GPT-NL

Sharing insights on scalable & energy-aware
LLM pre-training for GPT-NL

Claartje Barkhof & Thomas van Osch

December 12th, 2024 - Nederlands Forensisch Instituut
Ministerie van Justitie en Veiligheid




GPT-NL  Technology and architecture assessments for scalable and energy-aware training of GPT-NL

What and why?

* GPT-NLis an LLM that is:
Open
Transparent
Lawful
Dutch-centric
Sovereign

Trained from scratch

Who?

* TNO, SURF, Netherlands Forensics Institute

e Subsidy by EZK, not a research project!

m inmovatian
Tor life

Advanced Computing User Day | December 12" 2024 | Claartje Barkhof & Thomas van Osch




GPT-NL  Technology and architecture assessments for scalable and energy-aware training of GPT-NL

LLM to enable applications

4 N

Generative Al Application

Al Model

Fine-tuned model

Pre-trained model Product

Output

Pre- R — Post-
guardrails’ Data ‘guardrails’

Infrastructure
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Data acquisition

Ethical & lawful are mostly reflected in
data acquisition & curation

We aim for 450B tokens, based on opt-
in and permissive open data
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Data Mix: English
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Today’s focus

4 N

Value

A functional performant

model that is in line with

our values

Resources

We have limited resources
when compared to Big Tech Resources

\_
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GPT-NL

How can we balance our
ambitions with our
realistic constraints

Laws & Ethics

Complying to laws, like
GDPR, Al Act and copyright
Law.
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LLM pre-training on HPC

m innovation
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Relatively consistent pre-training recipe

Unsupervised Pre-training

f \ Correct output (label):

Input (features) a robot must

(under training)

I Output (Prediction)
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...While scaling model size

Moore's Law for LLMs

103 ]

107

101

10% 8TB of GPU
memory ¢ How?

Model Parameters (Billion)

lﬁ_l'

2020 2021 2023

Time (Year)

2018

for life
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Distributed training 5, & HPC A balancing act between

memory efficiency &
computational efficiency

How to parallelize training over multiple GPUs (over multiple nodes)?

| Single GPU | Data Parallelism i i Tensor Parallelism .| Pipeline Parallelism |
| 1 epus [ ) |
| T | . v ® BT BT | 1 GPU2 |
| 8 . 38 3 3 8 Model L Model |
i = @ = = = = 1 GPUT |
i i i i '\ | . GPUO |, |
" Batch o L - i
' (size 8) L H & FE = o o !
| GPUO | ! GPUO GPUT GPU2 GPU3 | | GPUO GPU1 GPU2 GPU3 | | |
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Idea 1: Parallelize the data, copy the weights

Node 0

( Loss computation ] ( Loss computation ]

N

~ N N ~ N

GPUO: | E GPUT: |

Batch 0 Batch 1
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Idea 1: Parallelize the data, copy the weights

Node O
GPUs only need to [ Loss computation J [ Loss computation j
synch during the T ? ? d 2 o
backward pass GPUO _— & B

(average gradients) ‘ - - : — —
-——
-

Batch 0 Batch 1
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Memory inefficient
copying weights makes that we
take up more space than there is
information
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GPT-NL

Idea 2: Parallelize the model

Instead of distributing the data, we can also distribute the model.

Technology and architecture assessments for scalable and energy-aware training of GPT-NL

Node O

[ Loss computation ]

N

N A

GPU1

[G

I
PU communicatjo
Forward pass,

)

PU communicatio
Backward pass

:

Computationally inefficient
GPUs compute things in turns,
leaving them idle for part of
the time

Advanced Computing User Day | December 12t 2024 | Claartje Barkhof & Thomas van Osch

Mini batch

Sequence length
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Idea 3: use data & model parallelism

 Distribute model states while also parallelizing the data

* Exchange model states between devices when needed

Memory usage without ZeRO

: GPU, Data, HII

| ]
Enam e Enam

Data, GPU, Data,

GPU._‘ Datam, ﬁi
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/

.

There will always be some overhead due to
GPU communication

\

4

-

Huge models can now be trained

~

With ZeRO

GPU

GPU

GPU

GPU

n1
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How to measure GPT-NL training performance?
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LLM Compute Calculus

Known
* Required train compute per token in FLOPs
= 6 * number of parameters (or 8 with gradient checkpointing)

* Theoretical compute budget
= time * number of GPUs * TFLOPs (H100 = 989 BFloat-16 TFLOP/sec)

* Desired number of tokens to train on
= 450B (probably oversampled 2-4 times = 900-1800B tokens)*

Unknown

1. How fast can we process tokens?

2. How efficiently can we make use of Snellius’ hardware?
3. How much energy do we consume?
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+450B tokens in context:
t 4.5 million x the first Harry Potter book
+ 30 x all Dutch newspapers and magazines

m innovatian
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Estimate T, for different N and D, given a fixed compute (3.7 YFLOPSs)
LLM Compute Calculus (88 x H100 with 989 TFLOPS, MFU=0.4 & bfloat16)
—— 1.0B params
How fast can we process tokens? 1400 0B params
1200 —— 7.0B params
. 13B params
Throughput S _ —— 30B params
E 1000 + - —— 70B params
7]
* |ntokens / second S 800
@]
©
* For a given model size in TFLOP/second g o
5
, 400
= Actual achieved TFLOP/second =
200
0

0 20 40 60 80 100 120
Number of days training

m innovatian
Tor life

Advanced Computing User Day | December 12t 2024 | Claartje Barkhof & Thomas van Osch




GPT-NL Technology and architecture assessments for scalable and energy-aware training of GPT-NL

LLM Compute Calculus

GPT-NL?
2.2 | Llama-2
How fast can we process tokens? g — 7B
21 | : — 138
; 1 —— 34B
2.0 —
= 1.9
(o T8
To make educated guesses on the § 1.8
type of model to train = o
1.6 o e e— SUUTTTOTRRI e 3 “PTRYARA bt
1.5
14 v

0 250 500 750 1000 1250 1500 1750 2000
Processed Tokens (Billions)

Adapted from the Llama 2 report (Touvron et al. 2023)
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LLM Compute Calculus

How efficiently can we make use of
Snellius’ hardware?

Model FLOP Utilisation (%)

Actual achieved Performance

~ Theoretical Peak Performance 100
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1400

1200

1000

800

600

400

Number of tokens (billion)

200

20

40 60 80
Number of days training

Estimate T, for different N and D, given a fixed compute (3.7 YFLOPs)
(88 x H100 with 989 TFLOPS, MFU=0.4 & bfloat16)

P

1.0B params
2.0B params
7.0B params
13B params
30B params
70B params

100

120
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Energy consumption

Why do we care?

* Transparency
* Reporting

* Making choices with respect to energy consumption

* Conscious decisions for training (trade-off model
performance versus energy usage)

* Using automatic optimisations (EAR)
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Energy Aware Runtime (EAR)

HPC tooling to measure energy usage

What it can measure:

* CPU energy

* DRAM energy

* Total node energy = very useful

Automatic energy optimization policies
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EAR
components
Node Monitor and Manager
EARD
Scheduler plugin
EARPLUGIN EARDBD
DB Manager
EARL EARGMD

System Power Manager (and

Job Manager monitor)
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Scaling LLM training on Snellius

innovation
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Experimental setup 1/2

Evaluation
. Goal: establish scalable pre-training codebase for Snellius
0 Measure

1. Throughput

2. Hardware efficiency

3. Energy consumption

Hardware
. 22 nodes with each 4 H100 94GB HBM2e

. InfiniBand network

. Local NVMe storage

Lonely H100 nodes in Snellius

innovatian
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Experimental setup 2/2

Model architecture
. Llama-3 architecture
8 billion, 30 billion parameter model

. OLMo's FSDP vs. Hugging Face's Transformers +
DeepSpeed

Grid experiment
e 'Small' grid search for parameters on 4 nodes
* Hyperparameter tune:
* Batchsize
e Sharding strategy
e Strong scaling experiments

 Megatron-DeepSpeed framework as baseline
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https://huggingface.co/spaces/huggingface/open-source-ai-year-in-review-2024​
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Grid experiment
Best runs (20 nodes)

7000

6000

(o]
(=)
o
(=)

4000

3000

2000

Tokens per second per device

1000

8B

Throughput

30B

04

0.

w

MFU (%)
o
N

0.

I 0.0

—_

Hardware efficiency

8B 30B
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0.40

0.35

0.30

0.25

0.20

Energy per step (kWH)

0.00

8B

Energy consumption

30B

mmm HF + DS

mmm PT + FSDP
mmm Megatron DS

innovatian
Tor life

26



GPT-NL

Comparing sharding strategies

Tokens per second per device

PyTorch FSDP

7500

7000 @ o -
6500 — —,— .
6000 @

5500

8B

5000

4500

1800 =

1600

30B

1400

1200
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Technology and architecture assessments for scalable and energy-aware training of GPT-NL

DeepSpeed Zero

oo

PP

r
A

Batch Sizes
Batch 4
Batch 8
Batch 10
Batch 16

) Batch 24

v p
I X X

Yy
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Strong scaling experiment

Node scaling
-- for perfect scaling

-
o
[=]

w

Tokens per second (global)
=)

10
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16

21

> &

FSDP 1.1B, No shard, B=20
FSDP 8B, Zero 2, B=20

FSDP 30B, Zero 3, B=20

DS Zero 1.1B, No shard, B=20
DS Zero 8B, Zero 2, B=20

DS Zero 30B, Zero 3, B=20

innovatian
Tor life

28



GPT-NL Technology and architecture assessments for scalable and energy-aware training of GPT-NL

Technical lessons learned

* Finetune to your systems hardware
o H100s as GPU? Use Flash Attention 3!

o Fast interconnect network? Use sharding, increase batch size, full
precision shards over network!

o Not alot of nodes? Don't shard!
e Scaling LLM pre-training non-trivial
o Not your typical HPC problem

o Alot of knobs to play around but hyperparameter tuning not
feasible on large scale

*  Community effort and knowledge sharing crucial!
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-

30B model with 450B tokens
equals 34 days training or 14
tonnes of CO2!

~

Or 40,000

km by ca

r
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What's next

* Goal: establish efficient codebase fit for GPT-NL on Snellius
* Based on experiments: FSDP better fit for scaling
* Further improve FSDP codebase
o Fault-tolerance training
* Benchmark linguistic model performance
* Start training Q2 2025

* Lunch break!
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GPT-
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Thank you!

Credits to the team

Simone van Bruggen
Erik de Graaf

Julio Oliviera
Martino Mensio
Thanasis Trantas
Thomas van Osch
Claartje Barkhof

You can contact us at info@gpt-nl.nl
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Additional materials

innovation
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Sources

 Groeneveld, D., Beltagy, |., Walsh, P., Bhagia, A., Kinney, R., Tafjord, O., ... & Hajishirzi, H. (2024). Olmo: Accelerating the science
of language models. arXiv preprint arXiv:2402.00838.

 Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., ... & Scialom, T. (2023). Llama 2: Open foundation and
fine-tuned chat models. arXiv preprint arXiv:2307.09288.

for life
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Practical points

Model

* Pre-training from scratch
* Focus on native Dutch text
* Billions-parameter model
* Fundamental use-cases
e Simplification
* Summarization
e Retrieval-Augmented Generation (RAG)

* Not a research project -> publicly funded!
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Reporting El
* Open-source codebase

 Model weights available

* Document energy and setup

Logistics

 Dedicated share on Snellius

* Training starts Q2 2025

innovation
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Find suitable codebase for pre-training LLMs on Snellius

PyTorch FSDP

Hugging Face's Transformers

& DeepSpeed

* Adapted from OLMo —
o open-source repo for pre-training LLM
including checkpoints, logging, debugging
* 'Low-level' PyTorch
* Flexibility
e Support for FSDP (Fully Sharded Data Parallel)
e Established codebase

O PyTorch
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Seamless integration with external tools
(logging, visualization, etc.)

More boilerplate code

Excellent versioning and future-proof
Support for DeepSpeed ZeRO

Established codebase (more for finetuning)

- Hugging Face @ deepspeed
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Llama 3 architecture

Llama3 Transformer architecture with following

key hyperparameters:

I T ETN

Layers

Model dimension
FFN dimension
Attention heads
Key-value heads

Attention

Positional embeddings
Memory efficiency tricks

Activation

32 60
4096 6656
14336 17920
32 52

8 13

Grouped query attention

RoPE (& = 500,000)
KV cache
SwiGLU
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Grid experiment

O A

1 Batch Size

2 4,8,10,16,24
3 4,8,10,16,24
4 4,8,10,16,24
5 4,8,10,16,24
6 4,8,10,16,24
7 4,8,10,10,24
8 4,8,10,16,24
° 4,8,10,16,24

10 4,8,10,160,24

B

C

Flash Attention PyTorch (PT)

On/0ff

On/0ff

On/0ff

On/0ff

On/0ff

On/0ff

On/0ff

On/0ff

On/0ff

NO_SHARD

SHARD_GRAD_OP

HYBRID_SHARD_ZEROZ

HYBRID_SHARD

FULL_SHARD
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HuggingFace (HF)
Zero 0
Zero 1

Zero 2

Zero 2 + CPU offload opt

Zero 3 + CPU offload optimizer

E

Equivalent?

v

HF

v

PT

HF

PT

PT

HF

Zero 3 + CPU offload optimizer & params HF

only

only
only
only
only
only

only
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/eR0O 4-way data parallel training

Using:
*P_. (Optimizer state)
* P, (Gradient)
* P, (Parameters)
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