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Modern systems: driven by software and variant-rich
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Modern Linux: driven by software and variant-rich
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Modern Linux: driven by software and variant-rich
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But organizations often start with one system and cloning
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But organizations often start with one system and cloning

» A successful system gets adapted by cloning
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But organizations often start with one system and cloning

» A successful system gets adapted by cloning

« Maintenance challenges lead to decision to re-engineer a platform
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Re-engineering into or between platforms is (still) common

Getting Rid of Clone-And-Own: Moving to a Software Product
Line for Temperature Monitoring

Elias Kuiter Jacob Kriiger Sebastian Krieter
Otto-von-Guericke-University Harz University of Applied Sciences  Harz University of Applied Sciences
Magdeburg, Germany Otto-von-Guericke-University Otto-von-Guericke-University
kuiter@ovgu.de i & Germany d Germany
jkrueger@ovgu.de skrieter@hs-harz.de

Thomas Leich
Harz University of Applied Sciences
METOP GmbH

Wernigerode & Magdeburg, Germany

tleich@hs-harz.de
ABSTRACT

Due to its fast and simple applicability, clone-and-own is widely
used in industry to develop software variants. In cooperation with
different companies for thermoelectric products, we implemented
multiple variants of a heat monitoring tool based on clone-and-own.
After encountering redundancy-related problems during develop-
ment and maintenance, we decided to migrate towards a software
product line. Within this paper, we describe this case study of mi-
grating cloned variants to a software product line based on the ex-
tractive approach. The resulting software product line encapsulates
variability on several levels, including the underlying hardware
tems, interfaces, and use cases. Currently, we support monitoring
hardware from three different companies that use the same core sys-
tem and provide a 1. We sh

and encountered problems with cloning and migration towards a
software product line—focusing on feature extraction and modeling
in particular. Furthermore, we provide a lightweight, web-based
tool for modeling. configuring. and implementing software product
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1 INTRODUCTION

Software product lines are a systematic approach to reuse and man-
age software artifacts [2, 36). These artifacts correspond to features
- user-visible functionalities of a set of variants - that are modeled
within variability models [15, 42] to define their dependencies. A
selection of features that fulfills all these dependencies is a valid con-
figuration. Based on such a configuration, a tool can automatically
instantiate a variant from the implemented artifacts.

Using software product lines promises several benefits, for in-
stance, reduced costs for development and maintenanc
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ABSTRACT

‘The automotive industry is changing due to digitization, a grow-
ing focus on software, and the increasing use of electronic con-
trol units. Consequently, automotive engineering is shifting from
hardware-focused towards software-focused platform concepts to
address these challenges. This shift includes adopting and integrat-
ing methods like electrics/electronies platforms, software product-
line engineering, and product generation. Although these concepts
are well-known in their respective research fields and different
industries, there is limited research on their practical effective-
ness and issues—particularly when implementing and using these
concepts for modern automotive platforms. The lack of research
and practical experiences challenges particularly decision mak-
ers, who cannot build on reliable evidence or techniques. In this
paper, we address this gap by reporting on the state-of-practice
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1 INTRODUCTION

To remain competitive, automotive manufacturers must contin-
uously enhance their product portfolios by incorporating novel
features into their vehicles. Traditionally, the focus was on hard-
ware but new customer
preferences, and legal standards demand the integration of a ris-
ing number of software features into the existing hardware plat-
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ABSTRACT 1 INTRODUCTION

In the automotive industry, platform strategics have proved effec-  Similar to other industries, innovations in the automotive domain
tive for streamlining the development of complex, highly variable  are driven more and more by digital features that build on software.
cyber-physical systems. Particularly software-driven innovations  The consequent trends emerging in the automotive industry (e.g..




Moving to a systematic platform is useful
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Moving to a systematic platform is useful
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Moving to a systematic platform is useful (but challenging)
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Recommendations and guides can facilitate re-engineering

6 TU/e



Recommendations and guides can facilitate re-engineering
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Recommendations and guides can facilitate re-engineering
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Recommendations and guides can facilitate re-engineering

» Support for feature modeling

o Process for maturity assessment
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Recommendations and guides can facilitate re-engineering

» Support for feature modeling

o Process for maturity assessment

o Studies built on industry collaborations/cases

o« VW

o AXis
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Having a platform? Still, not everything is perfect

Ensuring program comprehension?

Assuring software quality?

Analyzing variability?

Aligning hardware and software releases?
Deprecating (variable) features or a platform?

Re-engineering variability safely?
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char_u *
fix_fname(fname)
char_u xfname;

#ifdef UNIX
return FullName_save(fname, TRUE);

Comprehension and quality are key
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#else
q if (!vim_isAbsName(fname)

° InS|ghts: || strstr((char x)fname, "..") != NULL
Lo || strstr((char *)fname, "//") != NULL
L1 # ifdef BACKSLASH_IN_FILENAME

® Feature traces are helprI 12 || strstr((char *)fname, "\\\\") != NULY

L3 # endif
L4 # if defined(MSWIN) || defined(DJIGPP)
L5 || vim_strchr(fname, '~') != NULL
16 # endif
L7 )
18 return FullName_save(fname, FALSE);
19
20 fname = vim_strsave(fname);
21

22 # ifdef USE_FNAME_CASE
23 # ifdef USE_LONG_FNAME

24 if (USE_LONG_FNAME)
25 # endif

26 {

27 if (fname != NULL)
28 fname_case(fname, 0);
29 }

30 # endif

31

32 return fname;

33 #endif

34 }

Fenske, Kriiger, Kanyshkova, Schulze: #ifdef Directives and Program Comprehension: The Dilemma between Correctness and
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Aligning hardware/software releases is hard

« Insights:

« Different options for aligning hardware/software changes
« Over-the-air updates become more important
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Aligning hardware/software releases is hard

« Insights:
« Different options for aligning hardware/software changes

« Over-the-air updates become more important

« Challenges:
» Understanding pros and cons of strategies
» Deciding when to use what strategy
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Some features may become dated

« Insights:

» Features or whole systems may become outdated
» Features may move into commodity to reduce complexity

Cortifias, Kriiger, Lamas, Luaces, Pedreira: How to Retire and Replace a Software Product Line. SPLC'23
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Some features may become dated

« Insights:

» Features or whole systems may become outdated
» Features may move into commodity to reduce complexity

« Challenges:

» Deciding what features are not needed anymore
» Ensuring safe re-engineering operations
» Designing automated analyses/operations

Cortifias, Kriiger, Lamas, Luaces, Pedreira: How to Retire and Replace a Software Product Line. SPLC'23
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Also challenges in practice? Starting points for collaboration?

Ensuring program comprehension?
Assuring software quality?

Analyzing variability?

Aligning hardware and software releases?

Deprecating (variable) features or a platform?

Re-engineering variability safely?
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Want more information or get in touch?
Jacob Kruger

Eindhoven University of Technology

Department for Mathematics and Computer Science
Software Engineering and Technology

MetaForum 6.096 (likely to change to 6.089)

j.kruger@tue.nl
https://jacobkrueger.github.io/
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