
Breaking Category Five
SPHINCS+ with SHA-256

Ray Perlner1, John Kelsey1,2, and David Cooper1

1. NIST, 2. COSIC/KU Leuven

Summary of Result

• SPHINCS+ is a stateless hash-based signature selected for
standardization by NIST

• We present a forgery attack that reduces classical security by 40 bits
• For submitted parameter sets:

• That target Category 5

• While using SHA-256

• Our attack builds on a previous attack by Antonov on the DM-SPR
property of SHA-256 (a security assumption for SPHINCS+)

• The SPHINCS+ team has proposed a tweak which defeats our attack by
using SHA-512 instead of SHA-256 (where necessary)

Outline

• Hash-Based Signatures: One-time, Multi-Use, Stateless

• SPHINCS+ Basic Design, including WOTS+

• DM-SPR Property and Antonov’s Attack

• Using Antonov’s Attack to Forge WOTS+ (This Paper)

• Optimizations (This Paper)

• The SPHINCS + Tweak

• Conclusion

Hash-Based One-Time Signature (OTS)

• Most basic hash-based signature (Lamport 1979)
• For bit 𝑏𝑖

• Generate a secret 𝑆𝑖0 for signing 0 and another 𝑆𝑖1 for signing 1

• Public key is
𝐻(𝑆00)| 𝐻(𝑆00)| … 𝐻(𝑆(𝑛−1)0)| 𝐻(𝑆(𝑛−1)1)

• Can securely sign one 𝑛-bit digest
• Signature is:

𝑆0𝑏0| … |𝑆(𝑛−1)𝑏(𝑛−1)

• More advanced variants (e.g. WOTS+ – discussed later)
• Reduce signature size using hash chains, etc.
• Reduce PK size by using public key hash instead

• We’ll call the thing that gets hashed the Public Key Preimage

Multi-Use Hash-Based Signature

• Hash many OTS public keys
together in a Merkle Tree
• Only increases signature size

logarithmically

• But all OTS keys need to be
precomputed

• Can get rid of precomputation
by having OTS leaves of top tree
sign roots of trees generated on
the fly

• Hypertree:

Stateless Hash-Based Signature

• Create a hypertree by having multiple layers of Merkle trees with
leaves from one signing the root of the next

• If the hypertree has enough leaves, the leaf can be chosen randomly
with little risk of using the same leaf twice
• Can make hypertree a lot smaller by using a few-time signature to sign the

message

• Generate OTS keypairs pseudorandomly from seed and hypertree
location so that each upper leaf always signs the same Merkle-Tree
root

SPHINCS+

Basic Design

• Merkle roots are signed by WOTS+

• The Focus of our attack

• (Randomized) message digest is signed by FORS
• FORS root is also signed by WOTS+

• Hypertree path to FORS key is determined by extended message
digest

SPHINCS+
Prefixes and Distinct Function Multitarget Preimage Resistance (DM-SPR)

• Many places in hypertree where a preimage can create a forgery:
• Hashes in Merkle Trees

• Hash Chains in WOTS+

• Hash trees in FORS

• FORS public key hash

• WOTS+ public key hash (Our attack here)

• New targets are revealed with every honest signature

• To avoid a 1 out of 𝑡 multi-target preimage attack:
• Make sure hash input at each hypertree location has a distinct prefix

• Formalized as a tweakable hash function with DM-SPR property

Merkle-Damgård (SHA-256)
Construction

• Hash an arbitrary-sized message using a fixed-input-length compression function, F

• Break message into B-bit blocks and repeatedly use F to produce an n-bit chaining value

• For SHA-256: B=512, n=256

• MD hash is proven collision resistant if F is

• But, MD doesn’t always get more than 𝑛/2 bits of security for other properties:
• Multicollisions for multi-block messages [Joux 2004]
• Long message preimage attack [Dean 1999], [KS 2004]
• Herding attack [KK 2005]

• What about DM-SPR?

Herding Attack

• Create many messages
• With distinct fixed prefixes
• That hash to the same value

• Build “Diamond Structure”
• Distinct prefixes result in distinct internal states (ℎ1-ℎ7)
• Use collision search on compression function to find message blocks that collide

resulting in fewer distinct states (ℎ10-ℎ13)
• After adding logarithmically many (Above, 3) blocks to prefix, all messages hash to

same chaining value (ℎ30)

Antonov’s Attack on SHA-256
DM-SPR [Antonov 2022]
• Collect 𝑡 target hashes with different prefixes

• Find preimage with the same prefix for 1 of them
• Use Herding to reach same state from all prefixes at the penultimate block
• Use Multi-Target preimage search on compression function to find a block to append

and reach a target

• Longest hash input in SPHINCS + is WOTS+ public key hash

• That’s still pretty short (34 blocks)
• To balance cost of herding, multi-target preimage search, use some compression-

function 3-collisions
• Let 𝑡 be 210323 ≈ 246 instead of 233

• 3-Collision search cost: 1.5 ∙ 323 ∙ 2170.7 ≈ 2208

• Multi-Target preimage cost: 2256/246 ≈ 2210

What’s Left to Do?

• Antonov’s attack lets us create a validly-signed WOTS+ public key
preimage

• But we need to know the corresponding private key to forge a
SPHINCS+ signature
• This involves knowing preimages of parts of WOTS+ public key
• For validity, prefix must match hypertree location
• But hypertree location depends which target we reached
• No way to force correct prefix for all targets

• Or at least part of it…
• As long as we can sign more than one possible digest with our WOTS+ key
• Can graft a forged Merkle-Tree root to the hypertree for less than 2256 work!

Our Attack: Outline

• Find a preimage of some WOTS+ public key with enough private key
info to sign some digests

• Brute-force search for a valid Merkle/FORS tree whose root has
signable digest

• Sign the tree root with the attacked WOTS+ key

• To forge a signature, try message randomization strings until the
hypertree address is a descendent address of the tree root

WOTS+ Signature

• Write digest as base-𝑤 (16)
number

• Append a base-𝑤 checksum
• (960 − <sum of digits>)

• Sign each digit 𝑑𝑖 of digest plus
checksum by:
• Hash 𝑠𝑘𝑖,0 (with prefix) 𝑑𝑖 times
• Put the result in the signature

• Note: The signature of 0xF is just
𝑝𝑘𝑖

Finding a Merkle/FORS Root
We Can Sign
• Aim to sign a digest like:

xxxxxxxx xxxxxxxx xxxxxxxF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

• Modify Antonov’s multi-target preimage search to find a WOTS+ public key that
can sign this

• Treat the part that signs xxxx… as prefix – so we know 𝑠𝑘𝑖,0 for this part

• Use the last block of the prefix and the part that signs FFFF… for herding and multitarget
preimage search

• Target the SHA-256 state immediately before the first block that signs checksum

• The part that signs the checksum will come from the target honest signature

• Can forge a signature on any Merkle/FORS root of the above form as long as
checksum works out

Making Sure the Checksum
Works Out
• For a digest like:

xxxxxxxx xxxxxxxx xxxxxxxF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

• Checksum is 960 − 41 ∙ 15 − σ𝑥

• We can increment, but not decrement, digits of honest checksum
• Increment a digit by hashing (with prefix) 𝑠𝑘𝑖,𝑑𝑖

• Can choose targets with unusually small checksums

• Need σ𝑥 to be small enough with high enough probability

Batched Multicollision Search

• Best parameterization of our attack involves finding lots of 4-way collisions
with distinct prefixes

• It is cheaper to search for lots of collisions at once
• Finding a single 4-way collision costs ~2192

• Finding 𝑡 4-way collisions costs ~2192𝑡1/4

• (Ignoring prefixes and memory access costs)

• To get good memory access costs, use parallel collision search techniques

• To avoid wasting time colliding already-used prefixes
• Compute collisions in smaller batches of size α𝑡

• More detail in paper

Attack Complexity

SPHINCS+ Tweak [Hülsing 2022]

• In response to Antonov’s attack on DM-SPR the SPHINCS + team
issued a tweak to the SPHINCS+ specification
• Replaced SHA-256 with SHA-512, for hashing multi-block inputs in Category 3

and 5 parameters

• Still some use of SHA-256, but doesn’t seem exploitable

Conclusion

• Our attack shows that some submitted parameter sets of SPHINCS+

are not as strong as claimed

• The problem is not the security proof for the SPHINCS+ construction,
but how its tweakable hash functions are instantiated

• Lesson: need to be very careful trying to get more than 128 bits of
security from SHA-256

• On the upside:
• SPHINCS+’s proposed tweak seems to address these issues
• SHA-256 on fixed-length inputs pretty reliably gets 128 bits of security, so it’s

unlikely this sort of oversight leads to a practical break

Thank You!

References
[Antonov 2022] Antonov, S.: Round 3 official comment: SPHINCS+
(2022), https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/FVItvyRea28/m/mGaRi5iZBwAJ

[Hülsing 2022] Hülsing, A.: Round 3 official comment: SPHINCS+ (2022),
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/Ca4zQeyObOY

[Joux 2004] A. Joux, Multicollisions in iterated hash functions. Application to cascaded constructions, in ed. by
M.K. Franklin. CRYPTO’04. Lecture Notes in Computer Science, vol. 3152 (Springer, 2004), pp. 306–316,
https://www.iacr.org/archive/crypto2004/31520306/multicollisions.pdf

[Dean 1999] R.D. Dean, Formal Aspects of Mobile Code Security. Ph.D. thesis, Princeton University (January
1999)

[KS 2004] J. Kelsey, B. Schneier, Second preimages on n-bit hash functions for much less than 2n work, in ed. by
R. Cramer, Advances in Cryptology—EUROCRYPT 2005, 24th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Aarhus, Denmark, May 22–26, 2005, Proceedings. Lecture Notes in
Computer Science, vol. 3494 (Springer, 2005), pp. 474–490, https://eprint.iacr.org/2004/304.pdf

[KK 2005] J. Kelsey, T. Kohno, Herding hash functions and the nostradamus attack, in ed. by S.
Vaudenay. EUROCRYPT. Lecture Notes in Computer Science, vol. 4004 (Springer, 2006), pp. 183–200,
https://eprint.iacr.org/2005/281

about:blank
about:blank
about:blank
about:blank
about:blank

