
Panos.Christakoglou@nikhef.nl

Introduction to running batch analysis on stoomboot

1

Panos.Christakoglou@nikhef.nl

What is stoomboot?

Stoomboot is the name of the local Nikhef cluster

It is the local batch computing facility at Nikhef

accessible for users from scientific groups to perform

data analysis

Monte Carlo calculations/simulations

The Stoomboot facility consists of

3 interactive nodes and

a batch cluster with 93 nodes with 8 cores each,

The cluster is running on Scientific Linux CERN 6 as operating system

2

Panos.Christakoglou@nikhef.nl

Interacting with the batch system

Interacting with the batch system means (among other operations)

submit a job,

query a job status

delete a job

Login on a linux machine

Desktops

interactive Stoomboot nodes.

3

Panos.Christakoglou@nikhef.nl

Job submission

Use the command qsub

The optional argument script is the user-provided script that does the work

If no script is provided, the input is read from the console (STDIN)

The argument queue allows you to select the desired queue (see next slides)

The -l option is used for demanding jobs

-l nodes=1:ppn=4 requests 4 cores on 1 node

-l walltime=32:10:05 requests a wall time of 32 hours, 10 minutes and 5 seconds

More detailed information can be found in the manual page for qsub:

4

Panos.Christakoglou@nikhef.nl

Checking the status of a job

5

Panos.Christakoglou@nikhef.nl

Job deletion

If a user wants to kill a job with id 1001

qdel 1001

Note that you are able to kill only your own jobs

For more information about qdel

6

Panos.Christakoglou@nikhef.nl

Queues

7

Panos.Christakoglou@nikhef.nl

Submission and scheduling

The system is a shared facility

e.g. if I get a machine stuck you also pay

Some considerations:

large output files (like logs) going to /tmp might fill up /tmp if many of your jobs land on
the same node, and this will hang the node.

submitting lots of jobs, each of which opens lots of files, can cause problems on the
storage server. Organizing information in thousands of small files is problematic.

very short jobs are inefficient

If your average job run time is not at least 1 minute, please consider how to re-pack your
work into jobs.

Do not run a single core job to the multicore queue

8

Panos.Christakoglou@nikhef.nl

Scheduling

the system works on a fair-share scheduling basis.

Each group at Nikhef gets an equal share allocated, and within each group, all users are
equal. The scheduler makes its decision based on:

how much time has your group used over the last 8 hours

how much time have you used over the last 8 hours.

The group number is converted to a group ranking component

if our group has used less than the standard share in the last 8 hours, this number is
positive, getting larger the less the group has used.

If you've used more than the standard share, the number is negative, getting more
negative the more you've used.

The algorithm is absolutely the same for all groups at Nikhef.

There is a similar conversion for the user number, the scale of the group number being
larger than the group one. The two components are added, resulting in a ranking ... the
jobs that have the highest ranking run first.

9

Panos.Christakoglou@nikhef.nl

Scheduling (cont.)

Jobs are essentially run in this order:

low group usage in the past 8 hours, also low user usage

low group usage in the past 8 hours, higher user usage

higher group usage in the past 8 hours, lower user usage

higher group usage in the past 8 hours, higher user usage

10

Panos.Christakoglou@nikhef.nl

Prerequisites for batch running

A “submit” script (see later)

A text file with runs for each raw data period

A “run” macro adopted to take the directory name (base dir + run number) as an
argument

Base dir is the directory where the raw data samples are stored (see lecture of last week)

The macro creates a TChain of AOD files residing under this run and passes it to the
manager

An AddTask macro (see lecture of last week)

A task i.e. header and source files (see lecture of last week)

11

Panos.Christakoglou@nikhef.nl

The submit script

12

Panos.Christakoglou@nikhef.nl

The run list

13

Panos.Christakoglou@nikhef.nl

The run macro

14

Panos.Christakoglou@nikhef.nl

Submitting the jobs

Please change the names of the

Input directory

Run macro

AddTask

Task

Use an ascii file with just one run (e.g. from LHC10h)

Go to the directory where the submit macro is stored and type:

source submit.sh lhc10h.txt 2010

15

Panos.Christakoglou@nikhef.nl

Merging

At the end, your batch jobs have produced one output rot file per run

To get full statistics for your analysis you need to merge the output

Assuming that your output contains simple ROOT objects e.g. histograms, or list of
histograms then

Go to where your output is stored one directory up from each run-number directory

Issue the following command on the terminal

The final root file will have the same structure as the individual AnalysisResults.root files
of every run but it will contain histograms with all the statistics of all the runs

The histograms and thus their entries of every run are added and stored in the merged file

16

hadd mergedAnalysisResults.root */AnalysisResults.rootROOT command

Final merged filename
Name of the

analysis output
stored for every run

Panos.Christakoglou@nikhef.nl

Good luck…

17

Panos.Christakoglou@nikhef.nl

https://www.nikhef.nl/grid/stats/stbc/

18

https://www.nikhef.nl/grid/stats/stbc/

