Quantum Computing & Cryptography

Christian Schaffner

DuSoft Research Center for Quantum Software

Institute for Logic, Language and Computation (ILLC) University of Amsterdam

Landing Festival Berlin, 3 April 2019

A little thought experiment...

Quantum Computer

What are you going to do with it?

10-20 quantum bits now 50-100 qubits in the next 5 years!

Quantum Physics

- 1. Superposition:
 - Of different states

2. Interference:

• Of states

3. Entanglement:

• Of two or more physical systems

Quantum Physics

1. Superposition:

• Of different states

- 2. Interference:
 - Of states

- 3. Entanglement:
 - Of two or more physical systems

Superposition

- An object in different states simultaneously:
 - o A photon can be at two positions at the same time
 - o Schrödinger's cat: dead and alive
- Experimentally verified:
 - o Small systems, such as photons
 - o Bigger systems, molecules...

Superposition: An experiment

Random Number Generator

• •	EasyQuantis 1.4
Quantis USB #0 (S/N 060017A410)	o 😫 🛈
Data format Create binary data Create integer numbers Create floating point numbers Comma-separated values (CSV)	
Scaling Scale data between 0	c and 1 c
 Display 	
Save to file r/folders/_7/ynccz4	40j4z54fccj8r01v00c0000gn/T/random.dat
Quantity of random numbers to read	d: 1024 🗘 ~10.0Kbytes Generate

0 🔴 🔴	EasyQuantis 1.4	
Quantis	SB #0 (S/N 060017A410) c 2 0	
Data for	1,0,0,1,1,1,1,0,0,1,0,0,0,1,1,1,0,1,0,0,0,1,1,1,0,1,0,0,0,1,1,0	1
Cre	0,1,0,0,0,1,1,0,0,1,0,0,0,0,0,0,1,1,1,1	
Cre	1,0,1,0,0,0,0,1,1,0,1,1,1,1,1,0,0,1,1,1,0,0,0,1,0,1,1,1,0,0,1,0,1,0,0,1,0,1,1,0,0,1,0,1,1,0,0,1,0,0,1,0,1,0,0,1,0,0,1,0	
O Cre	0,0,0,0,1,1,0,1,1,1,1,0,0,1,0,1,0,0,0,1,1,0,1,1,0,0,0,1,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0, 1,1,0,0,0,0	
Com	0,1,0,1,0,0,0,0,1,1,0,0,1,0,0,0,1,1,0,1,1,0,1,0,0,0,0,0,0,1,1,1,1,1,1,0,0,1,0,0,1,0,1,0,1,0,0,1,0,0,1,0	
	0,1,0,0,1,0,0,1,0,1,1,1,0,0,0,0,0,1,0,1	
✓ Sca	0,0,1,1,0,1,1,1,0,0,1,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,1,1,0,1,1,1,1,1,0,0,0,0,1,1,1,0	
Scale (1,0,0,1,0,1,1,0,1,1,1,1,1,0,0,0,1,1,0,1,1,0,0,0,1,1,0,0,0,1,1,0,0,0,1,0,0,1,0,0,1,0,1,1,1, 0,0,0,1,1,0,1,0	1
	0,1,0,1,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,0,0,0,1,1,1,1,0,1,0,0,1,0,1,0,0,0,0,1, 0,1,0,0,0,0	
Dis	1,1,1,1,0,0,1,0,1,1,0,0,1,1,0,0,1,0,0,0,0,0,0,0,0,0,1,1,1,0,1,0,0,0,1,0,1,0,1,0,1,0,1,0,0,0,1,0,1,0	
Sav	1,1,0,0,1,0,0,1,1,0,0,1,0,1,1,1,0,0,0,0	
	0,1,1,1,1,1,1,1,1,1,0,0,1,0,0,1,0,1,1,0,1,1,0,0,1,0,0,1,1,0,1,0,0,0,1,1,1,1,1,0,0,0,0,1,0,1,0	
Quanti	Convite Olipheard	
	Close	
-		

Quantum Physics

1. Superposition:

- Of different states
- Observation: collapse of the superposition

2. Interference

Of an object in superposition

3. Entanglement

Of two or more physical systems

Mach-Zehnder interferometer

Mach-Zehnder interferometer

When you perform the experiment

Try it yourself: http://quantumgame.io/

According to quantum mechanics

Quantum Physics

- 1. Superposition
 - Of different states
 - Observation: collapse of the superposition

2. Interference:

- Of an object in superposition
- 3. Entanglement:
 - Of two or more physical systems

Quantum Physics A Quantum + Computer Science = COMPUTER

Feynman 1981

Deutsch 1985

Video: Quantum Computers Animated

Quantum Bit (QuBit)

More Qubits

- 1 qubit superposition of 2 states
- 2 qubits superposition of 4 states
- **3** qubits superposition of **8** states
- 4 qubits superposition of 16 states
- 5 qubits superposition of 32 states
- 6 qubits superposition of 64 states
- 300 qubits superposition of 2³⁰⁰ states

Quantum Software: Fundamentally Different

- Qubit: superposition of **0 and 1**
- 300 qubits: astronomical amount of parallel computation
- How to get the answer out??
 - Measuring destroys computation!!
- Quantum Program
 - Use interference to cancel undesired computations
- Does not always work!

Our focus: how can we optimally use the extra power?

Quantum Programming is like Composing

• Music

- Sound waves interfere
- Composer creates 'beautiful' interference of sound waves

Quantum Computer

- Qubits in superposition interfere
- Quantum programmer ensures useful interference of qubit states

What can you do with it?

- Simulation of nature
 - Chemistry, material design, new medicines..
- Efficient communication
 - Quantum internet, entanglement etc.
- Factorizing big numbers [Shor]
 - Breaks frequently used cryptography
- Quantum cryptography [Bennett-Brassard-Ekert]
 - Cryptography using quantum communication
- ??????

Progress In Building Qubits

- Many groups worldwide progress with building qubits
- Solid state:
 - 50 solid-state qubits IBM
 - 49 Intel
 - 50 Google → 72
 - Fairly stable
- Trapped ions:
 - 11 qubits Monroe
- D-Wave:
 - 2048 qubits (not very stable)

What can you do with it?

- Simulation of nature
 - Chemistry, material design, new medicines..
- Efficient communication
 - Quantum internet, entanglement etc.
- Factorizing big numbers [Shor]
 - Breaks frequently used cryptography
- Quantum cryptography [Bennett-Brassard-Ekert]
 - Cryptography using quantum communication
- ??????

Cyber Security

"Cyber Security provides security, safety and privacy solutions that are vital for our economy including but not limited to critical infrastructures, smart cities, cloud computing, online services and e-government."

Auto-updates – Digital Signatures Secure Browsing - TLS/SSL VPN – IPSec Secure email – s/MIME, PGP

> RSA, DSA, DH, ECDH, ... AES, 3-DES, SHA, ...

based on slides by Michele Mosca

Quantum Algorithm for Factorization

- Peter Shor 1994: efficient quantum algorithm for factoring integer numbers
- 15 = 3 * 5
- 27 =
 31 =
 57 =
 91 =
- 173 =
 - RSA-100 = 1522605027922533360535618378132637429718068114961380688657908494580122963258952897654000350692006139

Quantum Computer Breaks Public-Key Crypto

- Peter Shor 1994: efficient quantum algorithm for factoring integer numbers
- For a 600-digit number (RSA-2048)
 - Classical: age of universe (exponential time)
 - Quantum: few minutes (polynomial time)
- Consequence: Large enough quantum computers break all currently used public-key cryptosystems!!!

Current Cryptography Under Quantum Attack

Security level	Conventional attacks	Quantum attacks
systems		
Symmetric-key encryption (AES-256)	256 bits of security	128 bits
Hash functions (SHA3-256)	128 bits	85 bits
Public-key crypto (key exchange, digital signatures, encryption) (RSA-2048, ECC-256)	112 bits	∼ 0 bits

Products, services, businesses relying on security either stop functioning or do not provide expected levels of security!

When Do We Need To Worry?

Depends on:

- How long do you need to keep your secrets secure? (x years)
- How much time will it take to re-tool the existing infrastructure? (y years)
- How long will it take for a large-scale quantum computer to be built? (z years)
- Theorem (Mosca): If x + y > z, then worry.

 If x > z or y > z, you are in big trouble!

Conventional Quantum-Safe Cryptography

• **Wanted**: new assumptions to replace factoring and discrete logarithms in order to build conventional public-key cryptography

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography

- NIST "competition": 82 submissions (23 signature, 59 encryption schemes)
- Aug 2019: Second-round workshop in California
- Expected: 3-5 years of crypto-analysis
- New standards, world-wide adoption

The Future is Quantum: Governments

- QuTech in Delft, NL: €135 million
- €18.8 Mio for 10 years: Quantum Software Consortium
 - Germany: €650 million for <u>quantum technologies</u>
- UK: £235 million five-year in quantum computing
- Sweden: €100 million for 10 years for WACQT
- EU Flagship: €1 billion and a duration of 10 years
- US: \$1.2 billion <u>National Quantum Initiative Act</u>
- China: \$1 billion <u>initial funding</u> for National Laboratory for Quantum Information Sciences
- Canada, Australia, Singapore, ...

https://sciencebusiness.net/news/eu-runs-catchgovernments-pledge-more-cash-quantum-computing

The Future is Quantum: Business

Research Center for Quantum Software

- Quantum networks
- Quantum cloud

Y. Dulek, C. Schaffner, and F. Speelman, <u>arXiv:1603.09717</u> *Quantum homomorphic encryption for polynomial-sized circuits*

DuSoft Research Center for Quantum Software

Thank you for your attention!

"About your cat Mister Schrödinger... I've got good **and** bad news."

Get in touch: schaffner@qusoft.org

