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Let's ask ChatGPT

ChatGPT 3.5 ~
ChatGPT 3.5 ~
You * Discuss the challenges of achieving low-latency Al in embedded devices.
structure for a presentation on challenges of Al in embedded systems + Optimization:
:> * Explore the challenges of optimizing Al algorithms for resource-constrained environments.
ChatGPT * Discuss techniques for model compression, quantization, and efficient inference.
Creating a presentation on the challenges of Al in embedded systems involves addressing
technical, ethical, and practical aspects. Here's a suggested structure for your presentation: |:> 4.2 Ethical and Security Challenges:
1. Title Slide: * Data Privacy:
:> * Address concerns related to data privacy in embedded Al systems.
* Title: "Challenges of Al in Embedded Systems" * Discuss how sensitive data is handled and potential risks.
* Subtitle: Navigating the Complex Landscape * Security Risks:
* Your name and date |:> * Explore potential security vulnerabilities in embedded Al.
* Discuss the importance of securing both the Al models and the data they process.
2. Introduction: |:> * Ethical Considerations:
 Brief overview of Al in embedded systems * Discuss ethical challenges related to Al decision-making in embedded systems.
- Importance of Al in embedded systems * Address issues such as bias, fairness, and accountability.
* Examples of Al applications in embedded systems (e.g., loT devices, edge computing) 5. Case Studies:
3. Definition and Basics: * Present real-world examples of challenges faced in embedding Al.
- Define embedded systems * Discuss how companies or projects have addressed or mitigated these challenges.
* Explain the integration of Alinto embedded systems 6. Solutions and Innovations:
* Briefly discuss the significance of real-time processing in embedded Al
* Discuss emerging technologies and strategies to overcome challenges.
4. Key Challenges: * Explore ongoing research and development in the field.
4.1 Technical Challenges: 7. Future Trends:
* Hardware Limitations: * Discuss potential advancements in embedded Al technology.
* Discuss the constraints of embedded systems hardware (power, memory, processing * Predict how future innovations may address current challenges.
capabilities).
* Explore how these limitations impact Al algorithms and models. 8. Conclusion:
* Real-time Processing:
:> * Address the need for real-time processing in embedded systems. * Summarize key challenges discussed.
+ Discuss the challenges of achieving lov 4' “ency Al in embedded devices. * Emphasize the importance of addressing these challenges for the advancement of embedded Al.
* Optimization: 3

9. Q&A:
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You
how large is your LLM model

700 GB

ChatGPT

| am based on the GPT-3:% architecture, which is one of the largest language models created by
OpenAl. GPT-3.5 has 175 billion parameters, making it significantly larger than its predecessor,
GPT-3. The large number of parameters contributes to its ability to understand and generate
human-like text across a wide range of topics and tasks. Keep in mind that the size of a language
model is a key factor in determining its capabilities, but it's not the only factor—training data, fine-

tuning, and other aspects also play crucial roles.
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Evolution of ML classification models
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Observation:
A fast-evolving Pareto front that requires
fast developing cycles

S. Bianco, R. Cadene, L. Celona and P. Napoletano, "Benchmark Analysis of Representative Deep Neural Network Architectures," in IEEE Access, vol. 6, pp. 64270-64277, 2018, doi: 10.1109/ACCESS.2018.2877890.
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Platform Layer Generic

Application Specific

ASIC
DSPs GPUs FPGAs TPU >
MAXIMIZE Qualcomm Hexagon, Tegra K1, X1 and X2 Custom datapath
e LERLEL s Apple Neural Engine, P

Custom memory subsystem
g

P Goon |
EFFICIENCY

Customisation

_ Implementation
Algorithm P

(GEMM, Winograd) Approximations

Algorithmic Layer
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Tools

fpgaConvNet

Time-
constrained
LSTM
Inference

Multi-CNN
Deployment

Data-Driven
CNN
Inference
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Autonomous Navigation

P

Traffic Detection
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A taxonomy of DNNs

Attention-
based Models

Autoencoders

dead-man's-fingers
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CNN acceleration through an FPGA

Look-Up Tables i DSP Blocks
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e Custom datapath

* Custom memory * Reconfigurability
subsystem * Heterogeneous

* Programmable « Difficult to program
interconnections
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The Challenge of the Mapping Problem

IT1T]

NNNNNNN

HIDDEN LAYERS

CLASSIFICATION

Parameters Value

LC
BRAMS (36kbits)
DSPs

Specifications

Latency
Throughput
Power consumption

2M
1,880
3,360

Lntelligent Digital Systems Lab

Dept. of Electrical and Electronic Engineering

Challenges:

Competition (or need for performance) =>
Highly customised architecture

Diversity of operations in modern DNN
Diversity and resources of modern FPGAs
Large number of parameters in the target
architecture => DSE

Architecture
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Toolflow Name Interface Year
fpgaConvNet [85-88] Caffe & Torch May 2016
DeepBurning [90] Caffe June 2016
Angel-Eye [23, 24, 68] Caffe July 2016
ALAMO [55-59] Caffe August 2016
Happoc? [1, 2] Caffe September 2016
DNNWEAVER [75, 76] Caffe October 2016
Caffeine [98] Caffe November 2016
AutoCodeGen [54] Proprietary Input Format  December 2016
FINN [19, 84] Theano February 2017
FP-DNN [22] TensorFlow May 2017
Snowflake [10, 21] Torch May 2017
SysArrayAccel [91] C Program June 2017

FFTCodeGen [95-97, 100]  Proprietary Input Format  December 2017

FPGA

Processing Elements \

FPGA
( [ e |

NONLIN POOL ...... M -

S — f ;;e'r """""""""" \ M“ /

leaves

CONV/FC

NONLIN
o
[}
o
-

Memory insect
Classification Output

Input Images

HOST

Tailored to workload

Tailored to operation

Stylianos I. Venieris, Alexandros Kouris and Christos-Savvas Bouganis, "Toolflows for Mapping Convolutional Neural Networks on FPGAs: A Survey and Future Directions", ACM Computing Surveys, 2018
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frgaCaonviNet

2016 IEEE 24th Annual International Symposium on Field-Programmable Custom Computing Machines

fpgaConvNet: A Framework for Mapping
Convolutional Neural Networks on FPGAs

Stylianos 1. Venieris
Department of Electrical and Electronic Engineering
Imperial College London
Email: stylianos.venieris10@imperial.ac.uk

Abstract—Convolutional Neural Networks (ConvNets) are a
powerful Deep Learning model, providing state-of-the-art aceu-
racy to many emerging classification problems. However, ConyNet
classification is a computationally heavy task, suffering from
aling. This paper presents fpgaConvNet, a
fic modelling framework  together with an

automated design methodology for the mapping of ConvNets onto

reconfigurable FPGA-based platforms. By interpreting ConyNet

ification as a streaming application, the proposed framework

ys the Synchronous Dataflow (SDF) model of computation

as its basis and proposes a set of transformations on the SDF

graph that explore the perf
taking into account platform

Christos-Savvas Bouganis
Department of Electrical and Electronic Engineering
Imperial College London
Email: christos-savvas.bouganis @imperial.ac.uk

of a particular FPGA-based platform and guarantee portability
and scalability. Portability would secure that a Deep Learning
model implementation can be modified ate on FPGA
platforms with different characteristics. bility would en-
sure the ability to sustain or improve performance in case of
an increase in the amount of available resources.

This work focuses on the Design Space Exploration (DSE)
for the classification task of the Deep Learning model of
Convolutional Neural Networks (ConvNets) mapped onto re-
configurable FPGA-based platforms by means of a domain-
specific modelling framework. The proposed methodology

Proc. IEEE Symposium on Field-Programmable
Custom Computing Machines, 2016
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CNN Hardware SDF Graph
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Complex Model=>» Bottlenecks:
— Limited compute resources
— Limited on-chip memory capacity for model parameters
— Limited off-chip memory bandwidth

; Define a set of graph transformations to traverse the design space in fast

and principled way

Fork

©
o

~
v

Top-1 accuracy [%]

~
o

=)
vl

Inception-v4

Inception-v3 ° ResNet-152

ResNet-50

ResNet-101
’ ResNet-34

ResNet-18

° GooglLeNet
ENet

VGG-16 VGG-19

© BN-NIN
60 5M 35M 65M 95M 125M  155M
BN-AlexNet
55 AlexNet
50
0 5 10 15 20 25 30 35 40

Throughput

O FL, N WP UIO

Operations [G-Ops]

Design Space

¢ Current Design
Point

10

7 FPGA 1 ¢
FPGA 2
[ 1
0 5
Resources




Imperial College
London

Transformations 18 2: Coarse- and fine-grained Folding
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Transformation 3: Graph Partitioning with Reconfiguration

___________________________________

I (| [
i 1) Exceeding the available |, 2) Not enough on-chip | . .
| compute resources JI I memory capacity I ' FPGA Reconﬁ g uration

___________________________________
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Transformation 4: Weights Reloading
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Latency (s) (batch size = 1)

Latency-driven scenario, power target 5W
Up to 6.65x speedup with an average of 3.95x

DenseNet
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VGG16
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fpgaConvNet - FPGA ZC706 FXP16 @ 125 MHz (GOp/s)
TensorRT - GPU TX1 FP16 @ 76.8 MHz (GOp/s)
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of 3D-CNNs on edge devices with limited resources.
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* Small devices * Approximations for performance

acouracy ] I
I

INT8 TOPs 33.3 1.2

SRAM memory 54MB 4.75MB B
resources

Off-chip 64GB Limited

memory
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Limited resowrees
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Targeting compute resources

Neuromorphic Computing

e Event driven computation => Explore Sparsity

Activation Weights : > ~ - ; Synapse. \ . |
Sparsity Sparsity \ = - .o

Dendr te “

Axon hillock Axon

Pre-synaptic neuron Post-synaptic neuron

STDF
b c d
Synaptic|weight

¥ N
P - :
k= LTe = sTe
® e — - > e TTE——
= baseline = baseline
L o
= = At
2 baseline s baseline
=S e = Sne -
« LTD b ) STD

//— 7~

Time




Imperial College ,
Lntelligent Digital Systems Lab

Post_activali“n snarsitv Dept. of Electrical and Electronic Engineering

RelLU activation function

output
! Nonlin Sliding N . > Sliding N
5 : Unit > Window Pool Unit Window Fork >

Sliding

Nonlin > Sliding > Pool Unit —P i —» TFork —p

Unit Window

idi Rooli Sliding : Sliding
o b e b Tork Unit  ® Window —» PoolUnit —» yhow —» Fook ———»

Nomin e > PoolUnit —b i b ok
Opportunities Challenges
 Many CNNs produces sparse activations * Statistical information available only
* ImageNet validation set: e Streaming architecture
* VGG16: 65% sparsity * Dynamic scheduling
* ResNet-18: 57% sparsity * Data Stream synchronization

* Resource allocation (Global optimum)
* Reduce the resources allocated per compute node

* Tune the architecture to specific sparsity pattern
* CNN specific
* Layer specific (Localized)
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Tuning:

- Statistical information gathering

- Resource allocation per engine based on extracted information
- Buffer size to alleviate back pressure
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Low-power devices: Weights Streaming

Latency oriented applications

Targeting limited on-chip memory

DRAM
4 FPGA Fabric
»| CE —>| CE —-—| CE | CE
BRAM| [BRAM BRAM| [BRAM

Weights ———»

Activation Data ———»

Weights: on-chip
Act. Data: on & off-chip

Customization: high

Lntelligent Digital Systems Lab

Parallelism

Dept. of Electrical and Electronic Engineering

weights/access



Imperial College ,
Lntelligent Digital Systems Lab

lnw_nnwer de“ices. wEignts Streaming Dept. of Electrical and Electronic Engineering
.
— DRAM —

FPGA Fabric

CE »|CE [—>--—> CE » CE J

A A A A

Weights: on-chip
Act. Data: on & off-chip

)

Customization: high

A

BRAM| [BRAM| [BRAM| [BRAM

DRAM J
: Weights: on & off-chip

/ FPGA Fabric \ Act. Data: on & off-chip

"WCE—|CE[—>-—>|CE|—|CE ettt feedh

ustomization: hig

T 5 Tt It

BRAM| ||BRAM BRAM|| |BRAM

Weights ——»
\ DMA Scheduler /
4

Activation Datg ——»




Imperial College

Low-power devices: Weights Streaming
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Symbols Definitions

b batch size

c input channel number
h,w input height/width

k kernel size

h,w  output height/width

f filter number

Lw weights bitwidth

La activations bitwidth
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Low-power devices: Weights Streaming

Model: ResNet-18
Device: ZCU102
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(unachievable) Performance
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Anproximations in DNN - Overview P O EECIE AnE EEEOn HEheEe
Weight Topolo . Hardware
st POIOEY Retraining

quantisation search aware

CNN architecture —Compression Approach Data Original — Reduction in Top-1 Top-5
Type Compressed Model Model Size ImageNet ImageNet
Size vs. AlexNet Accuracy Accuracy
AlexNet None (baseline) 32 bit 240MB Ix 57.2% 80.3%
AlexNet SVD (Denton et al., 32 bit 240MB — 48MB 5x 56.0% 79.4%
2014)
AlexNet Network Pruning (Han 32 bit 240MB — 27MB 9x 57.2% 80.3%
et al., 2015b)
AlexNet Deep 5-8 bit 240MB — 6.9MB 35x 57.2% 80.3%
Compression (Han
et al., 2015a)
SqueezeNet (ours) None 32 bit 4.8MB 50x 57.5% 80.3%
SqueezeNet (ours) Deep Compression 8 bit 4.8MB — 0.66MB 363x 57.5% 80.3%
SqueezeNet (ours) Deep Compression 6 bit 4.8MB — 0.47MB 510x 57.5% 80.3%
92.4% (OmniVec)

“SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size”,
landola, Forrest N; Han, Song; Moskewicz, Matthew W; Ashraf, Khalid; Dally, William J; Keutzer, Kurt (2016).
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Given a target FPGA board and a CNN model, design a

system, optimising throughput/latency, without access
to training data

Not all data
require the
same precision

0O

35
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Exploit the fact that not all inputs require the same level of precision

to obtain a confident prediction
 Key idea: Generate a Cascade of CNN Classifiers, tailored to CNN-FPGA pair

\ /\
)
_/
»®

g 88

ACCs-per-PE

/K/
(W

Hardware Architecture:

Tailored for any given Low-Precision Unit: Confidence High-Precision Unit:
CNN_FPGA pair, optimized for Degraded accuracy Evaluation Unit: Correct detected
high-throughput inference classification with high |dentify misclassified samples,

performance misclassified cases to restore accuracy
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Confidence Estimation of LPU classifications prediction, at run-time.

generalised Best-vs-Second-Best:
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e Sharing the device resources eliminates the need for reconfiguration and batching.

Throughput-Optimised Multi-objective
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Are we done?

e More models:

* Transformers
* Diffusion models
* Consistency models

* More applications:
* on-device training
* multiple DNNs

* New technology
* in-memory compute
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...but expensive

We need investment in methods to support deployment of DNNs on the embedded space.
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