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Summary of Result

• SPHINCS+ is a stateless hash-based signature selected for 
standardization by NIST

• We present a forgery attack that reduces classical security by 40 bits
• For submitted parameter sets:

• That target Category 5 

• While using SHA-256

• Our attack builds on a previous attack by Antonov on the DM-SPR 
property of SHA-256 (a security assumption for SPHINCS+)

• The SPHINCS+ team has proposed a tweak which defeats our attack by 
using SHA-512 instead of SHA-256 (where necessary)



Outline

• Hash-Based Signatures: One-time, Multi-Use, Stateless

• SPHINCS+ Basic Design, including WOTS+

• DM-SPR Property and Antonov’s Attack

• Using Antonov’s Attack to Forge WOTS+  (This Paper) 

• Optimizations (This Paper)

• The SPHINCS + Tweak

• Conclusion



Hash-Based One-Time Signature (OTS)

• Most basic hash-based signature (Lamport 1979)
• For bit 𝑏𝑖

• Generate a secret 𝑆𝑖0 for signing 0 and another 𝑆𝑖1 for signing 1 

• Public key is
𝐻(𝑆00)| 𝐻(𝑆00)| … 𝐻(𝑆(𝑛−1)0)| 𝐻(𝑆(𝑛−1)1)

• Can securely sign one 𝑛-bit digest
• Signature is:

𝑆0𝑏0| … |𝑆(𝑛−1)𝑏(𝑛−1)

• More advanced variants (e.g. WOTS+ – discussed later) 
• Reduce signature size using hash chains, etc.
• Reduce PK size by using public key hash instead

• We’ll call the thing that gets hashed the Public Key Preimage



Multi-Use Hash-Based Signature

• Hash many OTS public keys 
together in a Merkle Tree
• Only increases signature size 

logarithmically

• But all OTS keys need to be 
precomputed 

• Can get rid of precomputation 
by having OTS leaves of top tree 
sign roots of trees generated on 
the fly

• Hypertree:



Stateless Hash-Based Signature

• Create a hypertree by having multiple layers of Merkle trees with 
leaves from one signing the root of the next

• If the hypertree has enough leaves, the leaf can be chosen randomly 
with little risk of using the same leaf twice
• Can make hypertree a lot smaller by using a few-time signature to sign the 

message

• Generate OTS keypairs pseudorandomly from seed and hypertree 
location so that each upper leaf always signs the same Merkle-Tree 
root



SPHINCS+

Basic Design

• Merkle roots are signed by WOTS+

• The Focus of our attack

• (Randomized) message digest is signed by FORS
• FORS root is also signed by WOTS+

• Hypertree path to FORS key is determined by extended message 
digest



SPHINCS+
Prefixes and Distinct Function Multitarget Preimage Resistance (DM-SPR)

• Many places in hypertree where a preimage can create a forgery:
• Hashes in Merkle Trees

• Hash Chains in WOTS+

• Hash trees in FORS

• FORS public key hash

• WOTS+ public key hash (Our attack here)

• New targets are revealed with every honest signature

• To avoid a 1 out of 𝑡 multi-target preimage attack:
• Make sure hash input at each hypertree location has a distinct prefix

• Formalized as a tweakable hash function with DM-SPR property 



Merkle-Damgård (SHA-256) 
Construction

• Hash an arbitrary-sized message using a fixed-input-length compression function, F

• Break message into B-bit blocks and repeatedly use F to produce an n-bit chaining value

• For SHA-256: B=512, n=256

• MD hash is proven collision resistant if F is

• But, MD doesn’t always get more than 𝑛/2 bits of security for other properties:
• Multicollisions for multi-block messages [Joux 2004]
• Long message preimage attack [Dean 1999], [KS 2004]
• Herding attack [KK 2005]

• What about DM-SPR?



Herding Attack

• Create many messages 
• With distinct fixed prefixes
• That hash to the same value

• Build “Diamond Structure”
• Distinct prefixes result in distinct internal states (ℎ1-ℎ7)
• Use collision search on compression function to find message blocks that collide 

resulting in fewer distinct states (ℎ10-ℎ13)
• After adding logarithmically many (Above, 3) blocks to prefix, all messages hash to 

same chaining value (ℎ30)



Antonov’s Attack on SHA-256 
DM-SPR [Antonov 2022]
• Collect 𝑡 target hashes with different prefixes

• Find preimage with the same prefix for 1 of them
• Use Herding to reach same state from all prefixes at the penultimate block
• Use Multi-Target preimage search on compression function to find a block to append 

and reach a target

• Longest hash input in SPHINCS + is WOTS+ public key hash

• That’s still pretty short (34 blocks)
• To balance cost of herding, multi-target preimage search, use some compression-

function 3-collisions
• Let 𝑡 be 210323 ≈ 246 instead of 233

• 3-Collision search cost: 1.5 ∙ 323 ∙ 2170.7 ≈ 2208

• Multi-Target preimage cost: 2256/246 ≈ 2210



What’s Left to Do?

• Antonov’s attack lets us create a validly-signed WOTS+ public key 
preimage

• But we need to know the corresponding private key to forge a 
SPHINCS+ signature
• This involves knowing preimages of parts of WOTS+ public key
• For validity, prefix must match hypertree location
• But hypertree location depends which target we reached
• No way to force correct prefix for all targets

• Or at least part of it…
• As long as we can sign more than one possible digest with our WOTS+ key
• Can graft a forged Merkle-Tree root to the hypertree for less than 2256 work!



Our Attack: Outline

• Find a preimage of some WOTS+ public key with enough private key 
info to sign some digests

• Brute-force search for a valid Merkle/FORS tree whose root has 
signable digest

• Sign the tree root with the attacked WOTS+ key

• To forge a signature, try message randomization strings until the 
hypertree address is a descendent address of the tree root 



WOTS+ Signature

• Write digest as base-𝑤 (16) 
number

• Append a base-𝑤 checksum
• (960 − <sum of digits>)

• Sign each digit 𝑑𝑖 of digest plus 
checksum by:
• Hash 𝑠𝑘𝑖,0 (with prefix) 𝑑𝑖 times
• Put the result in the signature

• Note: The signature of 0xF is just 
𝑝𝑘𝑖



Finding a Merkle/FORS Root 
We Can Sign
• Aim to sign a digest like:

xxxxxxxx xxxxxxxx xxxxxxxF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 

• Modify Antonov’s multi-target preimage search to find a WOTS+ public key that 
can sign this

• Treat the part that signs xxxx… as prefix – so we know 𝑠𝑘𝑖,0 for this part

• Use the last block of the prefix and the part that signs FFFF… for herding and multitarget 
preimage search

• Target the SHA-256 state immediately before the first block that signs checksum

• The part that signs the checksum will come from the target honest signature

• Can forge a signature on any Merkle/FORS root of the above form as long as 
checksum works out



Making Sure the Checksum 
Works Out
• For a digest like: 

xxxxxxxx xxxxxxxx xxxxxxxF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

• Checksum is 960 − 41 ∙ 15 − σ𝑥

• We can increment, but not decrement, digits of honest checksum
• Increment a digit by hashing (with prefix) 𝑠𝑘𝑖,𝑑𝑖

• Can choose targets with unusually small checksums

• Need σ𝑥 to be small enough with high enough probability



Batched Multicollision Search 

• Best parameterization of our attack involves finding lots of 4-way collisions 
with distinct prefixes

• It is cheaper to search for lots of collisions at once
• Finding a single 4-way collision costs ~2192

• Finding 𝑡 4-way collisions costs ~2192𝑡1/4

• (Ignoring prefixes and memory access costs)

• To get good memory access costs, use parallel collision search techniques

• To avoid wasting time colliding already-used prefixes
• Compute collisions in smaller batches of size α𝑡

• More detail in paper



Attack Complexity



SPHINCS+ Tweak [Hülsing 2022]

• In response to Antonov’s attack on DM-SPR the SPHINCS + team 
issued a tweak to the SPHINCS+ specification
• Replaced SHA-256 with SHA-512, for hashing multi-block inputs in Category 3 

and 5 parameters

• Still some use of SHA-256, but doesn’t seem exploitable



Conclusion

• Our attack shows that some submitted parameter sets of SPHINCS+

are not as strong as claimed

• The problem is not the security proof for the SPHINCS+ construction, 
but how its tweakable hash functions are instantiated

• Lesson: need to be very careful trying to get more than 128 bits of 
security from SHA-256

• On the upside:
• SPHINCS+’s proposed tweak seems to address these issues
• SHA-256 on fixed-length inputs pretty reliably gets 128 bits of security, so it’s 

unlikely this sort of oversight leads to a practical break



Thank You!
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