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We, as a field, have been looking at
supersymmetric extremal black holes
for a long time...



Their entropies match beautifully with
index computations...

Strominger-Vafa, 1996.

Dabholkar, Gomis, Murthy



What more could we say?



There are many questions that remain



There is more to a black hole than its
entropy!



What about the details of is AdS, near
horizon geometry?

s there an AdS,/CFT,?






Our main technical results involve
computing some of them.



Haven’t people been computing AdS
correlators “for ever” ?



Yes, in AdS, , D>2

But, in two dimensions the situation is
a bit harder. And it has been
understood only within the last few
years.



The new feature is that there is a
gravitational mode that becomes
strongly coupled at low energies. Even
for large N (or large Q).



Let’s talk about charged extremal black
holes



Towards extremality

7, UV scale = size of the
black hole from the outside
= size of the sphere

N-AdS, x S? =

— horizon

The throat becomes deeper = larger redshift factor 2> lower temperature



First hint of a problem

17, UV scale.

N-AdS, x S? = I
— === horizon ,
) E—E.xT
A problem arises when the length of the throatis [, = pai Sete.
0 S - Se XX T

The specific heat becomes of order one = backreaction becomes large

Preskill, Schwarz, Shapere, Trivedi, Wilczek.



What goes wrong with the classical
approximation ?

| .

Seemingly, nothing with the bulk geometry.

There is a gravity mode telling us how we connect the throat region
to the exterior.

From the throat point of view, it is a "boundary gravity mode”.

This boundary mode becomes highly quantum mechanical =2 we
need to treat it exactly.




Results from quantizing the boundary
mode and computing the partition
function



The results depend on whether we
have pure gravity or supergravity
(supersymmetry)



p(E)

Non-SUSY

eSosinh VE

v

Entropy goes to zero at low energies.

Bagrets, Altland, Kamenev
Stanford, Witten

Kitaev, Suh

Mertens Turiaci Verlinde



N=2, 4 SUSY

Stanford, Witten
Mertens Turiaci Verlinde
Heydeman, lliesiu, Turiaci, Zhao

p(E)

S =—o, /du{t(u),u} + partners



Conclusion

Nothing goes ~"wrong” at this scale, T,.

We simply need to take into account the quantum mechanics of the
Schwarzian mode.

We transition from a classical physics regime to a quantum gravity
regime = just the quantum mechanics of the boundary mode.

It is surprising that this guantum mechanics predicts a gap for some
cases (with SUSY)

It is surprising because one would have though that the gap would
arise from some feature of the geometry, such as an end of the
world brane.



A decoupling low energy limit

p(E)

E < Ezqp

Look at the system at low energies, smaller than this gap. = Only ground states survive.



If you look at supersymmetric black
holes for a long (Euclidean) time

9
Only the ground states survive.

There is no more boundary time. H=0.



What happens with the bulk?

In this SUSY case, we still have large N, or Q, and a large number of quantum states.



Your time is up]

<7 /)

| still got some time]




Why do we study supersymmetric
extremal black holes?

* This limit exists only with supersymmetry.
* No dynamics, H=0. No boundary time.

 What is the connection between the geometry
and the microstates? (fuzzballs?)



Supersymmetric black hole examples

* 4 or 5 dimensional black holes in supergravity
have N=4 supersymmetry.

* The 1/16 BPS black hole in AdS:xS> has N=2
supersymmetry.

Boruch, Heydeman, lliesiu, Turiaci

* At low energies, we can Kaluza-Klein reduce to
AdS, . And the dominant gravitational mode is
what we have discussed above. (If we fix other
possible charges). All these other KK modes can
be viewed as living in a rigid AdS,



The boundary mode dynamics

To understand it, it is important to understand
the asymptotic symmetries of AdS,

SL(2) =2 full time reparametrizations f (1)
These symmetries are spontaneously broken.

They are also explicitly broken by the boundary
conditions

j— / at{f (1), 1}

Governs the boundary mode dynamics.




The boundary mode dynamics with
SUSY

 OSp(2]2) =2 full time super-reparametrizations.

I = —gbr/dt{f(t),t} + partners

* Atverylongtimes = the symmetries are
restored!.

* The extremely low energy theory has H=0, and is
topological, no time dependence.

* Restoration of the symmetry by quantum effects.



Correlation functions

They are computed by ‘dressing” the bulk field theory
correlators

At long times, they become time independent 2>
topological theory.

AdS./TFT,

We will neglect the sum over geometries for this talk,
but it is also interesting to include it. (We’ve considered
the cylinder).



Review of Nearly-AdS, gravity
correlators



Nearly AdS, gravity

Matter fields moving in a rigid AdS,
spacetime.

The boundary becomes dynamical and
behaves as a particle moving in AdS,

The guantum mechanics of this boundary
particle can be exactly solved. Z. Yang, Kitaev and Suh

It behaves as a non-relativistic particle moving
in AdS, with an electric field”.



Quantum gravity from Witten-like

Z. Yang, Kitaev and Suh d |agra Mms

Bulk point =(t3,z3)

[

Boundary time
(parameter in the
boundary particle
propagator)

Bulk correlator

" in rigid AdS,

(includes bulk interactions)



Z. Yang, Kitaev and Suh

(O(u1) - - - O(uy,)) = (Boundary Particle)(Correlator in AdS,)

(O ~~Om)) = [ NP i) [0 Ot

\

|

QFT in AdS, correlators

They simplify because we are near the boundary

Boundary particle propagator.
(We will review later how they are computed)

Z
&



The N=2 case

* We have a similar expression.

* At low energies, or u;; >

* The propagator becomes independent of u.
* Only the zero energy states contribute.

* The correlator becomes topological.

(O(u1) -+ O(uy)) = Vol(SU(1,1]1))

P0<fi7 fi—i-l) H ZzAZ <O(331, 917 él) R O(mna ena e_n)>

)

Independent of the u; . Depends on the order.

(O(uy) -+ O(uy)) = number = F(A;, g;)



How can we have a theory with no Hamiltonian?

e The structure is in the form of the observables
(simple operators).

* Ground states + some simple operators.



Infrared operators

O — POOPO ~ lim G_uHOG_uH

U700 O is not BPS.
But O is BPS.

Projector on to the microstates.

O’s are simple in the UV theory. But O is complicated due to the projector Py, which
depends on the flow and characterizes how the ground states are embedded in the
full Hilbert space.

= bulk picture



The two point function in the N=2 susy
theory

 We can compute the two point function using
a variety of methods.

— The chord diagram technique in N=2 SYK.

Berkooz, Brukner, Narovlansky, Raz

— The super—LiouviIIe approaCh. As in Mertens, Turiaci, Verlinde

— Using the boundary propagators.



We first discuss some qualitative
features of the answer



The two point function at zero
temperature

(0(0)0W)geeo |




0©0@)p=w ||

e |t connects the shorter distance limit to the
ong distance, exactly AdS, regime.

* |t is non-zero.

* This non-zero value has a power law
SUPPression (power of the entropy) relative to its
natural UV value.



Operator normalized so that
its two point function is one
in the region outside the
black hole.

Then (0 0) ~ (;—‘;)ZA ~ 5%

This is the value at very long times.




Typical values of matrix elements

The two point function is telling us information about the average value of the matrix
elements of the operator in a microstate

Raju, Shrivastava

(00) g = e~5°Tr[00] = =0 Z [k



Typical values of eigenvalues

We could diagonalize the (Hermitian) operator O, O, p ~ 0404

(00) g = e °Tr[00] = e Z ;

The two point function is giving us size of the typical eigenvalues of the operator.

This is the typical value of O in the basis that diagonalizes O.

This is larger than the typical value of the one point function of O on a random quantum states

/ & [(|OJ))* = e=50(00)



This gives an interesting implication for
where the geometry can start differing
for various microstates in this basis




Universal factor coming
from the propagation of
the particle in AdS,

o
p—
7
|

!

o
S
95
®
/i
l

]

The geometry is the
usual one at least up to
this point

Then (0 0) ~ (T—e)ZA !

Bo 524

The geometry might be different from this point forwards for the different
microstates in this basis where we diagonalize O.

This gives us a constraint on what we should expect for individual microstates.



Another implication...



Some details on the computation of
the two point function using the
Liouville method

Mertens, Turiaci, Verlinde



Basic variable of the two sided problem:
the distance.

This is a gauge invariant coordinate for the wormhole.
Kuchar

/ It turns out that its action is a Liouville like action
)2 —/
dull* + e "]

Harlow-Jafferis, Lin

With supersymmetry = Super Liouville theory.

Naively we would try to consider an N=2 superLiouville theory. However, we need an N=4 one
because we have 2 SUSYs on the left and 2 SUSYs on the right.



Some more details on the
computation of the 2pt function

* With the super-Liouville method.

* N=2 Superliouville theory in 2d = N=2
Schwarzian in 1d. Mertens, Turiaci, Verlinde

* Liouville quantum mechanics.
1. . . o
S:/du [Z€2+d2+wi¢i_I_e—£/2—za,¢+¢__'_6—£/2—|—7,a,¢+¢__'_6—£

* Find eigenfunctions.

* Build the Hartle-Hawking state (use input from
the disk partition function)
—M) ~A(P+2i a)>

e Compute (e , or (e



The full answer is a bit long...



Trle=uH 0 e='H 0] = (ple=dyp) =

(r=1)° )2 ’ 22+2A 12,1
— Z e~ 1 (utu') — / dS/ ds'e —4s?u—4s"%u
2@ T(2A)

s smh(27rs) s’ sinh(27s’)
E E’

=12, =32, 24124 2
+2Ze‘ T u— u—7r2 STIA / ds/ ds'e~4s"u—4s"u
ssinh(27s)  s'sinh(27s’)

X
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22A

_!r—l)zu mwr o0 —432u
+2Z€ 4 WQT(ZA)COS(?)‘/O dse
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1. _ . . .o
SZ/CZ’LL [162+d2+¢:|:¢:|:+6_£/2_w¢—|—¢—+€_€/2+m¢—i—w—+e_£

1.
S = /du [—52 — e 2 p !
There is a zero energy normalizable ground state

V()

(L)

v

N — y

For this state the length of the wormhole is bounded, and time independent.

This is different from the naive classical picture of an infinitely long throat, or
dr?

ds* = —r?dt* + —;
r



Let us emphasize the last point by
asking:



Are there supersymmetric wormhole
configurations?

SUSY ER=EPR ?




From the previous comments = Yes!



veey |

P(£)




Now we turn to the boundary particle
propagator

We need it to construct more general correlators



Z. Yang, Kitaev Suh

The boundary particle formalism

* Boundary = Particle moving in AdS,



Z. Yang, Kitaev Suh

The propagator, no SUSY

AdS, = SL(2)/U(1)
g~gh, geSL(2), he U(1)

Wavefunctions over the group manifold that have

a specified charge under U(1). (charged particle in
AdS,)

g = pX E— o ®D pV+Ey ’
U(1): shifts of y,

Quotient: consider states with fixed momentum
along y.,



Z. Yang, Kitaev Suh

The coset description, no SUSY

Propagator:
P(1,2;u) = et 4ri-vi+e(1.2) f(distance; u) = (1|e % H|2)
1=(x1,¢1), 2=(x2,¢2)
i0o,P =HP - F = fooo dE p(E)e “EK (distance)
H, = Laplacian on the group = J?
Composition law fixes p(E):
J d %, P(1,2;u12)P(2,3;up3) = P(1,3;uy3)



The boundary super-particle formalism

* Boundary = Particle moving in AdS,

* Symmetries:
— Full symmetry under the SU(1,1|1)= OSp(2|2)
supergroup. This is a gauge symmetry.
— N=2 worldline supersymmetry (Poincare)

— Physical U(1) R symmetry.

(N=1 case: Fan, Mertens)



With N=2 SUSY

* AdS, + superspace variables =SU(1,1|1)/U(1)
 Add several Grassmann coordinates.

° g — e.X'E_ eH_F_+H__fe¢Deg+F++EHeV+E+eO']

)



Z. Yang, Kitaev Suh

Propagator for zero energy states

* Propagator in the u = infinity limit.

* Q1P =Q_1P0 =02>H,Py=0

* This propagator will enables us to compute
any correlator in AdS, at zero energy.

2122) 1/ Q! Z)* :
Py = 0(:612)< \/% exp (—(\/_;_12\/_) ) (4fermions)

.‘\ (O1-++-Op) ~ e 0Ty [OAlOAn}
|

_/

We checked that it does obeys the composition law.



Explicit form

Py =e 9 ( foX1/2 4 fiy1/2

f = x1+iv2em e —(0_1 ; 6-2)
< 6_1—0_
fo = xo+iv2e™e” (01 -0-2) ” 2)
2 cosh — v 2 . ,
(‘5 = 41— st Ccos (¢1 ¢2) n Z\/_(_e_ale(ple + e—aze¢1x2)(9_l _ 9_2)+

w w
- - 1
+(€2¢] — 62¢2)(0_1 - 0_2)(0_1 — G_Q)E

(0_1 — 0_5)(6_1 — 9—2))

= e (1
( (71 — z9)

w = 6¢l+¢2 [231 — X9 + 8_10__2 + 0__10_2]

For zero R charge.
Similar expression but with a Bessel K function with non-zero R charge



Filling the inside
The distance increases, but remains
AdS, finite.
We could insert many particles.
The distance depends only on the total dimension.

The entanglement entropy between the two sides
decreases.

S=S, - (finite)

Type Il; algebra.

Similarities with dS: H=0, type Il; in the semiclassical limit.

Chandrasekharan, Long, Penington, Witten



Chaos in operators

* Since H=0, no chaos from energy levels.

P

* One can argue that the IR operators, O=POP,
are random matrices, probably with some
evidence for eigenvalue repulsion.

= Chaos in operators, or their eigenvalues.



We can compare the super-Schwarzian
answers against those of the N=2 SYK

model



N=2 SYK model

Fu, Gaiotto, Sachdev, JM

Similar to the SYK model.

N complex fermions )"

Supercharge involves a product of three
fermions with random couplings.

Q= Zijk lpil/)jlpk
H=1{Q Q"



N=2 SYK model

We can compute the number of ground states
analytically and numerically. Fu, Gaiotto, Sachdev, JM

Now, we can compute correlators.

They indeed go to constants at long times,
both for R-charged operators such as y* as
well as for neutral operators such as ‘T’

At zero energies TOC and OTOC correlators are

similar. In the particular case of Y operators
— actually the same!. Argument using SUSY.



Egap

Numerical computation of the energy gap

|||||||||||||||||||||||
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Figure 1: Gap as a function of R-charge for various values of V.
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Constant two point function at long
Euclidean times

Operator | R-charge | Schwarzian prediction | Numerical answer (N=16)
0 0.103 0.110 + 0.005
i i 0.103 0.110 4 0.005
Yi; —1/3 0.0213 0.024 + 0.003
-1/3 0.0243 0.027 + 0.001
Vith; 0 0.0754 0.079 + 0.001
+1/3 0.0243 0.027 £ 0.001
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TOC = OTOC at long times
e yteTt yplem ot = (Ofyte T |0)

Q. =0, QI0") =0 = (0|Q

O — (0" (QQT + QTQ)e™ 47 |0")



Conclusions

AdS,/TFT,
There is a bulk time but no boundary time. H=0.

There are other interesting observables for SUSY
AdS, : the correlators.

We computed the two point function.

We computed the zero energy propagator—> any
correlator.

These put constraints on how different various
microstates can be.

Good match to numerical SYK answers.




Future

e What is bulk time in this limit ?

* Connections with the explicit solutions people

are constructing as part of the fuzzball
program?



’J—[a]ajoy Birtﬁcfay

Herman and Erik

=






Extra slides



N=1 case: Fan, Mertens

N=2 Propagator

Propagator:

o P(1,2;u12, Kk, Ky, Ko Kz) = (1]e"1@771Q g U12H 20415 Q| 2)
_ Jla(ri-vite)

e i0,P =H,P

* D, P =0Q,P, iDr—P =Qq P

F(invariants, uq,, K1, K1, K3, K7)

* Qis a Grassman odd differential operator. It is invariant under the
left symmetries. We had to guess its form.



