
Do We Still Need This?
Managing Variability in Modern Software Systems
Jacob Krüger

Eindhoven University of Technology, The Netherlands

June 24, 2024

2

Modern systems: driven by software and variant-rich

Figures: https://github.com/SoftVarE-Group/Course-on-Software-Product-Lines

https://github.com/SoftVarE-Group/Course-on-Software-Product-Lines

2

Modern cars: driven by software and variant-rich

Figures: https://github.com/SoftVarE-Group/Course-on-Software-Product-Lines

https://github.com/SoftVarE-Group/Course-on-Software-Product-Lines

2

Modern cars: driven by software and variant-rich

Figures: https://github.com/SoftVarE-Group/Course-on-Software-Product-Lines

https://github.com/SoftVarE-Group/Course-on-Software-Product-Lines

2

Modern Linux: driven by software and variant-rich

Figures: https://github.com/SoftVarE-Group/Course-on-Software-Product-Lines

https://github.com/SoftVarE-Group/Course-on-Software-Product-Lines

2

Modern Linux: driven by software and variant-rich

Figures: https://github.com/SoftVarE-Group/Course-on-Software-Product-Lines

https://github.com/SoftVarE-Group/Course-on-Software-Product-Lines

3

But organizations often start with one system and cloning

Krüger: Understanding the Re-Engineering of Variant-Rich Systems: An Empirical Work on Economics, Knowledge, Traceability, and
Practices. Dissertation, 2021

3

But organizations often start with one system and cloning
• A successful system gets adapted by cloning

Krüger: Understanding the Re-Engineering of Variant-Rich Systems: An Empirical Work on Economics, Knowledge, Traceability, and
Practices. Dissertation, 2021

3

But organizations often start with one system and cloning
• A successful system gets adapted by cloning

• Maintenance challenges lead to decision to re-engineer a platform

Krüger: Understanding the Re-Engineering of Variant-Rich Systems: An Empirical Work on Economics, Knowledge, Traceability, and
Practices. Dissertation, 2021

4

Re-engineering into or between platforms is (still) common

Geing Rid of Clone-And-Own: Moving to a Soware Product
Line for Temperature Monitoring

Elias Kuiter
Otto-von-Guericke-University

Magdeburg, Germany
kuiter@ovgu.de

Jacob Krüger
Harz University of Applied Sciences

Otto-von-Guericke-University
Wernigerode & Magdeburg, Germany

jkrueger@ovgu.de

Sebastian Krieter
Harz University of Applied Sciences

Otto-von-Guericke-University
Wernigerode & Magdeburg, Germany

skrieter@hs-harz.de

Thomas Leich
Harz University of Applied Sciences

METOP GmbH
Wernigerode & Magdeburg, Germany

tleich@hs-harz.de

Gunter Saake
Otto-von-Guericke-University

Magdeburg, Germany
gunter.saake@ovgu.de

ABSTRACT
Due to its fast and simple applicability, clone-and-own is widely
used in industry to develop software variants. In cooperation with
dierent companies for thermoelectric products, we implemented
multiple variants of a heat monitoring tool based on clone-and-own.
After encountering redundancy-related problems during develop-
ment and maintenance, we decided to migrate towards a software
product line. Within this paper, we describe this case study of mi-
grating cloned variants to a software product line based on the ex-
tractive approach. The resulting software product line encapsulates
variability on several levels, including the underlying hardware sys-
tems, interfaces, and use cases. Currently, we support monitoring
hardware from three dierent companies that use the same core sys-
tem and provide a congurable front-end. We share our experiences
and encountered problems with cloning and migration towards a
software product line—focusing on feature extraction and modeling
in particular. Furthermore, we provide a lightweight, web-based
tool for modeling, conguring, and implementing software product
lines, which we use to migrate and manage features. Besides this
experience report, we contribute most of the created artifacts as
open-source and freely available for the research community.

CCS CONCEPTS
• Software and its engineering → Software product lines;
Software conguration management and version control systems;
Software reverse engineering;

KEYWORDS
Software Product Line, Case Study, Feature Modeling, Extraction

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for prot or commercial advantage and that copies bear this notice and the full citation
on the rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specic permission
and/or a fee. Request permissions from permissions@acm.org.
SPLC ’18, September 10–14, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-6464-5/18/09. . . $15.00
https://doi.org/10.1145/3233027.3233050

ACM Reference Format:
Elias Kuiter, Jacob Krüger, Sebastian Krieter, Thomas Leich, and Gunter
Saake. 2018. Getting Rid of Clone-And-Own: Moving to a Software Product
Line for Temperature Monitoring. In SPLC ’18: 22nd International Systems
and Software Product Line Conference, September 10–14, 2018, Gothenburg,
Sweden.ACM, NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3233027.
3233050

1 INTRODUCTION
Software product lines are a systematic approach to reuse and man-
age software artifacts [2, 36]. These artifacts correspond to features
– user-visible functionalities of a set of variants – that are modeled
within variability models [15, 42] to dene their dependencies. A
selection of features that fullls all these dependencies is a valid con-
guration. Based on such a conguration, a tool can automatically
instantiate a variant from the implemented artifacts.

Using software product lines promises several benets, for in-
stance, reduced costs for development and maintenance, faster
time-to-market, and improved quality [2, 23, 47]. Nonetheless, de-
veloping a software product line requires higher initial investment
and careful investigation of whether it is suitable for the task at
hand [13, 28, 43]. Thus, many organizations start with a single sys-
tem instead, which is then cloned and adapted to new customer
requirements—the clone-and-own approach [16, 18]. As this ap-
proach creates separated software variants, it can quickly become
expensive to maintain, due to the necessary change propagation
for updates [16, 35]. For this reason, organizations often decide
later on to migrate these cloned variants towards a more systematic
approach; adopting, for example, software product lines [9, 36, 43]—
which is called extractive approach [26].

In this paper, we describe our experiences with implementing
a set of similar variants in the temperature monitoring domain.
We started to implement these variants to address personal needs,
but in the process attracted dierent organizations to adopt and
extend the variants for distributing them to their own customers.
Due to the resulting adaptations, the initially used clone-and-own
approach was not feasible anymore and we decided to extract a
software product line. To this end, we also implemented our own
tooling to facilitate development and maintenance for our purpose.
Consequently, with this paper we contribute the following:

4

Re-engineering into or between platforms is (still) common

Geing Rid of Clone-And-Own: Moving to a Soware Product
Line for Temperature Monitoring

Elias Kuiter
Otto-von-Guericke-University

Magdeburg, Germany
kuiter@ovgu.de

Jacob Krüger
Harz University of Applied Sciences

Otto-von-Guericke-University
Wernigerode & Magdeburg, Germany

jkrueger@ovgu.de

Sebastian Krieter
Harz University of Applied Sciences

Otto-von-Guericke-University
Wernigerode & Magdeburg, Germany

skrieter@hs-harz.de

Thomas Leich
Harz University of Applied Sciences

METOP GmbH
Wernigerode & Magdeburg, Germany

tleich@hs-harz.de

Gunter Saake
Otto-von-Guericke-University

Magdeburg, Germany
gunter.saake@ovgu.de

ABSTRACT
Due to its fast and simple applicability, clone-and-own is widely
used in industry to develop software variants. In cooperation with
dierent companies for thermoelectric products, we implemented
multiple variants of a heat monitoring tool based on clone-and-own.
After encountering redundancy-related problems during develop-
ment and maintenance, we decided to migrate towards a software
product line. Within this paper, we describe this case study of mi-
grating cloned variants to a software product line based on the ex-
tractive approach. The resulting software product line encapsulates
variability on several levels, including the underlying hardware sys-
tems, interfaces, and use cases. Currently, we support monitoring
hardware from three dierent companies that use the same core sys-
tem and provide a congurable front-end. We share our experiences
and encountered problems with cloning and migration towards a
software product line—focusing on feature extraction and modeling
in particular. Furthermore, we provide a lightweight, web-based
tool for modeling, conguring, and implementing software product
lines, which we use to migrate and manage features. Besides this
experience report, we contribute most of the created artifacts as
open-source and freely available for the research community.

CCS CONCEPTS
• Software and its engineering → Software product lines;
Software conguration management and version control systems;
Software reverse engineering;

KEYWORDS
Software Product Line, Case Study, Feature Modeling, Extraction

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for prot or commercial advantage and that copies bear this notice and the full citation
on the rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specic permission
and/or a fee. Request permissions from permissions@acm.org.
SPLC ’18, September 10–14, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-6464-5/18/09. . . $15.00
https://doi.org/10.1145/3233027.3233050

ACM Reference Format:
Elias Kuiter, Jacob Krüger, Sebastian Krieter, Thomas Leich, and Gunter
Saake. 2018. Getting Rid of Clone-And-Own: Moving to a Software Product
Line for Temperature Monitoring. In SPLC ’18: 22nd International Systems
and Software Product Line Conference, September 10–14, 2018, Gothenburg,
Sweden.ACM, NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3233027.
3233050

1 INTRODUCTION
Software product lines are a systematic approach to reuse and man-
age software artifacts [2, 36]. These artifacts correspond to features
– user-visible functionalities of a set of variants – that are modeled
within variability models [15, 42] to dene their dependencies. A
selection of features that fullls all these dependencies is a valid con-
guration. Based on such a conguration, a tool can automatically
instantiate a variant from the implemented artifacts.

Using software product lines promises several benets, for in-
stance, reduced costs for development and maintenance, faster
time-to-market, and improved quality [2, 23, 47]. Nonetheless, de-
veloping a software product line requires higher initial investment
and careful investigation of whether it is suitable for the task at
hand [13, 28, 43]. Thus, many organizations start with a single sys-
tem instead, which is then cloned and adapted to new customer
requirements—the clone-and-own approach [16, 18]. As this ap-
proach creates separated software variants, it can quickly become
expensive to maintain, due to the necessary change propagation
for updates [16, 35]. For this reason, organizations often decide
later on to migrate these cloned variants towards a more systematic
approach; adopting, for example, software product lines [9, 36, 43]—
which is called extractive approach [26].

In this paper, we describe our experiences with implementing
a set of similar variants in the temperature monitoring domain.
We started to implement these variants to address personal needs,
but in the process attracted dierent organizations to adopt and
extend the variants for distributing them to their own customers.
Due to the resulting adaptations, the initially used clone-and-own
approach was not feasible anymore and we decided to extract a
software product line. To this end, we also implemented our own
tooling to facilitate development and maintenance for our purpose.
Consequently, with this paper we contribute the following:

Decision Making for Managing Automotive Platforms:
An Interview Survey on the State-of-Practice

Philipp Zellmer
philipp.zellmer2@volkswagen.de
Volkswagen AG & Harz University
Wolfsburg & Wernigerode, Germany

Jacob Krüger
j.kruger@tue.nl

Eindhoven University of Technology
Eindhoven, The Netherlands

Thomas Leich
tleich@hs-harz.de
Harz University

Wernigerode, Germany

ABSTRACT
The automotive industry is changing due to digitization, a grow-
ing focus on software, and the increasing use of electronic con-
trol units. Consequently, automotive engineering is shifting from
hardware-focused towards software-focused platform concepts to
address these challenges. This shift includes adopting and integrat-
ing methods like electrics/electronics platforms, software product-
line engineering, and product generation. Although these concepts
are well-known in their respective research elds and dierent
industries, there is limited research on their practical eective-
ness and issues—particularly when implementing and using these
concepts for modern automotive platforms. The lack of research
and practical experiences challenges particularly decision mak-
ers, who cannot build on reliable evidence or techniques. In this
paper, we address this gap by reporting on the state-of-practice
of supporting the decision making for managing automotive elec-
trics/electronics platforms, which integrate hardware, software, and
electrics/electronics artifacts. For this purpose, we conducted 26
interviews with experts from the automotive domain. We derived
questions from a previous mapping study in which we collected
current research on product-structuring concepts, aiming to derive
insights on the consequent practical challenges and requirements.
Specically, we contribute an overview of the requirements and
criteria for (re)designing the decision-making process for managing
electrics/electronics platforms within the automotive domain from
the practitioners’ view. Through this, we aim to assist practitioners
in managing electrics/electronics platforms, while also providing
starting points for future research on a real-world problem.

CCS CONCEPTS
• Computer systems organization → Embedded systems; •
Software and its engineering→ Software product lines;Main-
taining software.

KEYWORDS
automotive, electrics/electronics, product line, life-cycle manage-
ment, cyber-physical system, product structuring concept, platform
management, decision making

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for prot or commercial advantage and that copies bear this notice and the full citation
on the rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0658-5/24/07
https://doi.org/10.1145/3663529.3663851

ACM Reference Format:
Philipp Zellmer, Jacob Krüger, and Thomas Leich. 2024. Decision Making
for Managing Automotive Platforms: An Interview Survey on the State-of-
Practice. In Companion Proceedings of the 32nd ACM International Conference
on the Foundations of Software Engineering (FSE Companion ’24), July 15–
19, 2024, Porto de Galinhas, Brazil. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3663529.3663851

1 INTRODUCTION
To remain competitive, automotive manufacturers must contin-
uously enhance their product portfolios by incorporating novel
features into their vehicles. Traditionally, the focus was on hard-
ware components, but technological advancements, new customer
preferences, and legal standards demand the integration of a ris-
ing number of software features into the existing hardware plat-
forms [5, 6, 26]. This shift is evident from the prevalence of software-
centric innovations, which are driven by trends like autonomous
driving, driver assistance systems, electrication, and vehicle con-
nectivity. So, vehicles transition towards software-intensive cyber-
physical systems, requiring eective collaboration between hard-
ware and software components to deliver innovative features. How-
ever, the surge in software features introduces challenges for man-
ufacturers when engineering and managing their vehicle platforms.
In particular, the historical development of hardware platforms
that integrate mechanical components now poses challenges when
trying to integrate software-focused features, such as over-the-air
updates or self-driving capabilities.

Managing the complexity of modern vehicle platforms, with the
increasing numbers of electrics/electronics components and inter-
connections between hardware and software artifacts, has become
progressively challenging. Consequently, automotive manufactur-
ers face more complex decisions when engineering their platforms,
which can easily result in escalating expenses and eorts. To address
such problems, the manufacturers are adopting product-structuring
concepts [36] that consider vehicles as software-centered cyber-
physical systems. For instance, variant-management concepts from
software product-line engineering [8, 22, 27] are being integrated
into established hardware-platform strategies to incorporate the
software perspective [4, 33]. However, despite these adaptations,
creating a holistic platform strategy that encompasses all dimen-
sions of modern vehicles remains a challenging problem in practice.

In this paper, we report the results of an interview survey with
26 experts from the automotive domain. With this survey, we aimed
to elicit the state-of-practice of making decisions for managing elec-
trics/electronics platforms, collecting requirements and challenges
that dierent stakeholders perceive in this context. Based on the
interviews, related research, and our expertise in the automotive
domain, we discuss and asses how automotive manufacturers can

4

Re-engineering into or between platforms is (still) common

Geing Rid of Clone-And-Own: Moving to a Soware Product
Line for Temperature Monitoring

Elias Kuiter
Otto-von-Guericke-University

Magdeburg, Germany
kuiter@ovgu.de

Jacob Krüger
Harz University of Applied Sciences

Otto-von-Guericke-University
Wernigerode & Magdeburg, Germany

jkrueger@ovgu.de

Sebastian Krieter
Harz University of Applied Sciences

Otto-von-Guericke-University
Wernigerode & Magdeburg, Germany

skrieter@hs-harz.de

Thomas Leich
Harz University of Applied Sciences

METOP GmbH
Wernigerode & Magdeburg, Germany

tleich@hs-harz.de

Gunter Saake
Otto-von-Guericke-University

Magdeburg, Germany
gunter.saake@ovgu.de

ABSTRACT
Due to its fast and simple applicability, clone-and-own is widely
used in industry to develop software variants. In cooperation with
dierent companies for thermoelectric products, we implemented
multiple variants of a heat monitoring tool based on clone-and-own.
After encountering redundancy-related problems during develop-
ment and maintenance, we decided to migrate towards a software
product line. Within this paper, we describe this case study of mi-
grating cloned variants to a software product line based on the ex-
tractive approach. The resulting software product line encapsulates
variability on several levels, including the underlying hardware sys-
tems, interfaces, and use cases. Currently, we support monitoring
hardware from three dierent companies that use the same core sys-
tem and provide a congurable front-end. We share our experiences
and encountered problems with cloning and migration towards a
software product line—focusing on feature extraction and modeling
in particular. Furthermore, we provide a lightweight, web-based
tool for modeling, conguring, and implementing software product
lines, which we use to migrate and manage features. Besides this
experience report, we contribute most of the created artifacts as
open-source and freely available for the research community.

CCS CONCEPTS
• Software and its engineering → Software product lines;
Software conguration management and version control systems;
Software reverse engineering;

KEYWORDS
Software Product Line, Case Study, Feature Modeling, Extraction

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for prot or commercial advantage and that copies bear this notice and the full citation
on the rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specic permission
and/or a fee. Request permissions from permissions@acm.org.
SPLC ’18, September 10–14, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-6464-5/18/09. . . $15.00
https://doi.org/10.1145/3233027.3233050

ACM Reference Format:
Elias Kuiter, Jacob Krüger, Sebastian Krieter, Thomas Leich, and Gunter
Saake. 2018. Getting Rid of Clone-And-Own: Moving to a Software Product
Line for Temperature Monitoring. In SPLC ’18: 22nd International Systems
and Software Product Line Conference, September 10–14, 2018, Gothenburg,
Sweden.ACM, NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3233027.
3233050

1 INTRODUCTION
Software product lines are a systematic approach to reuse and man-
age software artifacts [2, 36]. These artifacts correspond to features
– user-visible functionalities of a set of variants – that are modeled
within variability models [15, 42] to dene their dependencies. A
selection of features that fullls all these dependencies is a valid con-
guration. Based on such a conguration, a tool can automatically
instantiate a variant from the implemented artifacts.

Using software product lines promises several benets, for in-
stance, reduced costs for development and maintenance, faster
time-to-market, and improved quality [2, 23, 47]. Nonetheless, de-
veloping a software product line requires higher initial investment
and careful investigation of whether it is suitable for the task at
hand [13, 28, 43]. Thus, many organizations start with a single sys-
tem instead, which is then cloned and adapted to new customer
requirements—the clone-and-own approach [16, 18]. As this ap-
proach creates separated software variants, it can quickly become
expensive to maintain, due to the necessary change propagation
for updates [16, 35]. For this reason, organizations often decide
later on to migrate these cloned variants towards a more systematic
approach; adopting, for example, software product lines [9, 36, 43]—
which is called extractive approach [26].

In this paper, we describe our experiences with implementing
a set of similar variants in the temperature monitoring domain.
We started to implement these variants to address personal needs,
but in the process attracted dierent organizations to adopt and
extend the variants for distributing them to their own customers.
Due to the resulting adaptations, the initially used clone-and-own
approach was not feasible anymore and we decided to extract a
software product line. To this end, we also implemented our own
tooling to facilitate development and maintenance for our purpose.
Consequently, with this paper we contribute the following:

Decision Making for Managing Automotive Platforms:
An Interview Survey on the State-of-Practice

Philipp Zellmer
philipp.zellmer2@volkswagen.de
Volkswagen AG & Harz University
Wolfsburg & Wernigerode, Germany

Jacob Krüger
j.kruger@tue.nl

Eindhoven University of Technology
Eindhoven, The Netherlands

Thomas Leich
tleich@hs-harz.de
Harz University

Wernigerode, Germany

ABSTRACT
The automotive industry is changing due to digitization, a grow-
ing focus on software, and the increasing use of electronic con-
trol units. Consequently, automotive engineering is shifting from
hardware-focused towards software-focused platform concepts to
address these challenges. This shift includes adopting and integrat-
ing methods like electrics/electronics platforms, software product-
line engineering, and product generation. Although these concepts
are well-known in their respective research elds and dierent
industries, there is limited research on their practical eective-
ness and issues—particularly when implementing and using these
concepts for modern automotive platforms. The lack of research
and practical experiences challenges particularly decision mak-
ers, who cannot build on reliable evidence or techniques. In this
paper, we address this gap by reporting on the state-of-practice
of supporting the decision making for managing automotive elec-
trics/electronics platforms, which integrate hardware, software, and
electrics/electronics artifacts. For this purpose, we conducted 26
interviews with experts from the automotive domain. We derived
questions from a previous mapping study in which we collected
current research on product-structuring concepts, aiming to derive
insights on the consequent practical challenges and requirements.
Specically, we contribute an overview of the requirements and
criteria for (re)designing the decision-making process for managing
electrics/electronics platforms within the automotive domain from
the practitioners’ view. Through this, we aim to assist practitioners
in managing electrics/electronics platforms, while also providing
starting points for future research on a real-world problem.

CCS CONCEPTS
• Computer systems organization → Embedded systems; •
Software and its engineering→ Software product lines;Main-
taining software.

KEYWORDS
automotive, electrics/electronics, product line, life-cycle manage-
ment, cyber-physical system, product structuring concept, platform
management, decision making

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for prot or commercial advantage and that copies bear this notice and the full citation
on the rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0658-5/24/07
https://doi.org/10.1145/3663529.3663851

ACM Reference Format:
Philipp Zellmer, Jacob Krüger, and Thomas Leich. 2024. Decision Making
for Managing Automotive Platforms: An Interview Survey on the State-of-
Practice. In Companion Proceedings of the 32nd ACM International Conference
on the Foundations of Software Engineering (FSE Companion ’24), July 15–
19, 2024, Porto de Galinhas, Brazil. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3663529.3663851

1 INTRODUCTION
To remain competitive, automotive manufacturers must contin-
uously enhance their product portfolios by incorporating novel
features into their vehicles. Traditionally, the focus was on hard-
ware components, but technological advancements, new customer
preferences, and legal standards demand the integration of a ris-
ing number of software features into the existing hardware plat-
forms [5, 6, 26]. This shift is evident from the prevalence of software-
centric innovations, which are driven by trends like autonomous
driving, driver assistance systems, electrication, and vehicle con-
nectivity. So, vehicles transition towards software-intensive cyber-
physical systems, requiring eective collaboration between hard-
ware and software components to deliver innovative features. How-
ever, the surge in software features introduces challenges for man-
ufacturers when engineering and managing their vehicle platforms.
In particular, the historical development of hardware platforms
that integrate mechanical components now poses challenges when
trying to integrate software-focused features, such as over-the-air
updates or self-driving capabilities.

Managing the complexity of modern vehicle platforms, with the
increasing numbers of electrics/electronics components and inter-
connections between hardware and software artifacts, has become
progressively challenging. Consequently, automotive manufactur-
ers face more complex decisions when engineering their platforms,
which can easily result in escalating expenses and eorts. To address
such problems, the manufacturers are adopting product-structuring
concepts [36] that consider vehicles as software-centered cyber-
physical systems. For instance, variant-management concepts from
software product-line engineering [8, 22, 27] are being integrated
into established hardware-platform strategies to incorporate the
software perspective [4, 33]. However, despite these adaptations,
creating a holistic platform strategy that encompasses all dimen-
sions of modern vehicles remains a challenging problem in practice.

In this paper, we report the results of an interview survey with
26 experts from the automotive domain. With this survey, we aimed
to elicit the state-of-practice of making decisions for managing elec-
trics/electronics platforms, collecting requirements and challenges
that dierent stakeholders perceive in this context. Based on the
interviews, related research, and our expertise in the automotive
domain, we discuss and asses how automotive manufacturers can

Insights into Transitioning towards Electrics/Electronics Platform
Management in the Automotive Industry

Lennart Holsten
lennart.holsten@volkswagen.de

Volkswagen AG & Harz University
Wolfsburg & Wernigerode, Germany

Jacob Krüger
j.kruger@tue.nl

Eindhoven University of Technology
Eindhoven, The Netherlands

Thomas Leich
tleich@hs-harz.de
Harz University

Wernigerode, Germany

ABSTRACT
In the automotive industry, platform strategies have proved eec-
tive for streamlining the development of complex, highly variable
cyber-physical systems. Particularly software-driven innovations
are becoming the primary source of new features in automotive
systems, such as lane-keeping assistants, trac-sign recognition,
or even autonomous driving. To address the growing importance
of software, automotive companies are progressively adopting con-
cepts of software-platform engineering, such as software product
lines. However, even when adapting such concepts, a noticeable
gap exists regarding the holistic management of all aspects within
a cyber-physical system, including hardware, software, electron-
ics, variability, and interactions between all of these. Within the
automotive industry, electrics/electronics platforms are an emerg-
ing trend to achieve this holistic management. In this paper, we
report insights into the transition towards electrics/electronics plat-
form management in the automotive industry, eliciting current
challenges, their respective key success factors, and strategies for
resolving them. For this purpose, we performed 24 semi-structured
interviews with practitioners within the automotive industry. Our
insights contribute strategies for other companies working on
adopting electrics/electronics platform management (e.g., central-
izing platform responsibilities), while also highlighting possible
directions for future research (e.g., improving over-the-air updates).

CCS CONCEPTS
• Computer systems organization → Embedded systems; •
Software and its engineering → Software product lines.

KEYWORDS
Automotive, Electrics/electronics, Platform, Cyber-physical system

ACM Reference Format:
Lennart Holsten, Jacob Krüger, and Thomas Leich. 2024. Insights into Tran-
sitioning towards Electrics/Electronics Platform Management in the Auto-
motive Industry. In Companion Proceedings of the 32nd ACM International
Conference on the Foundations of Software Engineering (FSE Companion
’24), July 15–19, 2024, Porto de Galinhas, Brazil. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3663529.3663837

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for prot or commercial advantage and that copies bear this notice and the full citation
on the rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0658-5/24/07
https://doi.org/10.1145/3663529.3663837

1 INTRODUCTION
Similar to other industries, innovations in the automotive domain
are driven more and more by digital features that build on software.
The consequent trends emerging in the automotive industry (e.g.,
autonomous driving, digitization, electrication) have amplied the
speed of new customer demands, forcing automotive companies
to continuously evolve their portfolio by developing new features
for their vehicles [3, 34]. Due to this situation, more than 80 % of
current automotive innovations are software-driven. In turn, the
amount of software in a vehicle is increasing and the importance of
software to eciently develop and manage an automotive vehicle
portfolio is growing [19, 52].

In the past, automotive vehicle portfolios were built on hardware
platforms and modules to facilitate reuse and achieve overarching
synergies. However, to fulll contemporary customer and regula-
tory requirements, vehicles have to rely on the ecient interaction
between hardware, software, and the surrounding environment—
thereby evolving into software-intensive cyber-physical systems [6,
45]. Integrating more and more software into existing hardware
platforms remains a challenging task for automotive companies. Es-
pecially managing the variability of all artifacts (hardware, software,
mechanics, electronics) and their interconnections has become in-
creasingly complex [7, 11]. As a way to tackle this growing com-
plexity introduced by software, automotive companies are proac-
tively adopting principles and methodologies from the software-
engineering domain [10, 14, 26, 53]. In this context, the concept
of electrics/electronics platforms has gained a lot of attention in
the industry. An electrics/electronics platform combines software
and hardware platforms into a holistically used vehicle architec-
ture, aiming to enhance reusability, establish standardization, and
achieve scaling eects [24, 36].

While promising to facilitate the management of automotive
vehicle (or other cyber-physical) portfolios, introducing an elec-
trics/electronics platform also poses challenges. For example, to
eciently control the complexity of an electrics/electronics plat-
form throughout its entire life-cycle, it has become more impor-
tant to systematically manage the operational phase of vehicles.
Specically, automotive companies are progressively exploiting
the possibilities of software over-the-air (OTA) updates [14, 17].
Consequently, managing an automotive vehicle portfolio based
on electrics/electronics platforms necessitates to implement strate-
gic release management to determine the functional and temporal
evolution of the platform and its users throughout all life-cycle
phases [31, 56]. However, integrating the possibilities of updates
while a vehicle is operated into the design and management of an
electrics/electronics platform is only one challenge—and even this
one is, to the best of our knowledge, not well-explored.

5

Moving to a systematic platform is useful
co

st
s

fo
r

a
 v

a
ri

a
n
t

in
 %

40

20

0

design plan impl.

c&o
platform

Åkesson, Nilsson, Krüger, Berger: Migrating the Android Apo-Games into an Annotation-Based Software Product Line. SPLC’19
Debbice, Lignell, Krüger, Berger: Migrating Java-Based Apo-Games into a Composition-Based Software Product Line. SPLC’19
Krüger, Berger: An Empirical Analysis of the Costs of Clone- and Platform-Oriented Software Reuse. ESEC/FSE’20
Krüger, Berger: Activities and Costs of Re-Engineering Cloned Variants Into an Integrated Platform. VaMoS’20

5

Moving to a systematic platform is useful
co

st
s

fo
r

a
 v

a
ri

a
n
t

in
 %

40

20

0

design plan impl.

c&o
platform 50

0

-50

-100

e
ff

e
ct

 o
n
 d

e
v
e
lo

p
m

e
n
t

co
st

s
in

 %

(5) (9)
feature variant

Åkesson, Nilsson, Krüger, Berger: Migrating the Android Apo-Games into an Annotation-Based Software Product Line. SPLC’19
Debbice, Lignell, Krüger, Berger: Migrating Java-Based Apo-Games into a Composition-Based Software Product Line. SPLC’19
Krüger, Berger: An Empirical Analysis of the Costs of Clone- and Platform-Oriented Software Reuse. ESEC/FSE’20
Krüger, Berger: Activities and Costs of Re-Engineering Cloned Variants Into an Integrated Platform. VaMoS’20

5

Moving to a systematic platform is useful (but challenging)
co

st
s

fo
r

a
 v

a
ri

a
n
t

in
 %

40

20

0

design plan impl.

c&o
platform 50

0

-50

-100

e
ff

e
ct

 o
n
 d

e
v
e
lo

p
m

e
n
t

co
st

s
in

 %

(5) (9)
feature variant

activity type team 1 team 2

product-line training 16.00 90.00
domain analysis 18.00 82.00
preparatory analysis 49.25 40.00
feature identification 22.25 22.00
architecture identification 2.00 5.00
feature location 50.00 7.00
feature modeling 7.00 10.00
transformation 103.50 180.00
quality assurance 103.50 60.00

Åkesson, Nilsson, Krüger, Berger: Migrating the Android Apo-Games into an Annotation-Based Software Product Line. SPLC’19
Debbice, Lignell, Krüger, Berger: Migrating Java-Based Apo-Games into a Composition-Based Software Product Line. SPLC’19
Krüger, Berger: An Empirical Analysis of the Costs of Clone- and Platform-Oriented Software Reuse. ESEC/FSE’20
Krüger, Berger: Activities and Costs of Re-Engineering Cloned Variants Into an Integrated Platform. VaMoS’20

6

Recommendations and guides can facilitate re-engineering

6

Recommendations and guides can facilitate re-engineering

[...]

Activity

Concurrent Activities

Situational Alternative

Decision Node

Activity Edge

Management Process

Evolution Process

Adoption Process

Start Node

Monitor Product Line

Manage Knowledge

Assign Developers

Train Developers

Define Processes

Adopt Tooling

Budget Development

Integrate VariantsModel Variability

Scope Platform

Analyze Platform
Requirements

Design Architecture

Map Artifacts

Analyze Asset
Requirements

Scope Asset

Assure QualityPropose Asset

Design Asset

Release Platform

Implement VariantAdapt Variant

Test Variant

Release Variant

Assure Quality

Integrate Asset

Test Asset

Test Platform

Feature-Oriented
Integration?

No

Adoption
Strategy

Proactive

Extractive

Reuse Existing
Platform?

No

Yes

Requires
Adaptations?

Yes

No

ExtractiveProactive

Yes

Extract and Design
Architecture

Propagate Asset

Diff ArtifactsAnalyze Domain Analyze Commonality

Analyze Variability

Refactor Platform

Adapt Assets

Identify and Locate
Features

Implement Platform

Implement Assets

Add Variation Points

[Continue Extraction]

Implement Asset

Add Variation Points

Model Variability

Derive Variant

Select Features

Configure

Identify Assets

Analyze Variant
Requirements

Scope Variant

Design Variant

Develop Variant /
[Reactive]

Integrate Variant?
Yes

Integrate Asset?

Yes

Krüger, Mahmood, Berger: Promote-pl: A Round-Trip Engineering Process Model for Adopting and Evolving Product Lines. SPLC’20

6

Recommendations and guides can facilitate re-engineering

derived
variant

integrated
platform

evolved
variant

planned or
existing
variant(s)

evolution

adoption

Krüger, Mahmood, Berger: Promote-pl: A Round-Trip Engineering Process Model for Adopting and Evolving Product Lines. SPLC’20

6

Recommendations and guides can facilitate re-engineering

derived
variant

integrated
platform

evolved
variant

planned or
existing
variant(s)

evolution

adoption

• Support for feature modeling

• Process for maturity assessment

Krüger, Mahmood, Berger: Promote-pl: A Round-Trip Engineering Process Model for Adopting and Evolving Product Lines. SPLC’20
Lindohf, Krüger, Herzog, Berger: Software Product-Line Evaluation in the Large. Empirical Software Engineering, 2020
Nešić, Krüger, Stănciulescu, Berger: Principles of Feature Modeling. ESEC/FSE’19

6

Recommendations and guides can facilitate re-engineering

derived
variant

integrated
platform

evolved
variant

planned or
existing
variant(s)

evolution

adoption

• Support for feature modeling

• Process for maturity assessment

• Studies built on industry collaborations/cases
• VW
• Axis
• Saab
• Danfoss
• pure-systems
• ABB
• ...

Krüger, Mahmood, Berger: Promote-pl: A Round-Trip Engineering Process Model for Adopting and Evolving Product Lines. SPLC’20
Lindohf, Krüger, Herzog, Berger: Software Product-Line Evaluation in the Large. Empirical Software Engineering, 2020
Nešić, Krüger, Stănciulescu, Berger: Principles of Feature Modeling. ESEC/FSE’19

7

Having a platform? Still, not everything is perfect
• Ensuring program comprehension?

• Assuring software quality?

• Analyzing variability?

• Aligning hardware and software releases?

• Deprecating (variable) features or a platform?

• Re-engineering variability safely?

• ...

8

Comprehension and quality are key
• Insights:

• Feature traces are helpful ...

Fenske, Krüger, Kanyshkova, Schulze: #ifdef Directives and Program Comprehension: The Dilemma between Correctness and
Preference. ICSME’20
Krüger, Çalıklı, Berger, Leich, Saake: Effects of Explicit Feature Traceability on Program Comprehension. ESEC/FSE’19
Ludwig, Krüger, Leich: Covert and Phantom Features in Annotations: Do They Impact Variability Analysis?. SPLC’19

8

Comprehension and quality are key
• Insights:

• Feature traces are helpful ...
... but should not be configurable

Fenske, Krüger, Kanyshkova, Schulze: #ifdef Directives and Program Comprehension: The Dilemma between Correctness and
Preference. ICSME’20
Krüger, Çalıklı, Berger, Leich, Saake: Effects of Explicit Feature Traceability on Program Comprehension. ESEC/FSE’19
Ludwig, Krüger, Leich: Covert and Phantom Features in Annotations: Do They Impact Variability Analysis?. SPLC’19

8

Comprehension and quality are key
• Insights:

• Feature traces are helpful ...
... but should not be configurable

• Understanding variability is hard ...

Fenske, Krüger, Kanyshkova, Schulze: #ifdef Directives and Program Comprehension: The Dilemma between Correctness and
Preference. ICSME’20
Krüger, Çalıklı, Berger, Leich, Saake: Effects of Explicit Feature Traceability on Program Comprehension. ESEC/FSE’19
Ludwig, Krüger, Leich: Covert and Phantom Features in Annotations: Do They Impact Variability Analysis?. SPLC’19

8

Comprehension and quality are key
• Insights:

• Feature traces are helpful ...
... but should not be configurable

• Understanding variability is hard ...
... and analyzing it even more

Fenske, Krüger, Kanyshkova, Schulze: #ifdef Directives and Program Comprehension: The Dilemma between Correctness and
Preference. ICSME’20
Krüger, Çalıklı, Berger, Leich, Saake: Effects of Explicit Feature Traceability on Program Comprehension. ESEC/FSE’19
Ludwig, Krüger, Leich: Covert and Phantom Features in Annotations: Do They Impact Variability Analysis?. SPLC’19

8

Comprehension and quality are key
• Insights:

• Feature traces are helpful ...
... but should not be configurable

• Understanding variability is hard ...
... and analyzing it even more

• Challenges:
• Refactoring
• Removing/simplifying variability
• Comprehending software

Fenske, Krüger, Kanyshkova, Schulze: #ifdef Directives and Program Comprehension: The Dilemma between Correctness and
Preference. ICSME’20
Krüger, Çalıklı, Berger, Leich, Saake: Effects of Explicit Feature Traceability on Program Comprehension. ESEC/FSE’19
Ludwig, Krüger, Leich: Covert and Phantom Features in Annotations: Do They Impact Variability Analysis?. SPLC’19

9

Aligning hardware/software releases is hard
• Insights:

• Different options for aligning hardware/software changes
• Over-the-air updates become more important

Holsten, Frank, Krüger, Leich: Electrics/Electronics Platforms in the Automotive Industry: Challenges and Directions for Variant-Rich
Systems Engineering. VaMoS’23
Kuiter, Krüger, Saake: Iterative Development and Changing Requirements: Drivers of Variability in an Industrial System for Veterinary
Anesthesia. SPLC’2019

9

Aligning hardware/software releases is hard
• Insights:

• Different options for aligning hardware/software changes
• Over-the-air updates become more important

• Challenges:
• Understanding pros and cons of strategies
• Deciding when to use what strategy

Holsten, Frank, Krüger, Leich: Electrics/Electronics Platforms in the Automotive Industry: Challenges and Directions for Variant-Rich
Systems Engineering. VaMoS’23
Kuiter, Krüger, Saake: Iterative Development and Changing Requirements: Drivers of Variability in an Industrial System for Veterinary
Anesthesia. SPLC’2019

10

Some features may become dated
• Insights:

• Features or whole systems may become outdated
• Features may move into commodity to reduce complexity

Cortiñas, Krüger, Lamas, Luaces, Pedreira: How to Retire and Replace a Software Product Line. SPLC’23
Holsten, Frank, Krüger, Leich: Electrics/Electronics Platforms in the Automotive Industry: Challenges and Directions for Variant-Rich
Systems Engineering. VaMoS’23
Ludwig, Krüger, Leich: Covert and Phantom Features in Annotations: Do They Impact Variability Analysis?. SPLC’19

10

Some features may become dated
• Insights:

• Features or whole systems may become outdated
• Features may move into commodity to reduce complexity

• Challenges:
• Deciding what features are not needed anymore
• Ensuring safe re-engineering operations
• Designing automated analyses/operations

Cortiñas, Krüger, Lamas, Luaces, Pedreira: How to Retire and Replace a Software Product Line. SPLC’23
Holsten, Frank, Krüger, Leich: Electrics/Electronics Platforms in the Automotive Industry: Challenges and Directions for Variant-Rich
Systems Engineering. VaMoS’23
Ludwig, Krüger, Leich: Covert and Phantom Features in Annotations: Do They Impact Variability Analysis?. SPLC’19

11

Also challenges in practice? Starting points for collaboration?
• Ensuring program comprehension?

• Assuring software quality?

• Analyzing variability?

• Aligning hardware and software releases?

• Deprecating (variable) features or a platform?

• Re-engineering variability safely?

• ...

12

Want more information or get in touch?
Jacob Krüger

Eindhoven University of Technology
Department for Mathematics and Computer Science
Software Engineering and Technology
MetaForum 6.096 (likely to change to 6.089)

j.kruger@tue.nl
https://jacobkrueger.github.io/

j.kruger@tue.nl
https://jacobkrueger.github.io/

