname, 0);
29 }

30 # endif

31

32 return fname;

33 #endif

34 }

Fenske, Kriiger, Kanyshkova, Schulze: #ifdef Directives and Program Comprehension: The Dilemma between Correctness and

8 Preference. ICSME'20
Kriiger, Calikli, Berger, Leich, Saake: Effects of Explicit Feature Traceability on Program Comprehension. ESEC/FSE'19 e
Ludwig, Kriiger, Leich: Covert and Phantom Features in Annotations: Do They Impact Variability Analysis?. SPLC'19

char_u *
fix_fname(fname)
char_u xfname;

#ifdef UNIX
return FullName_save(fname, TRUE);

Comprehension and quality are key

oRNOUAWN R
-~

#else
0 if (!vim_isAbsName(fname)
o InSIghtSZ || strstr((char *)fname, "..") != NULL
Lo || strstr((char *)fname, "//") != NULL
L1 # ifdef BACKSLASH_IN_FILENAME
® Feature traces are helprI 12 || strstr((char *)fname, "\\\\") != NULY
8 L3 # endif
... but should not be configurable 4 # if defined (WSWIN) || defined(DJGPP)
L5 || vim_strchr(fname, '~') != NULL
16 # endif
L7)
18 return FullName_save(fname, FALSE);
19
20 fname = vim_strsave(fname);
21

22 # ifdef USE_FNAME_CASE
23 # ifdef USE_LONG_FNAME

24 if (USE_LONG_FNAME)
25 # endif

26 {

27 if (fname != NULL)
28 fname_case(fname, 0);
29 }

30 # endif

31

32 return fname;

33 #endif

34 }

Fenske, Kriiger, Kanyshkova, Schulze: #ifdef Directives and Program Comprehension: The Dilemma between Correctness and

8 Preference. ICSME'20
Kriiger, Calikli, Berger, Leich, Saake: Effects of Explicit Feature Traceability on Program Comprehension. ESEC/FSE'19 e
Ludwig, Kriiger, Leich: Covert and Phantom Features in Annotations: Do They Impact Variability Analysis?. SPLC'19

char_u *
fix_fname(fname)
char_u xfname;

#ifdef UNIX
return FullName_save(fname, TRUE);

Comprehension and quality are key

oRNOUAWN R
-~

#else
0 if (!vim_isAbsName(fname)
o InS|ghts: || strstr((char *)fname, "..") != NULL
Lo || strstr((char *)fname, "//") != NULL
L1 # ifdef BACKSLASH_IN_FILENAME
® Feature traces are helprI 12 || strstr((char *)fname, "\\\\") != NULL
8 L3 # endif
... but should not be configurable W4 # if defined(MSWIN) || defined(DIGPP)
. . olls . L5 || vim_strchr(fname, '~') != NULL
» Understanding variability is hard ... 6 # endif
L7)
18 return FullName_save(fname, FALSE);
19
20 fname = vim_strsave(fname);
21

22 # ifdef USE_FNAME_CASE
23 # ifdef USE_LONG_FNAME

24 if (USE_LONG_FNAME)
25 # endif

26 {

27 if (fname != NULL)
28 fname_case(fname, 0);
29 }

30 # endif

31

32 return fname;

33 #endif

34 }

Fenske, Kriiger, Kanyshkova, Schulze: #ifdef Directives and Program Comprehension: The Dilemma between Correctness and

8 Preference. ICSME'20
Kriiger, Calikli, Berger, Leich, Saake: Effects of Explicit Feature Traceability on Program Comprehension. ESEC/FSE'19 e
Ludwig, Kriiger, Leich: Covert and Phantom Features in Annotations: Do They Impact Variability Analysis?. SPLC'19

char_u *
fix_fname(fname)
char_u xfname;

#ifdef UNIX
return FullName_save(fname, TRUE);

Comprehension and quality are key

oRNOUAWN R
-~

#el
0 . Sif (!vim_isAbsName (fname)
o InSIghtSZ || strstr((char *)fname, "..") != NULL
Lo || strstr((char *)fname, "//") != NULL
L1 # ifdef BACKSLASH_IN_FILENAME
° Feature traces are helpfu' 12 nee || strstr((char *)fname, "\\\\") != NULL
] 13 # endif
... but should not be configurable b2 % Sf defined(MSWIN) || defined (DIGPP)
. . ope N i hr(f , 'at) 1=
« Understanding variability is hard ... I3 # enaze || Vin-etTehr{mane,) s ML
. . L7)
... and analyzing it even more 5 Teturn FullName_save(fname, FALSE);
20 fname = vim_strsave(fname);
21

22 # ifdef USE_FNAME_CASE
23 # ifdef USE_LONG_FNAME

24 if (USE_LONG_FNAME)
25 # endif

26 {

27 if (fname != NULL)
28 fname_case(fname, 0);
29 }

30 # endif

31

32 return fname;

33 #endif

34 }

Fenske, Kriiger, Kanyshkova, Schulze: #ifdef Directives and Program Comprehension: The Dilemma between Correctness and

8 Preference. ICSME'20
Kriiger, Calikli, Berger, Leich, Saake: Effects of Explicit Feature Traceability on Program Comprehension. ESEC/FSE'19 e
Ludwig, Kriiger, Leich: Covert and Phantom Features in Annotations: Do They Impact Variability Analysis?. SPLC'19

char_u *
fix_fname(fname)
char_u xfname;

#ifdef UNIX
return FullName_save(fname, TRUE);

Comprehension and quality are key

oRNOUAWN R
-~

1
. . Sif (!vim_isAbsName (fname)
o InSIghtSZ || strstr((char *)fname, "..") != NULL
o || strstr((char *)fname, "//") != NULL
 Feature traces are helpfu' g # et BACKTV??F&FHEE&ME)fname, "\\\\") != NULL
... but should not be configurable 2 # 57 defined(MSWIN) || defined(DIGPP)
. . .1e . i hr(f , ') =
« Understanding variability is hard ... I3 # enaze || Vin-etTehr{mane,) s ML
o q L7)
... and analyzing it even more 12 Feturn FulWane_save(fnane, FALSE;
19
20 fname = vim_strsave(fname);
. 21
® Cha”enges' 22 # ifdef USE_FNAME_CASE
. 23 # ifdef USE_LONG_FNAME
. Refactorlng 24 1ife(USE_EONG_FNAME)
= g o o 9 ol 25 # endif
» Removing/simplifying variability - o)
. i name !=
« Comprehending software 2 fname_case (fname, 0);
30 # endif
31
32 return fname;
33 #endif
34 }

Fenske, Kriiger, Kanyshkova, Schulze: #ifdef Directives and Program Comprehension: The Dilemma between Correctness and

8 Preference. ICSME'20
Kriiger, Calikli, Berger, Leich, Saake: Effects of Explicit Feature Traceability on Program Comprehension. ESEC/FSE'19 e
Ludwig, Kriiger, Leich: Covert and Phantom Features in Annotations: Do They Impact Variability Analysis?. SPLC'19

Aligning hardware/software releases is hard

« Insights:

« Different options for aligning hardware/software changes
« Over-the-air updates become more important

TEV-new revnew B T Vhnew — revnew
— revold — revold — revgld — revold —0;
T

t, t t t t t

0 1 0 1 0 1

(a) Early Shift (ES) (b) Late Shift (LS) (¢) Transition Phase (TP) (d) Hardware Reuse (HR)

Holsten, Frank, Kriiger, Leich: Electrics/Electronics Platforms in the Automotive Industry: Challenges and Directions for Variant-Rich

9 Systems Engineering. VaMoS'23
Kuiter, Kriiger, Saake: Iterative Development and Changing Requirements: Drivers of Variability in an Industrial System for Veterinary e
Anesthesia. SPLC'2019

Aligning hardware/software releases is hard

« Insights:
« Different options for aligning hardware/software changes

« Over-the-air updates become more important

« Challenges:
» Understanding pros and cons of strategies
» Deciding when to use what strategy

TEV-new revnew B T Vhnew — revnew
— revold — revold — revgld — revold —0;
T

(a) Early Shift (ES)

9

| ! I]

to ty t, ty t ty to 1
(b) Late Shift (LS) (c) Transition Phase (TP)

Holsten, Frank, Kriiger, Leich: Electrics/Electronics Platforms in the Automotive Industry: Challenges and Directions for Variant-Rich /

Systems Engineering. VaMoS'23
Kuiter, Kriiger, Saake: Iterative Development and Changing Requirements: Drivers of Variability in an Industrial System for Veterinary

Anesthesia. SPLC'2019

0
(d) Hardware Reuse (HR)

Some features may become dated

« Insights:

» Features or whole systems may become outdated
» Features may move into commodity to reduce complexity

Cortifias, Kriiger, Lamas, Luaces, Pedreira: How to Retire and Replace a Software Product Line. SPLC'23

10 Holsten, Frank, Kriiger, Leich: Electrics/Electronics Platforms in the Automotive Industry: Challenges and Directions for Variant-Rich
Systems Engineering. VaMoS'23 e

Ludwig, Kriiger, Leich: Covert and Phantom Features in Annotations: Do They Impact Variability Analysis?. SPLC'19

Some features may become dated

« Insights:

» Features or whole systems may become outdated
» Features may move into commodity to reduce complexity

« Challenges:

» Deciding what features are not needed anymore
» Ensuring safe re-engineering operations
» Designing automated analyses/operations

Cortifias, Kriiger, Lamas, Luaces, Pedreira: How to Retire and Replace a Software Product Line. SPLC'23

10 Holsten, Frank, Kriiger, Leich: Electrics/Electronics Platforms in the Automotive Industry: Challenges and Directions for Variant-Rich TU /
Systems Engineering. VaMoS'23 e
Ludwig, Kriiger, Leich: Covert and Phantom Features in Annotations: Do They Impact Variability Analysis?. SPLC'19

Also challenges in practice? Starting points for collaboration?

Ensuring program comprehension?
Assuring software quality?

Analyzing variability?

Aligning hardware and software releases?

Deprecating (variable) features or a platform?

Re-engineering variability safely?

1 TU/e

Want more information or get in touch?
Jacob Kruger

Eindhoven University of Technology

Department for Mathematics and Computer Science
Software Engineering and Technology

MetaForum 6.096 (likely to change to 6.089)

j.kruger@tue.nl
https://jacobkrueger.github.io/

12

TU/e

j.kruger@tue.nl
https://jacobkrueger.github.io/

