

Macroscopic Traffic Control Using Connected Autonomous Vehicle Platoons

Mladen Čičić (cicic@kth.se)

KTH Royal Institute of Technology, Sweden

This project has received funding from the European Union's Horizon 2020 Framework Programme for Research and Innovation under grant agreement no 674875.

(Heavy-duty) vehicle platooning

- A unit of vehicles driving together with short headways
- Reduced air drag and fuel consumption, less space on the road taken, fewer drivers required
- Control within a platoon *largely solved*

ктн

(Heavy-duty) vehicle platooning

- A unit of vehicles driving together with short headways
- Reduced air drag and fuel consumption, less space on the road taken, fewer drivers required
- Control within a platoon largely solved
- Fleet management, platooning coordination, and potential for traffic control *more work is still needed*
- Truck platooning and traffic congestion
- How does platooning influence the rest of the traffic (and vice versa), and how can we exploit this for traffic control?

• E.g. lane drop bottleneck, on-ramp

- E.g. lane drop bottleneck, on-ramp
- Capacity drop
 - Discharging flow lower than capacity before traffic breakdown

- E.g. lane drop bottleneck, on-ramp
- Capacity drop
 - Discharging flow lower than capacity before traffic breakdown
- Static bottleneck can be handled by static equipment
 - Ramp metering and variable speed limits

- E.g. lane drop bottleneck, on-ramp
- Capacity drop
 - Discharging flow lower than capacity before traffic breakdown
- Static bottleneck can be handled by static equipment
 Ramp metering and variable speed limits
- Platoons at bottlenecks?

[Papageorgiou et al. 1991], [Carlson et al. 2013], [More research is needed!]

Stop-and-go wave dissipation

- An upstream-propagating wave of slowed or stationary vehicles without an apparent bottleneck
- Traffic volume close to, but under road capacity
- Caused by *something*, can be resolved by *appropriate* driving behaviour
- *Virtual* upstream-propagating bottleneck due to capacity drop
- Not easy to address using stationary equipment

$$\rho_{i}(t+1) = \rho_{i}(t) + \frac{T}{L} (q_{i-1}(t) - q_{i}(t))$$

$$q_{i}(t) = \min (D_{i}(t), S_{i+1}(t))$$

$$D_{i}(t) = \min (V\rho_{i}(t), Q_{i}^{\max})$$

$$S_{i}(t) = \min (W_{i}(P_{i} - \rho_{i}(t)), Q_{i}^{\max})$$

ρ_i(t) – traffic density in cell i

- $q_i(t)$ traffic flow from cell i to cell i+1
- $D_i(t)$ demand of cell i
- $S_i(t)$ supply of cell i
- V free flow speed

Cell Transmission Model

 $\rho_{i}(t+1) = \rho_{i}(t) + \frac{T}{L} (q_{i-1}(t) - q_{i}(t))$ $q_{i}(t) = \min (D_{i}(t), S_{i+1}(t))$ $D_{i}(t) = \min (V\rho_{i}(t), Q_{i}^{\max})$ $S_{i}(t) = \min (W_{i}(P_{i} - \rho_{i}(t)), Q_{i}^{\max})$

 Corresponds to discretization of the LWR model with Newell-Daganzo (triangular) flux function Q(ρ),

$$\partial_{\tau}\rho(x,\tau) + \partial_{x}Q(\rho(x,\tau)) = 0$$
$$Q(\rho) = \begin{cases} V\rho, & \rho \le \sigma \\ W(P-\rho), & \rho > \sigma \end{cases}$$

[Daganzo 1994], [Lighthill, Whitham 1955], [Lebacque 1995]

- $\rho_i(t)$ traffic density in cell *i*
- $q_i(t)$ traffic flow from cell *i* to cell i + 1
- $D_i(t)$ demand of cell i
- S_i(t) supply of cell i
- V free flow speed

Multi-class Cell Transmission Model

 $\rho_i^{\kappa}(t+1) = \rho_i^{\kappa}(t) + \frac{T}{I} \left(q_{i-1}^{\kappa}(t) - q_i^{\kappa}(t) \right)$ $q_i^{\kappa}(t) = \min\left(D_i^{\kappa}(t), S_{i+1}^{\kappa}(t)\right)$ $D_{i}^{\kappa}(t) = U_{i}^{\kappa}(t)\boldsymbol{\rho}_{i}^{\kappa}(t)\min\left(1, \frac{F_{i}(t)}{\sum\limits_{k \in \mathcal{K}} U_{i}^{k}(t)\boldsymbol{\rho}_{i}^{k}(t)}\right)$ $S_{i}^{\kappa}(t) = \frac{\boldsymbol{\rho}_{i-1}^{\kappa}(t)}{\boldsymbol{\rho}_{i-1}(t)} \min\left(W_{i}(P_{i}-\boldsymbol{\rho}_{i}(t)), Q_{i}^{\max}\right)$ $F_i(t) = \min\left(Q_i^{\max}, W_i \frac{\sigma_{i+1}}{\sigma_i} \left(P_i - (1-\alpha)\sigma_i - \alpha\rho_i(t)\right)\right)$

 $\xrightarrow{} \rho_{\tau^{\prime}}^{\kappa} \xrightarrow{} \xrightarrow{} q_{\tau^{\prime}}^{\kappa} \xrightarrow{} \xrightarrow{} \xrightarrow{} p_{\tau^{\prime}}^{\kappa} \xrightarrow{} \xrightarrow{} \xrightarrow{} p_{\tau^{\prime}}^{\kappa}$

- $\rho_i^{\kappa}(t)$ class κ traffic density in cell *i*
- q^κ_i(t) class κ traffic flow from cell i
- $D_i^{\kappa}(t)$ class κ demand of cell i
- S^κ_i(t) class κ supply of cell i
- $U_i^{\kappa}(t)$ class κ free flow speed in cell i
- $F_i(t)$ capacity drop

[[]Daganzo 1994], [Lighthill, Whitham 1955], [Lebacque 1995]

Modelling platoons in multiclass CTM

• Platoon traffic density ρ_p , speed $u_p(t)$, platoon head $x_h^p(t)$ in cell $i_h^p(t)$ and tail $x_t^p(t)$ in $i_t^p(t)$, $x_h^p(t+1) = x_h^p(t) + u_p(t)T$

Modelling platoons in multiclass CTM

• Platoon traffic density ρ_p , speed $u_p(t)$, platoon head $x_h^p(t)$ in cell $i_h^p(t)$ and tail $x_t^p(t)$ in $i_t^p(t)$, $x_h^p(t+1) = x_h^p(t) + u_p(t)T$

• Correct behaviour of platoons:

$$U_{i}^{a}(t) = \begin{cases} V, & i < i_{t}^{p}(t) \\ \frac{V}{\rho_{i}^{a}(t)} \left(\rho_{p} - \frac{V - U_{i+1}^{a}(t)}{V} \rho_{i+1}^{a}(t)\right), & i_{t}^{p}(t) \le i < i_{h}^{p}(t) \\ V - \left(V - u_{p}\right) \frac{\rho_{p}}{\rho_{i_{h}}^{a}(t)}, & i = i_{h}^{p}(t) \\ 0, & i > i_{h}^{p}(t) \end{cases} \qquad \rho_{i}^{a}(t) = \begin{cases} 0, & i < i_{t}^{p}(t) \lor i > i_{h}^{p}(t) \\ \rho_{p} \frac{x_{t}^{p}(t) - X_{t_{t}^{p}(t) + 1}}{L}, & i = i_{t}^{p}(t) \\ \rho_{p} \frac{x_{t}^{p}(t) - X_{t_{t}^{p}(t) + 1}}{L}, & i = i_{t}^{p}(t) \\ \rho_{p} \frac{x_{t}^{p}(t) - X_{t_{t}^{p}(t) + 1}}{L}, & i = i_{t}^{p}(t) \end{cases}$$

 $\rightarrow -\rho_{3}$

Traffic densities will converge to ρ^a_i(t)!

- Platoon traffic density ρ_p , speed $u_p(t)$, platoon head $x_h^p(t)$ in cell $i_h^p(t)$ and tail $x_t^p(t)$ in $i_t^p(t)$, $x_h^p(t+1) = x_h^p(t) + u_p(t)T$
- Moving bottleneck

- Platoon traffic density ρ_p , speed $u_p(t)$, platoon head $x_h^p(t)$ in cell $i_h^p(t)$ and tail $x_t^p(t)$ in $i_t^p(t)$, $x_h^p(t+1) = x_h^p(t) + u_p(t)T$
- Moving bottleneck
- Maximum platoon overtaking flow:

 $q_p^{out} = V\left(\boldsymbol{\sigma} - \boldsymbol{\rho}_p\right)$

Equivalent to moving bottlenecks in PDE models

Mladen Čičić - cicic@kth.se

[Lebacque et al. 2014], [Delle Monache, Goatin 2014]

- Platoon traffic density ρ_p , speed $u_p(t)$, platoon head $x_h^p(t)$ in cell $i_h^p(t)$ and tail $x_t^p(t)$ in $i_t^p(t)$, $x_h^p(t+1) = x_h^p(t) + u_p(t)T$
- Moving bottleneck
- Maximum platoon overtaking flow:

 $q_p^{out} = V\left(\sigma - \rho_p\right)$

- Equivalent to moving bottlenecks in PDE models
- Controlled moving bottlenecks as in-flow actuators!

[[]Lebacque et al. 2014], [Delle Monache, Goatin 2014]

Accumulate-then-actuate

1. Detect a stop-and-go wave

- 1. Detect a stop-and-go wave
- 2. Select the initial point where we start accumulating controllable vehicles

- 1. Detect a stop-and-go wave
- 2. Select the initial point where we start accumulating controllable vehicles
- 3. Collect enough controllable vehicles so that they can affect the rest of traffic

- 1. Detect a stop-and-go wave
- 2. Select the initial point where we start accumulating controllable vehicles
- 3. Collect enough controllable vehicles so that they can affect the rest of traffic
- 4. Use the collected controllable vehicles as a controlled moving bottleneck

Ь

- 1. Detect a stop-and-go wave
- 2. Select the initial point where we start accumulating controllable vehicles
- 3. Collect enough controllable vehicles so that they can affect the rest of traffic
- 4. Use the collected controllable vehicles as a controlled moving bottleneck
- 5. Dissipate the stop-and-go wave with minimum delay

Accumulate-then-actuate

Simulation results

[Čičić, Johansson 2019]

• In free flow, the road acts as a simple transport delay

$$\rho_{i+k}(t) = \rho_i(t-k)$$

• In free flow, the road acts as a simple transport delay

$$\rho_{i+k}(t) = \rho_i(t-k)$$

• Congestion can only occur at the static and moving bottlenecks!

Multiple platoons and queueing representation

• Queueing representation

$$\dot{n}_*(t) = q_*^{in}(t) - q_*^{out}(t)
onumber \ q_*^{out}(t) = \begin{cases} q_*^{in}(t), & q_*^{in}(t) \le q_*^{cap} \land n_*(t) = 0 \ q_*^{dis}, & q_*^{in}(t) > q_*^{cap} \lor n_*(t) > 0 \end{cases}$$

Multiple platoons and queueing representation

• Queueing representation

$$\dot{n}_*(t) = q_*^{in}(t) - q_*^{out}(t)
onumber \ q_*^{out}(t) = \begin{cases} q_*^{in}(t), & q_*^{in}(t) \le q_*^{cap} \land n_*(t) = 0 \ q_*^{dis}, & q_*^{in}(t) > q_*^{cap} \lor n_*(t) > 0 \end{cases}$$

• For the static bottleneck, $q_b^{cap} = V\sigma_+$, and due to capacity drop $q_b^{dis} = V\rho_d < q_b^{cap}$.

Coordinate transform for simplifying delay

Inflows to the bottleneck and to the platoons

$$\begin{split} q_{b}^{in}(t) &= q_{b}^{V}(t) + q_{b}^{u}(t) \\ q_{b}^{V}(t) &= \begin{cases} q_{p}^{out}(\frac{x_{p}+V-X_{b}}{V-u_{p}}), & \max\left\{t_{p}^{V},t_{p-1}^{u}\right\} \leq t \leq t_{p}^{u}, p = 1, \dots, \Pi \\ V\rho(X_{b}-Vt), & \text{otherwise}, \end{cases} \\ q_{p}^{in}(t) &= \begin{cases} q_{p+1}^{out}\left(\frac{(V-u_{p})t-x_{p}+x_{p+1}}{V-u_{p+1}}\right), & t > \frac{x_{p}-x_{p+1}}{V-u_{p}}, \\ V\rho(x_{p}-(V-u_{p})t,0), & t \leq \frac{x_{p}-x_{p+1}}{V-u_{p}}, \end{cases} \end{split}$$

Coordinate transform for simplifying delay

Inflows to the bottleneck and to the platoons

$$\begin{split} q_{b}^{in}(t) &= q_{b}^{V}(t) + q_{b}^{u}(t) \\ q_{b}^{V}(t) &= \begin{cases} q_{p}^{out} \frac{x_{p} + Vt \cdot X_{b}}{V \cdot u_{p}}), & \max\left\{t_{p}^{V}, t_{p-1}^{u}\right\} \leq t \leq t_{p}^{u}, p = 1, \dots, \Pi \\ V\rho(X_{b} - Vt), & \text{otherwise}, \end{cases} \\ q_{p}^{in}(t) &= \begin{cases} q_{p+1}^{out} \left(\frac{(V \cdot u_{p})t - x_{p} + x_{p+1}}{V - u_{p+1}}\right), & t > \frac{x_{p} - x_{p+1}}{V - u_{p}}, \\ V\rho(x_{p} - (V - u_{p})t, 0), & t \leq \frac{x_{p} - x_{p+1}}{V - u_{p}}, \end{cases} \end{split}$$

• Coordinate transform for each platoon $\tau_p = \frac{x_p - X_b + Vt}{V - u_p}$:

$$\begin{split} q_b^V(t) &= \begin{cases} \tilde{q}_p^{out}(t), & \max\left\{t_p^V, t_{p-1}^u\right\} \le t \le t_p^u, p = 1, \dots, \Pi \\ V\rho(X_b - Vt), & \text{otherwise}, \end{cases} \\ \tilde{q}_p^{in}(t) &= \begin{cases} \tilde{q}_{p+1}^{out}(t), & t_{p+1}^V < t < t_{p+1}^V, \\ V\rho(X_b - Vt, 0), & t \le t_{p+1}^V, \end{cases} \end{split}$$

Bottleneck decongestion control

• Overtaking flow q_p^{cap}

$$\tilde{q}_{p}^{cap}(t) = \begin{cases} q^{ref}(t), & n_{b}(t) = 0 \wedge t \geq t_{p-1}^{u}, \\ \tilde{q}_{p-1}^{cap}(t), & \tilde{n}_{p-1}(t) = 0 \wedge t < t_{p-1}^{u}, \\ Q^{lo}, & \text{otherwise}, \end{cases}$$

Bottleneck decongestion control

• Overtaking flow q_p^{cap}

KTH

$$\tilde{q}_{p}^{cap}(t) = \begin{cases} q^{ref}(t), & n_{b}(t) = 0 \land t \ge t_{p-1}^{u}, \\ \tilde{q}_{p-1}^{cap}(t), & \tilde{n}_{p-1}(t) = 0 \land t < t_{p-1}^{u}, \\ Q^{lo}, & \text{otherwise}, \end{cases}$$

• Platoon speed *u_p*: drive as fast as possible s.t.:

$$\tilde{n}_p(t_p^u) = \tilde{n}_p(t_p^c) + \int_{t_p^c}^{t_1^c} \tilde{q}_1^{in}(t) dt - Q^{hi}(t_1^u - t_1^c) = 0$$

- The queue at the bottleneck is dissipated
- The queue at platoon *p* is dissipated by t_p^u (when the platoon arrives at the bottleneck)

Mladen Čičić - cicic@kth.se

Simulation results with an on- and off-ramp

[Čičić, Jin, Johansson 2019]

Simulation results with an on- and off-ramp

Delay	Class a		Class b		Class c		Total	
[%]	average	median	average	median	average	median	average	median
Case (a)	33.1	35.3	45.0	46.9	1.2	0.0	36.9	38.3
Case (b)	36.8	33.5	29.4	24.1	8.4	8.0	26.2	21.7
Case (c)	28.1	20.7	19.6	8.6	4.8	4.4	17.5	8.4

[Čičić, Jin, Johansson 2019]

Conclusions

- How can we control the traffic using a small subset of vehicles?
- Even a few infrastructure-controlled vehicles can have a significant positive impact on the overall traffic
- Prediction-based control using simplified traffic models yields good results!
- We need a better understanding of how platoons interact with the rest of the traffic (especially at the bottlenecks)

Conclusions

KTH

- How can we control the traffic using a small subset of vehicles?
- Even a few infrastructure-controlled vehicles can have a significant positive impact on the overall traffic
- Prediction-based control using simplified traffic models yields good results!
- We need a better understanding of how platoons interact with the rest of the traffic (especially at the bottlenecks)

Thank you for your attention!

Questions?

