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Evolution of ML classification models
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CNN acceleration through an FPGA
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Parameters Value

LC 2M

BRAMS (36kbits) 1,880

DSPs 3,360

Architecture
(P1,P2,…,PN)Specifications

- Latency
- Throughput
- Power consumption

Challenges:
- Competition (or need for performance) => 

Highly customised architecture
- Diversity of operations in modern DNN
- Diversity and resources of modern FPGAs
- Large number of parameters in the target 

architecture => DSE
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Toolflows for Mapping CNNs on FPGAs: A Survey and Future Directions 56:3

Table 1. CNN-to-FPGA Toolflows

Toolflow Name Interface Year
fpgaConvNet [85–88] Caffe & Torch May 2016
DeepBurning [90] Caffe June 2016
Angel-Eye [23, 24, 68] Caffe July 2016
ALAMO [55–59] Caffe August 2016
Haddoc2 [1, 2] Caffe September 2016
DnnWeaver [75, 76] Caffe October 2016
Caffeine [98] Caffe November 2016
AutoCodeGen [54] Proprietary Input Format December 2016
Finn [19, 84] Theano February 2017
FP-DNN [22] TensorFlow May 2017
Snowflake [10, 21] Torch May 2017
SysArrayAccel [91] C Program June 2017
FFTCodeGen [95–97, 100] Proprietary Input Format December 2017

interface, generated hardware architecture, methods used to explore the design space, supported
arithmetic precision, and performance. Moreover, major challenges introduced by the latest trends
in deep learning are identified and possible research directions for automated frameworks are pre-
sented. Finally, a benchmark suite together with a uniform evaluation methodology are proposed,
aiming at the thorough and in-depth evaluation of CNN-to-FPGA toolflows.

2 CNN-TO-FPGA TOOLFLOW CHARACTERISTICS
In this section, existing toolflows are analysed with respect to their applicability, design method-
ology, and performance. The applicability to an end user is investigated based on the supported
neural network models, the input interface, and the portability. The design methodology is exam-
ined based on the hardware architecture, the design space exploration approach, and the arith-
metic precision choices. Finally, the performance is analysed based on the reported results of each
toolflow.

2.1 Supported Neural Network Models
The application scope of a framework determines the range and type of applications it can target.
The majority of the existing toolflows limit their focus on the automated mapping of CNN infer-
ence, with Finn focusing on the more specific field of Binarized Neural Networks (BNNs) [37].
The most common types of layers in a CNN are the convolutional (CONV), nonlinear (NONLIN),
pooling (POOL), and fully connected (FC) layers [47]. All existing frameworks support these lay-
ers, with ALAMO, DeepBurning, DnnWeaver, and AutoCodeGen also supporting Local Response
Normalization (NORM) layers [46]. Moreover, fpgaConvNet, ALAMO, and Snowflake focus mostly
on the feature extractor part of CNNs, including CONV, NONLIN, and POOL layers, and offer un-
optimized support for FC layers by casting them as CONV layers with 1 × 1 kernels. With respect
to compound, irregular CNN building blocks, residual blocks [33] are supported by fpgaConvNet,
ALAMO, and Snowflake, Inception modules [82, 83] by fpgaConvNet and Snowflake, and dense
blocks [36] by fpgaConvNet. Haddoc2 requires all the weights to be stored on-chip, and therefore
the supported model size is constrained by the storage resources of the target device. Currently,
DeepBurning and FP-DNN demonstrate the widest range of supported applications by also sup-
porting Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) networks [34].
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Fig. 1. Example of a streaming accelerator architecture. Fig. 2. Example of a single computation
engine accelerator.

The architecture adopts a run-time, data-driven mechanism where each block executes when-
ever data are present at its inputs and largely depends on the time-sharing pattern of each block.
After the datapath structure and the memory transactions schedule have been determined, the
hardware generator creates a centralized control unit, which is responsible for the data move-
ment between the off- and the on-chip memory. Moreover, a dynamic, run-time control approach
is adopted by means of dedicated finite state machines that dynamically control the operation of
each time-shared block. DeepBurning’s dynamic dataflow approach differs from fpgaConvNet’s
synchronous dataflow scheme in that DeepBurning does not model the data rates of all blocks and
thus requires dynamic control logic, rather than generating a static schedule at compile time.

3) Haddoc2. Haddoc2 generates its architecture by modeling the target CNN as a dataflow
graph of actors and directly mapping each actor to a dedicated compute unit. This approach results
in the mapping of each layer to a hardware stage, similarly to fpgaConvNet and DeepBurning, with
layers executing in parallel in a pipelined manner. The hardware mapping of each layer exploits the
full unrolling of its input and output feature maps, and the dot products of convolutions. Unrolling
along the three aforementioned dimensions increases the required number of multipliers and on-
chip storage, rapidly making the available DSPs and memory of the target FPGA device the limiting
factors with respect to the size of CNN that can be mapped. To alleviate the excessive requirement
for DSPs, Haddoc2 implements all its multipliers solely with logic. Furthermore, since all trained
weights are required to be stored on-chip, with off-chip transactions being limited to only the
input and output of the network, the weights constitute constant operands for the multipliers. As
a result, during synthesis, multiplications with weight values of 0, 1, or powers of 2 are either
removed or mapped to direct connections or shift operators, respectively.

With respect to scheduling, Haddoc2’s architecture follows a data-driven approach with the
schedule generated statically at compile time. This scheduling method is similar to fpgaConvNet’s
approach and differs from the dynamic control mechanism of DeepBurning. Nevertheless, in con-
trast to fpgaConvNet and DeepBurning, which support the time-sharing of their resources by
means of folding, Haddoc2 does not support partial unrolling and, therefore, given a target device,
the maximum model size can be quickly bounded either by the available logic or on-chip storage.

4) AutoCodeGen. AutoCodeGen includes parameterized hardware blocks at the layer level,
supporting CONV, POOL, NORM, and FC layers. CONV blocks consist of convolvers that
perform dot-product operations in a fully unrolled manner. The instantiated convolvers are
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Abstract—Convolutional Neural Networks (ConvNets) are a
powerful Deep Learning model, providing state-of-the-art accu-
racy to many emerging classification problems. However, ConvNet
classification is a computationally heavy task, suffering from
rapid complexity scaling. This paper presents fpgaConvNet, a
novel domain-specific modelling framework together with an
automated design methodology for the mapping of ConvNets onto
reconfigurable FPGA-based platforms. By interpreting ConvNet
classification as a streaming application, the proposed framework
employs the Synchronous Dataflow (SDF) model of computation
as its basis and proposes a set of transformations on the SDF
graph that explore the performance-resource design space, while
taking into account platform-specific resource constraints. A
comparison with existing ConvNet FPGA works shows that the
proposed fully-automated methodology yields hardware designs
that improve the performance density by up to 1.62× and reach
up to 90.75% of the raw performance of architectures that are
hand-tuned for particular ConvNets.

I. INTRODUCTION

The beginning of the 21st century sees the emergence of
the Big Data phenomenon. The ubiquity of devices that are
capable of generating and consuming information has led to
unprecedented volumes of unstructured data. In this context,
scientific fields such as Data Science aim to provide methods
for the automatic extraction of useful knowledge and patterns
from data. At the forefront of Data Science lies the emerging
field of Deep Learning [1]. Deep Learning focuses on using
the large amount of available data to learn a hierarchy of
intermediate representations by means of a sequence of train-
able feature extraction stages in order to facilitate the pattern
recognition task at hand. Apart from the abundance of available
data, computing power has been one of the primary driving
forces behind the success of Deep Learning [2]. With typical
Deep Learning models being computationally complex in both
their training and classification phase, the building of adequate
computing infrastructure constitutes a major challenge.

One candidate platform for building high-performance
Deep Learning systems is FPGAs. FPGA-based Deep Learning
systems could potentially provide tunable trade-offs between
critical system parameters such as performance, power con-
sumption and cost and serve as a useful component in a wide
range of settings, from an IP in low-power embedded systems
to an accelerator along the racks of a data center. Nevertheless,
there are many issues that increase the complexity of Deep
Learning system development on FPGAs. With FPGAs’ size
and resource specifications changing at a fast pace, there is
a need for tools that abstract the hardware resource details

of a particular FPGA-based platform and guarantee portability
and scalability. Portability would secure that a Deep Learning
model implementation can be modified to operate on FPGA
platforms with different characteristics. Scalability would en-
sure the ability to sustain or improve performance in case of
an increase in the amount of available resources.

This work focuses on the Design Space Exploration (DSE)
for the classification task of the Deep Learning model of
Convolutional Neural Networks (ConvNets) mapped onto re-
configurable FPGA-based platforms by means of a domain-
specific modelling framework. The proposed methodology
aims to provide the infrastructure and the analytical tools that
would allow a Deep Learning expert to obtain the hardware im-
plementation of a ConvNet onto a target FPGA-based platform
while complying with platform-specific resource restrictions.
The key contributions of this paper are the following:

• A Synchronous Dataflow (SDF) model for capturing
ConvNet workloads. The SDF theory allows us to
capture ConvNets as streaming computations and in
this way, represent ConvNet hardware implementa-
tions using linear algebra and graph theory. This
formulation enables us to explore the design space
by means of a set of algebraic transformations that
modify the performance-resource cost characteristics
of the implementation. Moreover, it enables us to
formally express the mapping of a ConvNet onto
an FPGA as an optimisation problem. Finally, this
work introduces for the first time the full FPGA
reconfiguration as a design option for the mapping of
ConvNets to FPGA designs.

• The fpgaConvNet framework for mapping a ConvNet
onto a particular FPGA-based platform. The devel-
oped framework first takes as input a ConvNet model
in our high-level, domain-specific scheme, then per-
forms fast design space exploration by manipulating
the SDF ConvNet model and finishes by generat-
ing a synthesizable Vivado HLS hardware design.
A quantitative comparison with existing FPGA and
GPU ConvNet designs yields performance density and
performance efficiency results that match and even
overperform the existing works.

The rest of the paper is organised as follows. Section II gives
an overview of ConvNets and the SDF paradigm. Section III
reviews related work on FPGAs. Section IV presents the devel-
oped modelling framework that is the basis of fpgaConvNet.
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fpgaConvNet – Streaming Architecture for CNNs
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Transformations 1 & 2: Coarse- and fine-grained Folding
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Transformation 3: Graph Partitioning with Reconfiguration
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Transformation 4: Weights Reloading
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Abstract—Surveillance systems, autonomous vehicles, human

monitoring systems, and video retrieval are just few of the many

applications in which 3D Convolutional Neural Networks are

exploited. However, their extensive use is restricted by their high

computational and memory requirements, especially when inte-

grated into systems with limited resources. This study proposes

a toolflow that optimises the mapping of 3D CNN models for

Human Action Recognition onto FPGA devices, taking into ac-

count FPGA resources and off-chip memory characteristics. The

proposed system employs Synchronous Dataflow (SDF) graphs to

model the designs and introduces transformations to expand and

explore the design space, resulting in high-throughput designs.

A variety of 3D CNN models were evaluated using the proposed

toolflow on multiple FPGA devices, demonstrating its potential to

deliver competitive performance compared to earlier hand-tuned

and model-specific designs.

Index Terms—FPGA, Toolflow, 3D CNNs, Human Action

Recognition

I. INTRODUCTION

Two-dimensional CNNs have excelled in image-related
tasks in recent years. The increasing importance and amount
of applications arising from video-related tasks, such as video
surveillance, autonomous driving, and elderly monitoring, has
demanded the development of algorithms that incorporate and
account for the temporal domain. Three-dimensional CNNs are
one of the most common approaches used to deal with video
and volumetric data. With the addition of a new dimension,
such as time or depth, 3D CNNs augment their capability to
learn by extracting information related to the newly added
dimension.

3D CNNs have exhibited outstanding performance, partic-
ularly in the task of Human Action Recognition (HAR). The
use of 3D CNNs allows the interpretation of human motion
across video frames, allowing the detection of a wide range
of human actions without the requirement for specific time
domain approaches like LSTMs. As can be seen in Figure
1, 3D CNNs dominate the pareto front in one of the most
widely used HAR benchmarks, Kinetics-400, while the recent
emergence of vision transformers has also begun to drive some
designs to the pareto front, however such networks require
orders of magnitude additional GFLOPs to operate.

While 3D CNNs are capable of capturing time or depth-
related features, the additional dimension of the input fre-
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Fig. 1: Kinetics-400 pareto is dominated by 3D-CNNs for
small number of parameters. Demonstrating the deployability
of 3D-CNNs on edge devices with limited resources.

quently results in greater workloads, computational and mem-
ory requirements compared to 2D CNNs. Numerous hardware
devices, including GPUs, FPGAs, and ASICs, have been used
to mitigate for the 3D CNNs’ high processing requirements
and provide high performing systems. The current work aims
to design systems that can be deployed to FPGA devices, due
to their flexibility in adapting to the requirements of such
evolving field as well as with their potential for achieving
high performance and low power consumption.

In HAR, given a single input video clip, N new clips
are generated by shifting a (fixed) time window throughout
the original clip’s duration, and M new clips are generated
by cropping an area (for each image in the clip). The final
evaluation of the original clip is acquired by passing each
of the N ⇥ M generated clips through the HAR model and
averaging their predictions. As such, upon deployment of such
models, it is necessary to process the input video segment
multiple times to maintain the desired performance. Therefore,
throughput-oriented designs and solutions are of high interest.
The key contributions of this paper are the following:

• Introduction of fpgaHART. A throughput-oriented
toolflow for optimising and mapping 3D CNNs to
FPGAs, supporting a variety of models and devices,
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Power

modules appear to have a consistent offset from the actual
power reading. This systematic error may be due to platform-
level components that were not taken into account. It is diffi-
cult to isolate whether errors are coming from the static power
model or dynamic power model, as the power measurement
technique cannot give these separately.

A final observation is the existence of power efficient
designs in the design space. It can be seen that with more
parallelism within the convolution modules, designs can be
achieved with greater throughput yet similar power con-
sumption to designs with less parallelism. This suggests that
fine-grain parallelism within modules is more power-efficient
than parallelism between modules, with regards to increasing
throughput. This shows that high throughput designs are
achievable in a power efficient manner. It can be seen that
the model is also able to highlight this trade-off, although in
a much more exaggerated fashion.

Overall, it can bee seen that the model is able to predict
power within 100 mW of error, across a range of valid designs
within the resource constraints of the board.

D. Design Space Exploration
Having demonstrated the accuracy of the power modelling

framework as well as the existence of power-efficient designs
within the design space, the optimiser is now evaluated on it’s
performance in identifying power efficient designs. Initially,
the throughput-power design space is explored in Fig. 4 by
exploring an unconstrained throughput objective. This design
exploration is done for the ZC706 platform.

Fig. 4. DSE with a throughput objective for AlexNet.

A clear pareto-optimal front can be seen, where average
power has a linear relationship with the throughput of the
design. What is also interesting is the occurrence of design
points on the same throughput plane, yet with larger aver-
age power consumption. This shows the existence of power-
efficient designs which achieve high throughput at a reduced
power consumption to other designs of the same throughput.

For example, the highest throughput can be achieved through
a range of designs, however the most power-efficient sees a
20.1% power reduction over the the most power-consuming
design.

Knowing the existence of power-efficient designs, the sim-
ulated annealing optimiser is now evaluated on it’s ability to
discover these designs, and results are shown in Fig. 5. In
this figure, each step of an unconstrained, throughput driven
design space for AlexNet on the ZC706 board is given. The
red vertical lines indicate the constraint on the point left of it.

Fig. 5. Power-constrained DSE with a throughput objective for AlexNet.

It can be seen that the optimiser is able to identify points
on the same pareto-optimal front as a purely throughput-driven
objective.

VI. CONCLUSION

This paper presents a method of modelling the power
consumption of an FPGA-based CNN accelerator system from
a high-level description. This power model is then integrated
within a DSE-based optimiser to expose power-efficient de-
signs within a CNN-to-FPGA mapping framework.

The outcomes of the power modelling and design explo-
ration work shows that power can be introduced into the design
space in an effective way. This is the greatest contribution
of this work and is what sets it apart from other high-level
power modelling techniques, as most design space exploration
methods for mapping CNNs to FPGAs, or FPGA design
spaces in general, struggle to include power consumption as
an objective. By including power consumption as an aspect
of the design from a high-level set of parameters, it means
that power consumption is not just of consequence from
other performance metrics, but a targetable objective for an
optimiser. In this way, power optimisations are not limited
to standard domain-agnostic techniques, and more fine-grain
optimisations can be realised.

Overall, this work brings power consumption to the fore-
front of the fgpaConvNet framework, and promotes methods
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Performance-per-Watt: f-CNNx vs. TX1 
at 5W

f-CNNx (ZC706) (GOp/s/W) GPU TX1 (GOp/s/W) (5W)

TABLE IV: Comparison with existing works on 3D CNN HAR models

H. Fan [2] H. Fan [3] Z. Liu [6] J. Shen [7]‡ M. Sun [8] H. Fan [4] Ours

Model C3D C3D C3D C3D C3D R(2+)D-18 E3D C3D Slowonly R(2+1)D-18 R(2+1)D-34 X3D
GFLOPs⇤ 38.61 38.61 38.61 - 38.61 8.52 6.1 38.61 54.9 8.52 12.91 6.97

Accuracy (%) 79.87 81.99 83.2 83.2 83.2 88.66 85.17 83.2 94.54 88.66 92.27 96.52
FPGA ZC706 ZC706 VC709 VC709 VUS440 ZCU102 ZCU102 Intel SX660 ZCU102 ZCU102 ZCU102 ZCU102 ZCU102
clips/s† 1.84 2.09 8.65 11.18 20.36 2.05 4.11 28.32 3.38 2.54 4.62 2.63 13.44
GOps/s† 70.41 80.12 330.74 427.29 778 78.44 111.71 172.8 130.84 144.44 39.59 34.26 85.96

GOps/s/DSP† 0.087 0.103 0.092 0.281 0.511 0.065 0.092 0.109 0.052 0.057 0.015 0.013 0.034
Op/DSP/cycle† 0.511 0.519 0.774 1.874 2.559 0.435 0.613 0.727 0.325 0.358 0.098 0.084 0.213

Frequency (MHz) 172 200 120 150 200 150 150 150 160 160 160 160 160
Precision fp-16 BFP fp-16 fp-16 fp-16 fp-16 fp-16 float-32 fp-16 fp-16 fp-16 fp-16 fp-16
DSP (%) 90 86.6 99.8 42 53 48 48 93.3 51.49 63.77 66.21 66.46 84.43

BRAM (%) 86.6 88.1 26.6 52 30 100 100 - 91.49 78.22 78.09 84.07 52.71
⇤ FLOPs are reported as MAC operations. † Favorable batch size 100. ‡ The C3D model used is different/smaller version from the original one [1].
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Fig. 2: Throughput (GOPs/s) of fpgaHART-generated designs
on 3D CNN HAR models delivering high-throughput results

on a variety of FPGA devices

that the above errors are small enough to lead to meaningful
design space exploration.

B. Performance Comparison

The fpgaHART has been evaluated on a number of different
FPGA platforms, such as the ZC706, the ZCU102, the VC706,
and the VUS440. Figure 2 displays the performance in GOPs/s
(with a favourable batch size of 100) of the fpgaHART-
generated designs for the 3D CNN models of Table III, which
details their unique characteristics, on a variety of FPGA
devices. Such batch sizes are frequently encountered in prac-
tise when generating multiple views and clips over time and
averaging them to improve the performance of the predictions.
Even larger batch sizes may be required for multi-person HAR
systems that evaluate each person’s actions independently, as
well as for large-scale systems that simultaneously analyse
several videos.

The placement of fpgaHART in comparison to the rest of the
existing works is outlined in Table IV, where the fpgaHART
results are reported using ZCU102 as the FPGA platform. A
conclusion readily apparent from Table IV is that fpgaHART
is capable of delivering competitive performance on several
3D CNNs that have not been previously addressed and have
a broad set of workloads and network parameters.

Figure 3 presents the current state of the Pareto front
expressed in terms of accuracy over throughput (clips/s), where

the fpgaHART generated designs were derived targeting the
VC709 FPGA platform. The results show that the fpgaHART
models have pushed the Pareto front, delivering solutions with
both high throughput and high accuracy, as shown in the graph.
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Fig. 3: Pareto front on 3D CNNs: Clips/s over Accuracy.
The fpgaHART results were taken using the VC709 FPGA

platform, delivering solutions on the Pareto front.

Comparing the results on C3D (batch size 30 and targeting
the ZCU102) to Nvidia RTX 3090, a server-grade GPU with
10496 CUDA cores and 1.7 GHz clock speed, the proposed
architecture achieves a throughput of 4.42 clips/s compared
to 281.87 clips/s that the GPU delivers. Yet, the proposed
solution consumes only 26 W compared to the GPU’s 298.6
W (excluding the CPU power consumption that a GPU system
requires), offering 0.17 clips/s/watt compared to the GPU’s
0.94 clips/s/watt.

VI. CONCLUSION

This paper proposes an automated toolflow for the de-
ployment and mapping of 3D CNN models for HAR onto
FPGA devices. The proposed method employs SDF theory to
describe and map 3D CNNs to hardware architectures. We
demonstrate that the tool supports a pool of 3D CNNs for
HAR on a variety of FPGA devices, while exhibiting compara-
ble throughput performance to hand-tuned techniques. Future
work may involve expanding the design space with additional
SDFG transformations and improving the tool to support and
provide latency-driven optimisation-focused designs.
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performance, but with increasing sparsity, the performance
gain per MAC diminishes. For a sparsity level greater than
40%, our implementation is always more resource-efficient than
an equivalent dense implementation, achieving the maximum
performance with fewer MACs allocated. Therefore, our hard-
ware exposes a fine-grained trade-off between performance and
MAC resources at different sparsity levels.
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Fig. 4: LUT and FF resource usage as well as achieved clock
frequency for a typical Kx,Ky = 3 kernel size, across all MAC
configurations, synthesised for a Zynq-Ultrascale+ FPGA architecture.
The design is able to maintain a frequency above 190MHz for all MAC
configurations.

Furthermore, the utilisation characteristics and achieved
clock frequency of the S-MVE hardware are explored in Fig. 4.
For the proposed S-MVE, all the configurations are able to
achieve a clock frequency above 190MHz, with up to 340MHz
for extremely sparse hardware. The frequency dips towards the
middle configuration, as this configuration contains the most
complex crossbar with regard to routing. There is a steady
increase in LUT and FF resources as the number of allocated
MACs increases, however this relationship plateaus around the
5-MAC configuration. The LUT overheads mainly come from
the sparse crossbar, and are not significant considering the
savings on MACs. For reference, the cost of implementing a
16-bit MAC is 305 LUTs for the given FPGA fabric.

B. Pipelined Convolutional Layer
Fig. 5 illustrates the pipelined design inside a single convo-

lutional layer as well as the integration of the S-MVE module.
The hardware components are as follows:

• Sliding Window, which generates windows of the feature
map from a single incoming stream by using line buffers.

• Sparse Matrix-Vector Engine takes as input the incoming
feature map windows and corresponding weights, and
performs the non-zero dot-products within the kernel di-
mensions of the convolution.

• Accumulator, which sums across the channel dimension.
• Bias Module, which adds a per-channel bias term.
Apart from the kernel parallelism within the S-MVE module

denoted by k, the convolutional layer hardware also exploits
input-channel and output-channel parallelism with the factors
denoted as NI and NO respectively in the Fig. 5. Overall,
there are NI ·NO S-MVE modules computing in parallel within
each convolutional layer. The communication between S-MVE
modules is asynchronous as the instantaneous sparsity can be
different across data streams, therefore synchronisation barriers
are required, as illustrated in the figure.

Sliding Window

Sparse Matrix-
Vector Engine

Accumulator

Sparse Matrix-
Vector Engine

Accumulator

Sliding Window

Sparse Matrix-
Vector Engine

Accumulator

Sparse Matrix-
Vector Engine

Accumulator

Bias

Bias O
ut

pu
t S

tr
ea

m
 In

te
rf

ac
e

In
pu

t S
tr

ea
m

 In
te

rf
ac

e NO

Synchronisation Barriers

NI

NO

NO

Fig. 5: A block diagram of a convolutional layer within a streaming
architecture design. The input channel parallelism (NI) and output
channel parallelism (NO) are highlighted. The synchronisation bound-
aries required are also shown.

TABLE II: Taxonomy of symbols used in this paper.

Symbols Definitions

B batch size of feature map
L total layers in the network
CI, CO number of channels into and out of the layer
HO,WO spatial dimensions of the output feature map
Kx,Ky height and width of convolution kernel
NI, NO input and output channel parallelism
k number of MACs inside each S-MVE, k  KxKy

IV. DESIGN SPACE EXPLORATION

Elaborating on sparsity, it is the measure of the number of
zero values in a stream of observed data. In this paper, we use
sm to denote the instantaneous sparsity within the mth stream.
The average sparsity is the expected value of the sparsity
distribution (s̄m = E [sm]). All these statistics are measured
on a subset of ImageNet validation data.

In this section, the DSE problem of finding a maximal
throughput hardware design for a given CNN model and FPGA
pair is discussed. Our DSE method decides the allocation of
MACs based on the average sparsity (section IV-A), as well
as the insertion of buffers based on the variation of sparsity
(section IV-B). Table II gives the taxonomy of symbols used.

A. MAC Allocation

In our design, all the MAC units are implemented with the
DSP resources on the FPGA. As each convolutional layer is
mapped to NI · NO S-MVE, each containing k MAC units,
the per-layer DSP utilisation is modelled using the following
equation.

RDSP = NI ·NO · k (1)

In streaming architectures, the average throughput of the
whole system is dictated by the slowest layer. Therefore, the
allocation of DSP resources is guided by the performance mod-
elling of S-MVE. As each S-MVE is responsible for computing
the kernel dimensions of the convolution, the average number
of non-zero MAC operations required to produce one output is
(1� s̄m) ·Kx ·Ky.

Conv layer with Sparse Matrix-Vector Engines

Tuning:
- Statistical information gathering
- Resource allocation per engine based on extracted information
- Buffer size to alleviate back pressure

As each S-VPE contains k MACs, its average throughput
can be expressed as,

✓̄m,n = min

✓
1,

k

(1� s̄m) ·Kx ·Ky

◆
(2)

The performance increases as sparsity increases up to the
maximum throughput of 1 element per cycle for each S-
VPE. This model drives the sparsity-resource trade-off, where
achieving maximum throughput does not necessarily require
Kx · Ky MACs, and the saved resources can be allocated to
other slower stages of the pipeline. The S-MVE performance
models can be used to construct the average latency, t̄i, of a
convolutional layer,

t̄i = HO ·WO ·
CI

NI

· CO

NO

·
✓

max
m2[1,NI],n2[1,NO]

1

✓̄m,n

◆
(3)

Given adequate buffering (as discussed in Section IV-B), the
latency of the layer is dictated by the slowest S-MVE. Finally,
the MACs allocation is expressed as the following optimisation
problem:

max min
i2[1,L]

B

t̄i
, s.t.

X

i

RDSP  budget (4)

where L is the number of layers and B is the batch size. This
optimisation problem is solved using the simulated annealing
algorithm [10].

B. Buffer Depth Sizing
The above performance modelling in (2) and (3) assumes

zero variance in each stream, which underestimates the latency
given Jensen’s inequality that states t(E[✓])  E[t(✓)]. From
the hardware perspective, latency underestimation is caused
by back-pressure from the synchronisation barriers illustrated
in Fig. 5, where the observed instantaneous sparsity deviates
from its average value. It is therefore necessary to introduce
buffering that reduces the Jensen gap between estimated and
actual latency.

Buffers are placed at the input of S-MVEs, accounting for
variations in instantaneous sparsity between the S-MVE input
streams. In order to determine a suitable choice in buffer depth,
a statistical method based on the calculation of a moving
average of sparsity is proposed, which is given as,

 
w
m(j) =

1

w

j+wX

i=j

sm(i) (5)

 
w
m is the time series for the moving average of stream m for

a window size of w, and sm is the time series of the sparsity
observed on stream m. The intuition is that as the buffer size
increases, the detrended average value of samples in the buffers
converge to the average sparsity level of the stream.

To measure the impact of buffer sizing, the back pressure
metric, ⇢w is proposed, which is defined as,

⇢w = E
h
max
m

 
w
m �min

m
 
w
m

i
�
⇣
max
m

s̄m �min
m

s̄m

⌘
(6)

This metric gives the average maximum difference between
the moving average windows, reflecting the average number
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Fig. 6: Comparison of the back-pressure metric and observed latency
overhead for different buffer sizes, for the 2nd layer of ResNet-18 with
a configuration of NI = 32 and k = 1. The cost of the buffer in terms
of LUTRAM is given for each buffer size.

of extra samples needed to balance the workload in that
period. The difference in average sparsity between the most and
least sparse streams is subtracted to normalise for unbalanced
streams. The greater ⇢w is, the slower the execution of the
hardware will be with respect to (3).

The effectiveness of the back pressure metric at identifying
the optimal buffer size is evaluated in Fig. 6. It can be seen
that the metric is strongly correlated with the latency overhead
observed. The buffer size is chosen based on a stopping
condition for ⇢w as well as a limit on LUTRAM.

V. EVALUATION

In this section, the performance and resource utilisation of
the proposed framework is evaluated. For hardware synthesis,
Vivado 2020.1 is used.

A. Dense vs Sparse Design Comparison

The performance benefits of sparsity on the proposed archi-
tecture are evaluated in this subsection. The proposed toolflow
is used to generate both dense designs using an existing Matrix-
Vector Engine [11], as well as designs with the proposed Sparse
Matrix-Vector Engine.

Fig. 7 illustrates the dense and sparse hardware performance
for a set of representative CNN workloads: AlexNet [26],
VGG11 & VGG16 [27], RepVGG-AO [3], MobilenetV2 [28]
and ResNet-18 & ResNet-50 [29]. The sparse engine exceeds
the performance of the dense engine for all CNN models. The
largest gain was observed for ResNet-18 (51%), whereas the
smallest was for MobileNetv2 (9%). For both MobileNetV2
and ResNet-50, the performance gains realised were marginal.
In the case of MobileNetV2, this is due to most of the work-
load being point-wise convolutions, as the proposed S-MVE
hardware is not able to exploit the sparsity of 1 ⇥ 1 kernels.
For ResNet-50, both dense and sparse designs are constrained
by the large on-chip memory requirements, bottlenecking their
achievable performance. Overall, the proposed toolflow is able
to exploit the post-activation sparsity leading to significant
performance gains.

The performance improvements for the sparse architecture
can be attributed to sparsity. For example, the average sparsity
across all the convolutional layers of VGG16 and ResNet-18 is
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TABLE III: Comparison of the performance and resources of related works for CNN models running ImageNet. We use GOP/s/DSP to evaluate
the performance with a normalised hardware resource since other approaches use different FPGA devices. The best result in each comparison
is highlighted in bold and green. W. = weights, and P.-A. = post activation.

[11] [12] [13] [6] Ours Ours [11] [14] Ours [13] Ours

Network VGG16 ResNet-18 ResNet-50

Quantisation W16A16 W8A16 W16A16 W16A16 W16A16 W16A16 W16A16 W16A16 W16A16 W16A16 W16A16
Sparsity - - W. W., P.-A.* P.-A. P.-A. - - P.-A. W. P.-A.

Streaming Yes No No No Yes Yes Yes No Yes No Yes
Device ZC706 VC709 ZCU102 ZCU102 ZC706 ZCU102 ZC706 ZC706 ZC706 ZCU102 ZCU102

Freq. (MHz) 200 200 200 200 200 200 200 150 200 200 200
LUT (k) 148 (68%) 121 (28%) 252 (92%) 178 (65%) 120 (55%) 163 (59%) 147 (67%) 164 (75%) 129 (59%) 252 (92%) 260 (95%)
BRAM 798 (73%) 934 (32%) 912 (50%) 1460 (80%) 504 (46%) 912 (50%) 528 (48%) 948 (87%) 586 (54%) 912 (50%) 1382 (76%)

DSP 603 (67%) 664 (18%) 1144 (45%) 1350 (53%) 512 (57%) 1024 (41%) 588 (65%) 900 (100%) 528 (59%) 1144 (45%) 1032 (41%)

GOP/s 198.0 230.1 309 495.4 310.8 534.4 135.0 181.6 185.4 291.4 252.7
GOP/s/DSP 0.33 0.35 0.27 0.37 0.61 0.52 0.23 0.20 0.35 0.25 0.24
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Fig. 7: Performance comparison between the dense streaming acceler-
ator and the proposed sparse streaming accelerators for representative
CNN workloads, targeting a U250 FPGA. Our tool generates designs
with up to 50% greater performance.

0.65 and 0.57 respectively for the ImageNet validation dataset.
This suggests 1/(1�0.65)=2.86 and 1/(1�0.57)=2.32 speed-up
at maximum. The gap between the theoretical maximum speed-
up and the improvement achieved is due to the overhead on
clock frequency and LUT usage, as described in Section III-A.

A detailed comparison between the dense and sparse engines
focusing on the 3rd convolutional layer of VGG16 is given in
Table IV, which is representative for many 3⇥ 3 convolutional
layers across CNN models. The results demonstrate the perfor-
mance benefits of the proposed S-MVE module, as it is able
to effectively bypass zero multiplications, reducing the latency
by 60%. At the same time, the clock frequency and LUT usage
are penalised by 10% and 50% receptively, creating different
bottlenecks during the DSE for the entire network.

TABLE IV: A case study comparing dense and sparse architectures for
the 3rd convolutional layer of VGG16. The sparse hardware achieves
better performance with the overhead on LUT, FF and frequency.

Design LUT FF BRAM DSP
Freq.

(MHz)
Lat.

(ms)

Dense 26,046 41,211 272 192 223 44.5
Sparse 38,112 48,895 272 192 200 17.8

1.5⇥ 1.2⇥ 1.0⇥ 1.0⇥ 0.9⇥ 0.4⇥

B. Comparing with Existing Sparse Accelerators

In Table III, our work is evaluated against both instruction-
based sparse accelerators [13], [6], as well as a state-of-the-
art streaming but dense accelerator [11]. For sparse works,
we achieved up to 1.93⇥ GOP/s/DSP on VGG16, which
demonstrates the benefit of combining post-activation sparsity
exploitation and streaming. Compared to a high-performance
streaming architecture [11], our work achieves 1.85⇥ and
1.52⇥ GOP/s/DSP on VGG16 and ResNet-18 respectively,
without any degradation on the network accuracy. This reit-
erates the impact sparsity has on performance.

Our hardware is not able to outperform [13] on ResNet-
50 due to the limited LUT resources. We observe that both
our design and the design in [13] are LUT-bounded, however,
compared with their instruction-based architecture, streaming
architectures require extra buffers for weight storage and
pipelining between layers, consuming additional LUTRAM and
BRAM. From table III, our design uses 4% less DSP than
[13], yet consumes 3% more LUT and 26% more BRAM
comparatively. Therefore, in order to fully exploit the potential
of our design, devices with more on-chip memory resources
are desirable.

VI. CONCLUSION

In this work, a toolflow is proposed for exploiting post-
activation sparsity in streaming-based CNN accelerators. We
address the key challenges which arise from non-deterministic
sparse execution including dynamic scheduling, data stream
synchronisation and statistics-aware design space exploration.
Overall, our method can achieve 1.41⇥ to 1.93⇥ greater
performance compared to existing instruction-based sparse ac-
celerators. With regard to future work, we are exploring the
opportunity of CNN-accelerator co-design, such as encouraging
input-sparsity of the slowest layer in the pipeline through a
sparsity regulariser.
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TABLE III: Comparison of the performance and resources of related works for CNN models running ImageNet. We use GOP/s/DSP to evaluate
the performance with a normalised hardware resource since other approaches use different FPGA devices. The best result in each comparison
is highlighted in bold and green. W. = weights, and P.-A. = post activation.

[11] [12] [13] [6] Ours Ours [11] [14] Ours [13] Ours

Network VGG16 ResNet-18 ResNet-50

Quantisation W16A16 W8A16 W16A16 W16A16 W16A16 W16A16 W16A16 W16A16 W16A16 W16A16 W16A16
Sparsity - - W. W., P.-A.* P.-A. P.-A. - - P.-A. W. P.-A.

Streaming Yes No No No Yes Yes Yes No Yes No Yes
Device ZC706 VC709 ZCU102 ZCU102 ZC706 ZCU102 ZC706 ZC706 ZC706 ZCU102 ZCU102

Freq. (MHz) 200 200 200 200 200 200 200 150 200 200 200
LUT (k) 148 (68%) 121 (28%) 252 (92%) 178 (65%) 120 (55%) 163 (59%) 147 (67%) 164 (75%) 129 (59%) 252 (92%) 260 (95%)
BRAM 798 (73%) 934 (32%) 912 (50%) 1460 (80%) 504 (46%) 912 (50%) 528 (48%) 948 (87%) 586 (54%) 912 (50%) 1382 (76%)

DSP 603 (67%) 664 (18%) 1144 (45%) 1350 (53%) 512 (57%) 1024 (41%) 588 (65%) 900 (100%) 528 (59%) 1144 (45%) 1032 (41%)
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Fig. 7: Performance comparison between the dense streaming acceler-
ator and the proposed sparse streaming accelerators for representative
CNN workloads, targeting a U250 FPGA. Our tool generates designs
with up to 50% greater performance.

0.65 and 0.57 respectively for the ImageNet validation dataset.
This suggests 1/(1�0.65)=2.86 and 1/(1�0.57)=2.32 speed-up
at maximum. The gap between the theoretical maximum speed-
up and the improvement achieved is due to the overhead on
clock frequency and LUT usage, as described in Section III-A.

A detailed comparison between the dense and sparse engines
focusing on the 3rd convolutional layer of VGG16 is given in
Table IV, which is representative for many 3⇥ 3 convolutional
layers across CNN models. The results demonstrate the perfor-
mance benefits of the proposed S-MVE module, as it is able
to effectively bypass zero multiplications, reducing the latency
by 60%. At the same time, the clock frequency and LUT usage
are penalised by 10% and 50% receptively, creating different
bottlenecks during the DSE for the entire network.

TABLE IV: A case study comparing dense and sparse architectures for
the 3rd convolutional layer of VGG16. The sparse hardware achieves
better performance with the overhead on LUT, FF and frequency.

Design LUT FF BRAM DSP
Freq.

(MHz)
Lat.

(ms)

Dense 26,046 41,211 272 192 223 44.5
Sparse 38,112 48,895 272 192 200 17.8

1.5⇥ 1.2⇥ 1.0⇥ 1.0⇥ 0.9⇥ 0.4⇥

B. Comparing with Existing Sparse Accelerators

In Table III, our work is evaluated against both instruction-
based sparse accelerators [13], [6], as well as a state-of-the-
art streaming but dense accelerator [11]. For sparse works,
we achieved up to 1.93⇥ GOP/s/DSP on VGG16, which
demonstrates the benefit of combining post-activation sparsity
exploitation and streaming. Compared to a high-performance
streaming architecture [11], our work achieves 1.85⇥ and
1.52⇥ GOP/s/DSP on VGG16 and ResNet-18 respectively,
without any degradation on the network accuracy. This reit-
erates the impact sparsity has on performance.

Our hardware is not able to outperform [13] on ResNet-
50 due to the limited LUT resources. We observe that both
our design and the design in [13] are LUT-bounded, however,
compared with their instruction-based architecture, streaming
architectures require extra buffers for weight storage and
pipelining between layers, consuming additional LUTRAM and
BRAM. From table III, our design uses 4% less DSP than
[13], yet consumes 3% more LUT and 26% more BRAM
comparatively. Therefore, in order to fully exploit the potential
of our design, devices with more on-chip memory resources
are desirable.

VI. CONCLUSION

In this work, a toolflow is proposed for exploiting post-
activation sparsity in streaming-based CNN accelerators. We
address the key challenges which arise from non-deterministic
sparse execution including dynamic scheduling, data stream
synchronisation and statistics-aware design space exploration.
Overall, our method can achieve 1.41⇥ to 1.93⇥ greater
performance compared to existing instruction-based sparse ac-
celerators. With regard to future work, we are exploring the
opportunity of CNN-accelerator co-design, such as encouraging
input-sparsity of the slowest layer in the pipeline through a
sparsity regulariser.
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layer-wise pipelining. While the former supports a wider range of

models, the latter is favoured for its enhanced customization and

efficiency. A challenge for the layer-wise pipelining architecture is

its substantial demand for the on-chip memory for weights storage,

impeding the deployment of large-scale networks on resource-

constrained devices. This paper introduces AutoWS, a pioneering

memory management methodology that exploits both on-chip and

off-chip memory to optimize weight storage within a layer-wise

pipelining architecture, taking advantage of its static schedule.

Through a comprehensive investigation on both the hardware

design and the Design Space Exploration, our methodology is

fully automated and enables the deployment of large-scale DNN

models on resource-constrained devices, which was not possible

in existing works that target layer-wise pipelining architectures.
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I. INTRODUCTION

Recently, there is a broad interest in designing efficient
FPGA accelerators for Deep Neural Networks (DNNs), aiming
to optimize the trade-off between resource usage and perfor-
mance. Two primary architectural strategies have emerged: se-
quential layer execution and layer-wise pipelining. The former
involves the execution of DNN layers onto a single Compute
Engine (CE) with time-multiplexing [1]. In contrast, the latter
strategy employs customized CE for each layer, interconnected
in a chained manner for improved efficiency [2].

A crucial difference between these two strategies is their
memory requirements. Sequential layer execution stores both
weight and activation data off-chip, leading to intensive off-
chip memory access. Techniques such as tiling and double
buffering are commonly employed to mitigate data communica-
tion bottlenecks by maximizing data reuse and hiding latency.
Existing research on layer-wise pipelining [2]–[4], on the other
hand, restricts off-chip memory access to the inputs of the
first CE and the outputs of the last CE, with intermediate
activation data streamed through the CEs. Furthermore, all
DNN parameters (weights) are preloaded into on-chip memory
before inference begins. However, the substantial demand for
the on-chip memory impedes the deployment of large-scale
networks on resource-constrained devices.

To overcome this bottleneck, this paper introduces a novel
memory management methodology for the layer-wise pipelin-
ing architecture, that exploits both on-chip and off-chip mem-
ory for weights storage. Our approach introduces memory

Fig. 1: Comparison of existing designs and our architecture.

fragmentation and in this work we address the challenges of
deciding the memory fragmentation parameters and bandwidth
allocation when dealing with multiple pipelined CEs, offering
an automated solution to these critical issues. Furthermore,
we bundle the above memory subsystem with a parameterised
layer-wise pipelining architecture resulting the first such accel-
erator that supports partial weight streaming. Figure 1 illustrates
the architectural distinctions between this work and existing
solutions. Our contributions can be summarized as follows:

• A scalable CE template featuring tunable unroll factors,
and a flexible memory structure supporting static and
dynamic weights loading, tunable in per-layer basis.

• A Design Space Exploration (DSE) process, which bal-
ances the processing rates of CEs and optimizes the
allocation of off-chip bandwidth in an iterative and greedy
way, based on our performance and resources modeling.

• A deterministic DMA scheduler that links off-chip mem-
ory to multiple CEs in a time-multiplexed manner, allow-
ing the efficient exploitation of off-chip bandwidth with
two clock domains.

II. RELATED WORKS

Early research on DNN acceleration focuses on sequential
layer execution which only exploits intra-layer paralleliza-
tion. Examples include DnnWeaver [5], Angel-Eye [6] and
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Recently, there is a broad interest in designing efficient
FPGA accelerators for Deep Neural Networks (DNNs), aiming
to optimize the trade-off between resource usage and perfor-
mance. Two primary architectural strategies have emerged: se-
quential layer execution and layer-wise pipelining. The former
involves the execution of DNN layers onto a single Compute
Engine (CE) with time-multiplexing [1]. In contrast, the latter
strategy employs customized CE for each layer, interconnected
in a chained manner for improved efficiency [2].

A crucial difference between these two strategies is their
memory requirements. Sequential layer execution stores both
weight and activation data off-chip, leading to intensive off-
chip memory access. Techniques such as tiling and double
buffering are commonly employed to mitigate data communica-
tion bottlenecks by maximizing data reuse and hiding latency.
Existing research on layer-wise pipelining [2]–[4], on the other
hand, restricts off-chip memory access to the inputs of the
first CE and the outputs of the last CE, with intermediate
activation data streamed through the CEs. Furthermore, all
DNN parameters (weights) are preloaded into on-chip memory
before inference begins. However, the substantial demand for
the on-chip memory impedes the deployment of large-scale
networks on resource-constrained devices.

To overcome this bottleneck, this paper introduces a novel
memory management methodology for the layer-wise pipelin-
ing architecture, that exploits both on-chip and off-chip mem-
ory for weights storage. Our approach introduces memory

Fig. 1: Comparison of existing designs and our architecture.

fragmentation and in this work we address the challenges of
deciding the memory fragmentation parameters and bandwidth
allocation when dealing with multiple pipelined CEs, offering
an automated solution to these critical issues. Furthermore,
we bundle the above memory subsystem with a parameterised
layer-wise pipelining architecture resulting the first such accel-
erator that supports partial weight streaming. Figure 1 illustrates
the architectural distinctions between this work and existing
solutions. Our contributions can be summarized as follows:

• A scalable CE template featuring tunable unroll factors,
and a flexible memory structure supporting static and
dynamic weights loading, tunable in per-layer basis.

• A Design Space Exploration (DSE) process, which bal-
ances the processing rates of CEs and optimizes the
allocation of off-chip bandwidth in an iterative and greedy
way, based on our performance and resources modeling.

• A deterministic DMA scheduler that links off-chip mem-
ory to multiple CEs in a time-multiplexed manner, allow-
ing the efficient exploitation of off-chip bandwidth with
two clock domains.

II. RELATED WORKS

Early research on DNN acceleration focuses on sequential
layer execution which only exploits intra-layer paralleliza-
tion. Examples include DnnWeaver [5], Angel-Eye [6] and
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to optimize the trade-off between resource usage and perfor-
mance. Two primary architectural strategies have emerged: se-
quential layer execution and layer-wise pipelining. The former
involves the execution of DNN layers onto a single Compute
Engine (CE) with time-multiplexing [1]. In contrast, the latter
strategy employs customized CE for each layer, interconnected
in a chained manner for improved efficiency [2].

A crucial difference between these two strategies is their
memory requirements. Sequential layer execution stores both
weight and activation data off-chip, leading to intensive off-
chip memory access. Techniques such as tiling and double
buffering are commonly employed to mitigate data communica-
tion bottlenecks by maximizing data reuse and hiding latency.
Existing research on layer-wise pipelining [2]–[4], on the other
hand, restricts off-chip memory access to the inputs of the
first CE and the outputs of the last CE, with intermediate
activation data streamed through the CEs. Furthermore, all
DNN parameters (weights) are preloaded into on-chip memory
before inference begins. However, the substantial demand for
the on-chip memory impedes the deployment of large-scale
networks on resource-constrained devices.

To overcome this bottleneck, this paper introduces a novel
memory management methodology for the layer-wise pipelin-
ing architecture, that exploits both on-chip and off-chip mem-
ory for weights storage. Our approach introduces memory

Fig. 1: Comparison of existing designs and our architecture.

fragmentation and in this work we address the challenges of
deciding the memory fragmentation parameters and bandwidth
allocation when dealing with multiple pipelined CEs, offering
an automated solution to these critical issues. Furthermore,
we bundle the above memory subsystem with a parameterised
layer-wise pipelining architecture resulting the first such accel-
erator that supports partial weight streaming. Figure 1 illustrates
the architectural distinctions between this work and existing
solutions. Our contributions can be summarized as follows:

• A scalable CE template featuring tunable unroll factors,
and a flexible memory structure supporting static and
dynamic weights loading, tunable in per-layer basis.

• A Design Space Exploration (DSE) process, which bal-
ances the processing rates of CEs and optimizes the
allocation of off-chip bandwidth in an iterative and greedy
way, based on our performance and resources modeling.

• A deterministic DMA scheduler that links off-chip mem-
ory to multiple CEs in a time-multiplexed manner, allow-
ing the efficient exploitation of off-chip bandwidth with
two clock domains.

II. RELATED WORKS

Early research on DNN acceleration focuses on sequential
layer execution which only exploits intra-layer paralleliza-
tion. Examples include DnnWeaver [5], Angel-Eye [6] and
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mance. Two primary architectural strategies have emerged: se-
quential layer execution and layer-wise pipelining. The former
involves the execution of DNN layers onto a single Compute
Engine (CE) with time-multiplexing [1]. In contrast, the latter
strategy employs customized CE for each layer, interconnected
in a chained manner for improved efficiency [2].

A crucial difference between these two strategies is their
memory requirements. Sequential layer execution stores both
weight and activation data off-chip, leading to intensive off-
chip memory access. Techniques such as tiling and double
buffering are commonly employed to mitigate data communica-
tion bottlenecks by maximizing data reuse and hiding latency.
Existing research on layer-wise pipelining [2]–[4], on the other
hand, restricts off-chip memory access to the inputs of the
first CE and the outputs of the last CE, with intermediate
activation data streamed through the CEs. Furthermore, all
DNN parameters (weights) are preloaded into on-chip memory
before inference begins. However, the substantial demand for
the on-chip memory impedes the deployment of large-scale
networks on resource-constrained devices.

To overcome this bottleneck, this paper introduces a novel
memory management methodology for the layer-wise pipelin-
ing architecture, that exploits both on-chip and off-chip mem-
ory for weights storage. Our approach introduces memory

Fig. 1: Comparison of existing designs and our architecture.

fragmentation and in this work we address the challenges of
deciding the memory fragmentation parameters and bandwidth
allocation when dealing with multiple pipelined CEs, offering
an automated solution to these critical issues. Furthermore,
we bundle the above memory subsystem with a parameterised
layer-wise pipelining architecture resulting the first such accel-
erator that supports partial weight streaming. Figure 1 illustrates
the architectural distinctions between this work and existing
solutions. Our contributions can be summarized as follows:

• A scalable CE template featuring tunable unroll factors,
and a flexible memory structure supporting static and
dynamic weights loading, tunable in per-layer basis.

• A Design Space Exploration (DSE) process, which bal-
ances the processing rates of CEs and optimizes the
allocation of off-chip bandwidth in an iterative and greedy
way, based on our performance and resources modeling.

• A deterministic DMA scheduler that links off-chip mem-
ory to multiple CEs in a time-multiplexed manner, allow-
ing the efficient exploitation of off-chip bandwidth with
two clock domains.

II. RELATED WORKS

Early research on DNN acceleration focuses on sequential
layer execution which only exploits intra-layer paralleliza-
tion. Examples include DnnWeaver [5], Angel-Eye [6] and
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buffering are commonly employed to mitigate data communica-
tion bottlenecks by maximizing data reuse and hiding latency.
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hand, restricts off-chip memory access to the inputs of the
first CE and the outputs of the last CE, with intermediate
activation data streamed through the CEs. Furthermore, all
DNN parameters (weights) are preloaded into on-chip memory
before inference begins. However, the substantial demand for
the on-chip memory impedes the deployment of large-scale
networks on resource-constrained devices.

To overcome this bottleneck, this paper introduces a novel
memory management methodology for the layer-wise pipelin-
ing architecture, that exploits both on-chip and off-chip mem-
ory for weights storage. Our approach introduces memory

Fig. 1: Comparison of existing designs and our architecture.

fragmentation and in this work we address the challenges of
deciding the memory fragmentation parameters and bandwidth
allocation when dealing with multiple pipelined CEs, offering
an automated solution to these critical issues. Furthermore,
we bundle the above memory subsystem with a parameterised
layer-wise pipelining architecture resulting the first such accel-
erator that supports partial weight streaming. Figure 1 illustrates
the architectural distinctions between this work and existing
solutions. Our contributions can be summarized as follows:

• A scalable CE template featuring tunable unroll factors,
and a flexible memory structure supporting static and
dynamic weights loading, tunable in per-layer basis.

• A Design Space Exploration (DSE) process, which bal-
ances the processing rates of CEs and optimizes the
allocation of off-chip bandwidth in an iterative and greedy
way, based on our performance and resources modeling.

• A deterministic DMA scheduler that links off-chip mem-
ory to multiple CEs in a time-multiplexed manner, allow-
ing the efficient exploitation of off-chip bandwidth with
two clock domains.
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Early research on DNN acceleration focuses on sequential
layer execution which only exploits intra-layer paralleliza-
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Symbols Definitions

b batch size
c input channel number
h,w input height/width
k kernel size
ĥ, ŵ output height/width
f filter number
LW weights bitwidth
LA activations bitwidth

xp and xt refer to the par-
allelism (unroll factor) and
the tripcount of the loop iter-
ates over any given symbol x,
where x = xpxt

Fig. 2: Dataflow of the compute engine.

Snowflake [7]. Subsequently, this line of research evolved into
the use of the systolic array design, with investigations into
efficient weight and activation data reuse strategies [8], [9]. Ac-
celerators adopting the sequential layer execution architecture
are often designed to be general-purpose. For instance, in Vitis
AI [1], a single DPU IP configuration, leveraging a dedicated
instruction set, can accelerate a wide range of different DNNs.

In contrast, layer-wise pipelining follows a distinct design
methodology where the accelerator design is customized to
each specific DNN workload, leading to improved performance.
Previous work in layer-wise pipelining has predominantly fo-
cused on the efficient utilization of on-chip memory resources.
Notable examples include fpgaConvNet [3], which relies on
synthesis tools to determine the suitable resource type for
weight storage (e.g., BRAMs or LUTRAMs), and hls4ml [4],
which provides users with control over this design aspect.
DNNExplorer [10] incorporates this design choice into its
Design Space Exploration (DSE) process. Furthermore, the
authors of FINN [2] observed that BRAMs might not be fully
utilized due to parallel computation falling short of the fabric’s
provision. They addressed this issue by optimizing BRAM
utilization through overclocking.

It is important to note that existing research on the layer-
wise pipelining architecture has primarily concentrated on
the optimization of on-chip memory only. In this paper, we
demonstrate a novel memory management scheme that exploits
both on-chip and off-chip memory, with the whole process
automated.

III. COMPUTE ENGINES

Our architecture is depicted as 3� in Figure 1. In this section,
we focus on the internal structure of the proposed Compute
Engine (CE), including its computational dataflow and memory
structure, all of which can be tailored on a per-layer basis.

A. Dataflow and Parallelization
As depicted in Figure 2, the dataflow involves interconnected

building blocks, facilitated by FIFOs with handshake interfaces:
• Input buffer: exists in convolution and pooling opera-

tions. A k⇥k 2D window slides over the spatial dimensions
h,w of activation data, implemented using shift registers
to maximize data reuse.

Fig. 3: Fragmentation of the weights memory. The memory
structure is split into the static regions that stay on-chip all the
time and the dynamic regions which are reloaded from off-chip.

• Data forking: exists only in convolution operations and
duplicates the incoming activation data for f copies,
corresponding to f different filters.

• Weights memory: stores the weights in convolution and
fully connected operations. More details on its implemen-
tation are provided in Section III-B and Figure 3.

• Processing elements (PEs): an array of parallel process-
ing elements that handle elementwise operations such as
multiplication, addition, and ReLU activations. In cases
where weights memory is not involved, this array may
consume multiple activation data streams.

• Output buffer: utilized in convolution, this buffer accu-
mulates incoming activation data streams across the 2D
window and channel dimensions.

B. Weights Storage

For easy illustration, we discuss the weight storage for convo-
lutional layers, as any fully connected layer can be generalized
to the case that k, h, w are equal to one. In existing layer-wise
pipelined designs [2], [3], the required on-chip memory depth
and width for a convolutional layer should be

M
dep = ftctk

2
t , M

wid = fpcpk
2
pLW (1)

respectively, to prevent any computation stalls within the PEs.
The symbols used here are defined in Figure 2.

One novelty of the proposed work is in the introduction of
memory weight fragmentation. Under this scheme, the original
weight memory structure is fragmented into static and dynamic
regions (Figure 3), where the weights under the static regions
are stored as in the conventional approaches, where the dynamic
regions are sharing the same physical memory structure in a
time-multiplexed manner.

Specifically, there are n fragments stored in the on-chip
memory, each with a depth of uon; and n fragments in the off-
chip memory, each with a depth of uoff . The memory width
remains the same as before. Therefore, the total depth of on-
chip and off-chip memory can be represented as:

M
dep
on = uonn, M

dep
off = uoffn, M

dep = M
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on +M

dep
off (2)

The shared off-chip buffer is implemented with dual-port Block
RAMs (BRAMs), supporting different clocks and port widths
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Snowflake [7]. Subsequently, this line of research evolved into
the use of the systolic array design, with investigations into
efficient weight and activation data reuse strategies [8], [9]. Ac-
celerators adopting the sequential layer execution architecture
are often designed to be general-purpose. For instance, in Vitis
AI [1], a single DPU IP configuration, leveraging a dedicated
instruction set, can accelerate a wide range of different DNNs.

In contrast, layer-wise pipelining follows a distinct design
methodology where the accelerator design is customized to
each specific DNN workload, leading to improved performance.
Previous work in layer-wise pipelining has predominantly fo-
cused on the efficient utilization of on-chip memory resources.
Notable examples include fpgaConvNet [3], which relies on
synthesis tools to determine the suitable resource type for
weight storage (e.g., BRAMs or LUTRAMs), and hls4ml [4],
which provides users with control over this design aspect.
DNNExplorer [10] incorporates this design choice into its
Design Space Exploration (DSE) process. Furthermore, the
authors of FINN [2] observed that BRAMs might not be fully
utilized due to parallel computation falling short of the fabric’s
provision. They addressed this issue by optimizing BRAM
utilization through overclocking.

It is important to note that existing research on the layer-
wise pipelining architecture has primarily concentrated on
the optimization of on-chip memory only. In this paper, we
demonstrate a novel memory management scheme that exploits
both on-chip and off-chip memory, with the whole process
automated.

III. COMPUTE ENGINES

Our architecture is depicted as 3� in Figure 1. In this section,
we focus on the internal structure of the proposed Compute
Engine (CE), including its computational dataflow and memory
structure, all of which can be tailored on a per-layer basis.

A. Dataflow and Parallelization
As depicted in Figure 2, the dataflow involves interconnected

building blocks, facilitated by FIFOs with handshake interfaces:
• Input buffer: exists in convolution and pooling opera-

tions. A k⇥k 2D window slides over the spatial dimensions
h,w of activation data, implemented using shift registers
to maximize data reuse.

Fig. 3: Fragmentation of the weights memory. The memory
structure is split into the static regions that stay on-chip all the
time and the dynamic regions which are reloaded from off-chip.

• Data forking: exists only in convolution operations and
duplicates the incoming activation data for f copies,
corresponding to f different filters.

• Weights memory: stores the weights in convolution and
fully connected operations. More details on its implemen-
tation are provided in Section III-B and Figure 3.

• Processing elements (PEs): an array of parallel process-
ing elements that handle elementwise operations such as
multiplication, addition, and ReLU activations. In cases
where weights memory is not involved, this array may
consume multiple activation data streams.

• Output buffer: utilized in convolution, this buffer accu-
mulates incoming activation data streams across the 2D
window and channel dimensions.

B. Weights Storage

For easy illustration, we discuss the weight storage for convo-
lutional layers, as any fully connected layer can be generalized
to the case that k, h, w are equal to one. In existing layer-wise
pipelined designs [2], [3], the required on-chip memory depth
and width for a convolutional layer should be
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respectively, to prevent any computation stalls within the PEs.
The symbols used here are defined in Figure 2.

One novelty of the proposed work is in the introduction of
memory weight fragmentation. Under this scheme, the original
weight memory structure is fragmented into static and dynamic
regions (Figure 3), where the weights under the static regions
are stored as in the conventional approaches, where the dynamic
regions are sharing the same physical memory structure in a
time-multiplexed manner.

Specifically, there are n fragments stored in the on-chip
memory, each with a depth of uon; and n fragments in the off-
chip memory, each with a depth of uoff . The memory width
remains the same as before. Therefore, the total depth of on-
chip and off-chip memory can be represented as:

M
dep
on = uonn, M

dep
off = uoffn, M

dep = M
dep
on +M

dep
off (2)

The shared off-chip buffer is implemented with dual-port Block
RAMs (BRAMs), supporting different clocks and port widths

Low-power devices: Weights Streaming
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TABLE II: Latency (ms) results across different networks and devices. ⇤ denotes W4A4, † denotes W4A5 , ⇧ denotes W8A8

mobilenetv2

Architecture Device

Zedboard ZC706 ZCU102

layer-sequential 8.3⇤ [11] 7.3⇤ [11] 5.3† [12]

vanilla layer-pipelined 7 9.2⇤ 2.3†

this work 325.9⇤ 4.8⇤ 2.3†

resnet18

Architecture Device

ZC706 ZCU102 U50

layer-sequential 40.4⇤ [11] 13.7† [12] 3.0⇧ [1]

vanilla layer-pipelined 7 7 1.3⇧

this work 27.0⇤ 7.0† 1.3⇧

resnet50

Architecture Device

ZCU102 U50 U250

layer-sequential 21.1† [12] 6.0⇧ [1] 5.6⇧ [1]

vanilla layer-pipelined 7 15.0⇧ 1.8⇧

this work 578.7† 3.4⇧ 1.8⇧

the quantized models provided by existing research [1], [11],
[12], and their accuracy, number of Multiply–ACcumulate
(MAC) operation, and parameters are summarized in Table I.

We extend fpgaConvNet [3], which is an open-source
toolflow, that generates layer-wise pipelined accelerators. We
build our own weights fragmentation (Figure 3), DSE method
(Algorithm 1), and DMA scheduling (Figure 5) upon that
toolflow. In the rest of the paper, we refer to the original
fpgaConvNet, which did not exploit off-chip weights storage,
as the “vanilla layer-pipelined” approach.

As our design methodology is fully automated, it can also
be easily integrated into other layer-wise pipelined toolflows,
such as FINN [2] and hls4ml [4], in the future.

B. Overall Results

Table II provides a comparative analysis of our methodol-
ogy, the “vanilla layer-pipelined” approach, and other “layer-
sequential” architectures. We define device size relative to
model parameters; for example, ZCU102 is “large” for Mo-
bileNetV2 but “small” for ResNet50 due to its larger parameter
size. Key observations include:

• “Vanilla layer-pipelined” excels on “large” FPGA devices
with ample on-chip memory. For example, mapping Mo-
bileNetV2 to ZCU102 achieves 2.3ms latency, less than
half of “layer-sequential” (5.3ms). Similar trends apply to
ResNet18 on U50 and ResNet50 on U250.

• Our methodology maintains latency on these “large” de-
vices, as our greedy DSE automatically determines that
there is no need to store weights on-chip, and the designs
become primarily compute-bound.

• When on-chip memory resources become bottleneck, the
“vanilla layer-pipelined” approach may become inferior to
“layer-sequential” or, in some cases, may not fit the device
at all (marked as “7” in the table).

• The advantage of our proposed methodology becomes
evident on these “smaller” devices. For example when
mapping ResNet50 to U50, our approach reduces the
latency from 15.0ms (in the “vanilla layer-pipelined” ap-
proach) to 3.4ms. It also surpasses the “layer-sequential”
approach, which requires 6.0ms.

• In some cases, such as MobileNetV2 on Zedboard and
ResNet50 on ZCU102, “layer-sequential” achieves the
lowest latency. This is because the off-chip bandwidth
on these devices is limited compared to the number of
parameters in those models. This bandwidth constraint
restricts the full application of our proposed methodol-
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Fig. 6: resnet18-ZCU102, memory and performance trade-off.
Normalization is against the max resource available on device

TABLE III: resnet18-ZCU102, memory resource breakdown

Design Point Off-chip BW (Gbps) BRAM Usage (MB) DSP FPS
act wt total (util.) act fifo wt buff wt mem total(util.)

Vanilla (d0) 0.1 0.0 0.1 (0%) 0.4 0.0 8.3 8.7 (172%) 1113 141
AutoWS (d1) 0.1 105.0 105.1 (68%) 0.4 0.1 4.6 5.1 (99%) 1180 142

ogy. Additionally, the overhead of implementing per-layer
FIFOs and buffers becomes significant in these cases.

In summary, the results in Table II demonstrate that “layer-
pipelined” approaches have a clear advantage over “layer-
sequential” approaches on “large” devices with ample on-
chip memory resources. Our work extends this advantage to
more resource-constrained devices by considering the access
requirements of the weights and leveraging off-chip memory
bandwidth.

C. Case Study: resnet18-ZCU102
In this section, we provide a case study that focuses on

mapping ResNet18 to ZCU102, offering detailed insights into
our implementation. Firstly, we conducted a parameter sweep,
as depicted in Figure 6, systematically adjusting the budget
of on-chip memory (Amem), while keeping the budgets of
compute resource (LUT, DSP) and off-chip bandwidth fixed.
All resource numbers are normalized to the specifications of a
single ZCU102 device.

Based on the value of A
mem, Figure 6 on the left can be

split into three regions:
• [0, 1.25): Here, the “vanilla” approach cannot fit, result-

ing in no provided design points. However, AutoWS
exhibits steadily improved throughput as on-chip memory
resources increase.

• [1.25, 1.75): The “vanilla” approach is feasible but lags
behind AutoWS in throughput, suggesting the bottleneck
changes from the memory capacity to the bandwidth.

Low-power devices: Weights Streaming

Model: ResNet-18
Device: ZCU102

ZCU102 on-chip mem
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small devices
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Under review as a conference paper at ICLR 2017

Table 2: Comparing SqueezeNet to model compression approaches. By model size, we mean the
number of bytes required to store all of the parameters in the trained model.

CNN architecture Compression Approach Data
Type

Original !
Compressed Model

Size

Reduction in
Model Size
vs. AlexNet

Top-1
ImageNet
Accuracy

Top-5
ImageNet
Accuracy

AlexNet None (baseline) 32 bit 240MB 1x 57.2% 80.3%
AlexNet SVD (Denton et al.,

2014)
32 bit 240MB ! 48MB 5x 56.0% 79.4%

AlexNet Network Pruning (Han
et al., 2015b)

32 bit 240MB ! 27MB 9x 57.2% 80.3%

AlexNet Deep
Compression (Han

et al., 2015a)

5-8 bit 240MB ! 6.9MB 35x 57.2% 80.3%

SqueezeNet (ours) None 32 bit 4.8MB 50x 57.5% 80.3%
SqueezeNet (ours) Deep Compression 8 bit 4.8MB ! 0.66MB 363x 57.5% 80.3%
SqueezeNet (ours) Deep Compression 6 bit 4.8MB ! 0.47MB 510x 57.5% 80.3%

to SqueezeNet, using 33% sparsity6 and 8-bit quantization. This yields a 0.66 MB model (363⇥
smaller than 32-bit AlexNet) with equivalent accuracy to AlexNet. Further, applying Deep Compres-
sion with 6-bit quantization and 33% sparsity on SqueezeNet, we produce a 0.47MB model (510⇥
smaller than 32-bit AlexNet) with equivalent accuracy. Our small model is indeed amenable to
compression.
In addition, these results demonstrate that Deep Compression (Han et al., 2015a) not only works
well on CNN architectures with many parameters (e.g. AlexNet and VGG), but it is also able to
compress the already compact, fully convolutional SqueezeNet architecture. Deep Compression
compressed SqueezeNet by 10⇥ while preserving the baseline accuracy. In summary: by combin-
ing CNN architectural innovation (SqueezeNet) with state-of-the-art compression techniques (Deep
Compression), we achieved a 510⇥ reduction in model size with no decrease in accuracy compared
to the baseline.

Finally, note that Deep Compression (Han et al., 2015b) uses a codebook as part of its scheme for
quantizing CNN parameters to 6- or 8-bits of precision. Therefore, on most commodity processors,
it is not trivial to achieve a speedup of 32

8 = 4x with 8-bit quantization or 32
6 = 5.3x with 6-bit

quantization using the scheme developed in Deep Compression. However, Han et al. developed
custom hardware – Efficient Inference Engine (EIE) – that can compute codebook-quantized CNNs
more efficiently (Han et al., 2016a). In addition, in the months since we released SqueezeNet,
P. Gysel developed a strategy called Ristretto for linearly quantizing SqueezeNet to 8 bits (Gysel,
2016). Specifically, Ristretto does computation in 8 bits, and it stores parameters and activations in
8-bit data types. Using the Ristretto strategy for 8-bit computation in SqueezeNet inference, Gysel
observed less than 1 percentage-point of drop in accuracy when using 8-bit instead of 32-bit data
types.

5 CNN MICROARCHITECTURE DESIGN SPACE EXPLORATION

So far, we have proposed architectural design strategies for small models, followed these principles
to create SqueezeNet, and discovered that SqueezeNet is 50x smaller than AlexNet with equivalent
accuracy. However, SqueezeNet and other models reside in a broad and largely unexplored design
space of CNN architectures. Now, in Sections 5 and 6, we explore several aspects of the design
space. We divide this architectural exploration into two main topics: microarchitectural exploration
(per-module layer dimensions and configurations) and macroarchitectural exploration (high-level
end-to-end organization of modules and other layers).

In this section, we design and execute experiments with the goal of providing intuition about the
shape of the microarchitectural design space with respect to the design strategies that we proposed
in Section 3.1. Note that our goal here is not to maximize accuracy in every experiment, but rather
to understand the impact of CNN architectural choices on model size and accuracy.

6Note that, due to the storage overhead of storing sparse matrix indices, 33% sparsity leads to somewhat
less than a 3⇥ decrease in model size.

7

“SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size”, 
Iandola, Forrest N; Han, Song; Moskewicz, Matthew W; Ashraf, Khalid; Dally, William J; Keutzer, Kurt (2016).
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Given a target FPGA board and a CNN model, design a 
system, optimising throughput/latency, without access 
to training data
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Exploit the fact that not all inputs require the same level of precision
 to obtain a confident prediction
• Key idea: Generate a Cascade of CNN Classifiers, tailored to CNN-FPGA pair
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Confidence Estimation of LPU classifications prediction,  at run-time.
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Tensor Decomposition
• Mixed-TD

Early Exit Network
• ATHEENA

accuracy

resources



intelligent Digital Systems Lab
Dept. of Electrical and Electronic Engineering

Are we done?
• More models:
• Transformers
• Diffusion models
• Consistency models

• More applications:
• on-device training
• multiple DNNs

• New technology
• in-memory compute
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We need investment in methods to support deployment of DNNs on the embedded space.

customisation

…but expensive
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