
Grid Computing
for the KM3NeT experiment

F. Vazquez de Sola
Advanced Computing User Day, December 2024

1

KM3NeT: Who?

∼250 members, 47 partner
institutes, 14 countries

Two detectors:

- ORCA (France): study
neutrino oscillations

- ARCA (Italy): study
astrophysical sources of
neutrinos

2

ORCA
Vol: ∼7E6 m3

ARCA
Vol: ∼1 km3

KM3NeT: What?
Underwater neutrino telescope
array, using Photo-Multiplier
Tubes (PMTs) to detect Cherenkov
light from relativistic particles
created by neutrino interactions in
the water.

Currently ∼15% of the detector
deployed, but already taking data!

3

31 PMTs per module

18 modules
per string

115 strings for ORCA
230 strings for ARCA

KM3NeT: How much?

4

1 string: ∼300 Mb/s
Full infrastructure ∼100Gb/s

All data is sent to shore stations. An
online filter identifies events based on
coincidences between arrival time of
photons and positions of PMTs,
reducing event rate by factor 10^4
(estimated 500TB/year full detector)

Event files copied to computing
centers daily.

KM3NeT (previous) Computing Model

5

KM3NeT (previous) Computing Model

6

Unsustainable

Why unsustainable?
- In practice, most data and computing ended up

centralized in a single site, CC-IN2P3 (common
environments, shared file system)...

- Simulation / processing expected to grow to take
O(1000) cores, and double/triple storage needs
from raw data;

- IN2P3 resources will not scale like our needs;
- CC-IN2P3 downtime means collaboration stand-still.

- Attempting to manually split the processing across
partner sites lead to large overhead:
authentication, environments, file transfers,
bookkeeping…

7
Must transition to distributed storage and computing

But first…

8

What do you do when your workflow looks like this?

9

What do you do when your workflow looks like this?

You automate it!

10

Snakemake

● Define rules to create output files
based on input files
○ Make them generic using

wildcards (e.g. {run})

● When user requests target file(s),
snakemake creates a Directed
Acyclic Graph (DAG) of tasks to
produce target(s)

● Workflow sequence not defined
by the user, but automatically by
snakemake from the rules

11

● Can use containerized softwares:
○ Ensure software version control
○ Make workflow portable

● Managed workflow:
○ Optimize execution, monitor

performances
○ Decouple job submission from

workflow implementation
○ Take care of logging and (most

of) provenance

What we like
- Does not require advanced knowledge

of whole processing for users
- Integrated use of containers for running

on different sites
- Single configuration file for all steps
- Automated file organization, log

bookkeeping, benchmarking
Took one dedicated KM3NeT member (V.
Pestel) 1-1.5 years to reimplement our
workflow (MCs + processing) in snakemake.
Now everybody wants to use it, or develop
their own for their projects!

12

To the Grid!
Storage: Rucio

13

Grid Storage

● Regular access to grid storage
requires knowing physical
location of every file:

○ Host address and port
○ Path to file within site
○ File transfer protocol (gfal, xrootd,

webdav…)

● Enter RUCIO!
○ Provides Data IDentifiers and

replication rules
○ Manages file transfer protocols
○ Easy to use

https://link.springer.com/article/10.1007/s41781-019-0026-3

https://link.springer.com/article/10.1007/s41781-019-0026-3

Rucio key concepts

Data Identifiers: unique IDs for files, datasets (collection of files) and containers (collection of
datasets and containers). Each DID can hold arbitrary user-defined metadata

Declarative data management: Express what you want with rules and subscriptions, then
Rucio constantly evaluates and tries to satisfy them. Examples:

1) Rules: "Three copies of this dataset, distributed evenly across three institutes on different
continents, with two copies on DISK and one on TAPE"

2) Subscriptions: "Three copies (two on DISK, one on TAPE) of every new DIDs that will be
produced that match the set of metadata datatype=RAW and scope=data"

15

Set up our own kubernetes cluster at Nikhef to run Rucio, thanks to Victor Azizi and
Bouwe Andela from eScience Center

16

$ rucio list-dids CORSIKA_testing: --filter type=DATASET
+---+-----------------+
| SCOPE:NAME | [DID TYPE] |
|---+-----------------|
CORSIKA_testing:SIBYLL_DefaultAtmo_TeV_low_C_20240328-1103	DIDType.DATASET
CORSIKA_testing:SIBYLL_DefaultAtmo_TeV_low_p_20240328-1536	DIDType.DATASET
CORSIKA_testing:SIBYLL_DefaultAtmo_TeV_low_p_20240328-1552	DIDType.DATASET
CORSIKA_testing:SIBYLL_DefaultAtmo_TeV_low_p_20240402-0204	DIDType.DATASET
CORSIKA_testing:SIBYLL-star-p03_DefaultAtmo_EeV_p_20240402-1553	DIDType.DATASET
CORSIKA_testing:SIBYLL-star-p03_DefaultAtmo_EeV_p_20240404-1732	DIDType.DATASET
CORSIKA_testing:SIBYLL-star-p03_DefaultAtmo_EeV_p_20240405-1357	DIDType.DATASET
CORSIKA_testing:SIBYLL-star-p03_DefaultAtmo_TeV_low_p_20240406-1926	DIDType.DATASET
CORSIKA_testing:SIBYLL-star-p03_DefaultAtmo_TeV_low_p_20240408-0051	DIDType.DATASET
CORSIKA_testing:SIBYLL-star-p03_DefaultAtmo_TeV_low_p_20240408-0052	DIDType.DATASET
+---+-----------------+

$ rucio list-dids CORSIKA_testing: --filter Production=TeV_low,NumberShowers.gte=2000
+--+--------------+
| SCOPE:NAME | [DID TYPE] |
|--+--------------|
CORSIKA_testing:SIBYLL_DefaultAtmo_TeV_low_p_20240328-1536	
CORSIKA_testing:SIBYLL_DefaultAtmo_TeV_low_p_20240328-1552	
CORSIKA_testing:SIBYLL_DefaultAtmo_TeV_low_p_20240402-0204	
+--+--------------+

$ rucio list-files CORSIKA_testing:SIBYLL-star-p03_DefaultAtmo_TeV_low_p_20240406-1926
+---+--------------------------------------+-------------+------------+----------+
| SCOPE:NAME | GUID | ADLER32 | FILESIZE | EVENTS |
|---+--------------------------------------+-------------+------------+----------|
| CORSIKA_testing:DAT_SIBYLL-star-p03_DefaultAtmo_TeV_low_p_20240406-1926_000500.gz | A77054B3-2737-43D6-9148-B82E5FB44C9F | ad:62b4e0f6 | 66.120 kB | |
| CORSIKA_testing:LOG_SIBYLL-star-p03_DefaultAtmo_TeV_low_p_20240406-1926_000500.tar.gz | 1961FE8B-4B25-4558-98FC-A51AB18429C7 | ad:c71c6de7 | 37.762 kB | |
+---+--------------------------------------+-------------+------------+----------+

$ rucio download CORSIKA_testing:SIBYLL-star-p03_DefaultAtmo_TeV_low_p_20240406-1926

Download summary
--
DID CORSIKA_testing:SIBYLL-star-p03_DefaultAtmo_TeV_low_p_20240406-1926
Total files (DID): 2
Total files (filtered): 2
Downloaded files: 2
Files already found locally: 0
Files that cannot be downloaded: 0

RUCIO
command
examples

To the Grid!
Computing: Dirac

17

DIRAC

Originally developed by
LHCb.

DIRAC middleware
mediates between user
and Grid resources.

Worker Management System

Distributed Infrastructure with
Remote Agent Control

Interacts with each site’s
scheduler for you

https://dirac.readthedocs.io/en/latest/index.html

https://dirac.readthedocs.io/en/latest/index.html

DIRAC

Originally developed by
LHCb.

DIRAC middleware
mediates between user
and Grid resources.

Manages your
authentication, submits
your jobs to “free” sites,
monitors their progress,
recovers outputs…

Distributed Infrastructure with
Remote Agent Control

(and many more things we don’t use, such as their own
file catalog and workflow management system)

https://dirac.readthedocs.io/en/latest/index.html

https://dirac.readthedocs.io/en/latest/index.html

Executable="runstuff.sh inputfile.txt";
StdOutput="stdout.txt";
StdError="stderr.txt";
InputSandbox={"runstuff.sh","inputfile.txt"};
OutputSandbox={"stdout.txt","stderr.txt"};
CPUTime=10000;
NumberOfProcessors=4;

Running on the grid
-> Either use the Job Description Language, or the Python API

Can’t use sandbox to automatically transfer files above 10MB:
 need to download/upload inside job itself (i.e. with Rucio commands)

Job.jdl RunJob.py

Note that CPUTime is in HS06 seconds
(not walltime)

$ dirac-wms-job-submit Job.jdl $./RunJob.py

DIRAC:
Dashboard
Web interface for
monitoring and
logging your jobs

E.g. EGI:
https://dirac.egi.eu/DIRAC/

SURF:
https://dirac.surfsara.nl/DIRAC

https://dirac.egi.eu/DIRAC/
https://dirac.surfsara.nl/DIRAC

Using pre-existing EGI DIRAC infrastructure at CC-IN2P3, with invaluable support
from Andrei Tsaregorodtsev. SURF also has DIRAC server, but less mature.

Authentication managed automatically by Dirac through proxies of the user’s
certificate.

Containers deployed to all Worker Nodes through the CernVM File System (CVMFS).

No integration with Dirac’s File Catalog (we already had Rucio) or Transformation
System (we already had Snakemake) - maybe in the future.

22

Infrastructure

Summary

23

Authentication & Authorization

STORAGE

Storage elements

● Disk and Tape
● All (non-trivial) files

NIKHEF

Rucio server

Database
Location,
protocol, rules
of files in SEs

Daemons
Manage
replicas and
rules

UNINAYour Country “Your” machine
Personal

Certificate
Certificate
Authority

KM3NeT
VOMS

COMPUTING

Computing Elements

Dirac pilots
● Fetch and Run tasks

CC-IN2P3

Dirac server

Database
Requested
tasks with their
sandboxes

Agents
Match tasks
with CEs,
submit pilots

CVMFS

Currently using X509 certificates
for authentication, and our
VOMS (hosted at UNINA) for
authorization. Needed to access
Rucio, DIRAC, grid resources

First large-ish test

25

> 150k CPUh

Simulation of cosmic ray air showers
(CORSIKA). Successfully submitted jobs to grid
resources via DIRAC, stored results and logs
with Rucio.

Now testing full snakemake workflow, to be
scaled up to mass processings.

Output files from one run generated through grid computing

Some takeaways
The trickiest part is getting information on how the software works (documentation is
limited) and how the infrastructure is configured. First step is to identify where
knowledge is (documentation or support), focus on tools where you know where to turn
when problems arise. Then keep that knowledge within your collaboration!

Testing grid computing is inherently slow due to scheduling, and can easily become a
bottleneck for implementation efforts. Make sure your payload software/scripts are
robust before testing starts, develop solid naming and bookkeeping conventions, and
recruit personpower to help with testing.

If starting grid journey from scratch, consider using DIRAC as single-stop for all grid
needs instead of multiplying interfaces: computing, storage and workflow management.
Heavier to get started, but maybe saves time in the end?

26

What have we achieved?

We started with almost no in-collaboration knowledge, and now we have:

- Grid storage accessible with Rucio - all raw and calibration data available with a
single command, and integrated into our existing workflow, transparently for our
users. Implementation time: roughly two people working for a year.

- Grid computing accessible with DIRAC. Ran both simulations and the whole
workflow. Implementation time: roughly one person working for two years (but
cheating a bit: we did not set up our own DIRAC instance).

-> Not tackled: better AAI solutions, splitting jobs into “grid-friendly” chunks, processing
trains, automated job submission… The Grid journey can be a long one.

27

What have we achieved?

We started with almost no in-collaboration knowledge, and now we have:

- Grid storage accessible with Rucio - all raw and calibration data available with a
single command, and integrated into our existing workflow, transparently for our
users. Implementation time: roughly two people working for a year.

- Grid computing accessible with DIRAC. Ran both simulations and the whole
workflow. Implementation time: roughly one person working for two years (but
cheating a bit: we did not set up our own DIRAC instance).

-> Not tackled: better AAI solutions, splitting jobs into “grid-friendly” chunks, processing
trains, automated job submission… The Grid journey can be a long one.

28
Thank you for your attention!

Backup

29

STORAGE

Storage elements

● Disk and Tape
● All (non-trivial) files

NIKHEF

Rucio server

Database
Location,
protocol, rules
of files in SEs

Daemons
Manage
replicas and
rules

- Rucio is an interface software to grid
storage.

- Provides user-chosen Data Identifiers
(DIDs, effectively “aliases”) instead of
true paths and protocols to files.

- Can organize files with datasets and
containers, and add metadata.

- Convenient way to share files
between sites / collaborators.

- Manages replicas automatically
through replication rules.Thanks to Victor Azizi and Bouwe

Andela from eScience Center

COMPUTING

Computing Elements

Dirac pilots
● Fetch and Run tasks

CC-IN2P3

Dirac server

Database
Requested
tasks with their
sandboxes

Agents
Match tasks
with CEs,
submit pilots

CVMFS
- Dirac is the middleware interface

to computing resources, originally
developed by LHCb.

- Mediates between user and site
schedulers, propagates user
authentication, monitors job
progress… (and much more, that
we don’t use)

- Computing Elements are
equipped with the CernVM File
System (CVMFS), allowing access
to our software for processing.

Thanks to Andrei Tsaregorodtsev.
(and many others) from EGI

Authentication & Authorization

UNINAYour Country “Your” machine
Personal

Certificate
Certificate
Authority

KM3NeT
VOMS

- Authentication & Authorization is what allows the user to access Dirac
and Rucio, and any other grid resource.

- Currently using X509 certificates, which requires both a
country-specific and a collaboration-specific procedure.
● Arguably the most annoying part of working with grid resources.

- Our VOMS is at UNINA, but stopping support in next few years. We
want to move to alternative (i.e. tokens) before then.

Authentication & Authorization:
Certificates
● Authentication from Certification Authority:

National entity that issues certificates

● Authorization from “Virtual Organisation”: Group
sharing scientific field and research interests (e.g.
lsgrid (lifesciences), escape, lofar, km3net.org…)

- Determine which resources (compute/storage) you
can access via extensions to your certificate

- VOMS (VO Management Service) sets user roles
and privileges in a VO, maintains server that returns
certificate attributes (eg. membership)

DIRAC Pilots

Pilots are wrapper jobs sent by DIRAC to Worker Nodes at clusters. They setup the
environment and then request “tasks” (jobs) from DIRAC server until they expire.

- Minimize resources spent setting up : can take multiple successive jobs
- Simplifies discovery of free resources (pull vs push system)

Monitoring

Dashboard for short term monitoring,
eg. EGI DIRAC server:
https://dirac.egi.eu/DIRAC/

EGI accounting portal for long term
use, eg. Netherlands:
https://accounting.egi.eu/egi/country
/Netherlands/

https://dirac.egi.eu/DIRAC/
https://accounting.egi.eu/egi/country/Netherlands/
https://accounting.egi.eu/egi/country/Netherlands/

