Problem 1. Consider the function $f(x) = \sum_{i=1}^{n} |x_i|$.

- 1. Derive the conjugate function f^* , show the derivations.
- 2. Derive $\partial f(x)$ in an arbitrary point x, show the derivations.

Problem 2. Consider a convex, proper, closed function $f: \mathbb{R}^n \to \overline{\mathbb{R}}$, and let prox_f be the proximal operator of f defined as

$$\operatorname{prox}_{f}(z) = \arg\min_{x \in \mathbb{R}^{n}} f(x) + 0.5 ||x - z||^{2}.$$

- 1. Show that for f with the given properties, the minimum in the definition of prox_f is attained and unique.
- 2. Show that $prox_f$ is firmly non-expansive.
- 3. Does firm non-expansiveness imply non-expansiveness (Lipschitz-continuity with constant 1)? Does firm non-expansiveness imply continuity? Motivate your answers.
- 4. For a $z \in \mathbb{R}^n$, prove the following:

$$z = \operatorname{prox}_{f}(z) + \operatorname{prox}_{f^{*}}(z),$$

where f^* is the conjugate function of f.