8. Research in Green Software

Sustainable Software Engineering
CS4295

i" A | Luis Cruz

:‘ﬂ L.Cruz@tudelft.nl

SustainableSE 2023

mailto:l.cruz@tudelft.nl

1. Energy patterns for mobile apps
2. Energy efficiency across programming languages
3. Carbon-aware datacenters

 While learning about these works, try to be critical about them and find their
pitfalls.

* \We have seen that measuring energy consumption is not trivial

* |t is not practical considering that developers have other priorities above
energy efficiency

* At the same time, every now and then there are some efforts to improve
energy efficiency in some cases. This is time consuming and requires

expertise.

 How can we reuse these efforts?

Energy Patterns for Mobile
Apps

https://tgrg.qithub.io/energy-patterns/

Empirical Software Engineenng {2019) 24:2209-2235
https:/fdol.org/10.1007/510664-019-09632-0

®

Catalog of energy patterns for mobile applications Check for
updatas

Luis Cruz' 0 . Rul Abreu?

Published online: 5 March 2012
@ Springer Science-Business Media, LLC, part of Springer Nature 2019

Abstract

Softwarc cnginccrs make usc of design patterns for reasons that range from performance
to code comprehensibility. Several design patterns capturing the body of knowledge of best
practices have heen proposed in the past namely ereational, structural and behavioral pat-
tems. However, with the advent of mobile devices, it becomes a necessity a catalog of design
palterns lor energy elliciency. In this work, we inspect commils, issues and pull requests of
1027 Android and 756 108 apps to identily common practices when improving energy elTi-
ciency. This analysis yielded a catalog, available online, with 22 design pattemns related o
improving the energy efficiency of mobile apps. We argue that this catalog might be of rel-
evance to other domains such as Cyber-Physical Systems and Interet of Things. As a side
contribution, an analysis ol the dilTerences between Android and 108 devices shows that
the Android community 18 morc cnergy-awarc.

Keywords Maohile applications - Energy cfficicney - Encrgy patierns - Catalog -
Open source software

1 Introduction

The importance of providing developers with more knowledge on how they can modify
mobile apps to improve cnergy cfficicncy has been reported in previous works (Li and Hal-
fond 2014: Robillard and Medvidovic 2016). In particular, mobile apps often have encrgy
reguiremenls hul developers are unaware thal energy-specilic design patterns do exist (Man-
olas et al. 2016). Mareover, developers have 1o support multiple platforms while providing
a similar user expericnee (An ctal, 2018).

Communicated by: David Lo, Meivappan Nagappan, Sebastiano Panichella, and Fabio Palomba

F1 Tais Cruz
ludserue @ fe up.pt

Methodology

1. App Collection 17813
. . .
© F-droid 6’3\ Curated Lists apps
2. Collect Changes With Potential Interest 0028
/ . * (energy | power |battery) . */ changes
3. Manual Refinement of Subjects of 1503
Interest changes
5 431
J"Eﬂ\ 4. Thematic Analysis reysable
— changes
27

g 5. Catalog of Energy Patterns

patterns

Thematic Analysis

1. Familiarization with data

2. Generating initial labels

3. Reviewing themes

4. Defining and naming themes

 Energy Pattern: design pattern to improve enerqgy efficiency..
e 22 energy patterns.

 Each pattern is described by Context, Solution, Example, References from
literature, and Occurences (links to code changes from git repositories).

Galia (0)(5)(o)

© Energy Patterns for Mobile Apps

A visualization with prevalence and co-occurence of patterns can be found here.
LTI This catalog has been accepted to the Journal of Empirical Software Engineering. Check
out the preprint.

& show all patterns

Dark Ul Colors
Provide a dark Ul color theme o save ballery

on devices with AMOLED screens.

Context

Screen is one of the major source of power
consumption on mobile devices. Apps that require LOP\E\\‘\
heavy usage of screen (e.g., reading apps) can have a (CSUM
big impact on battery life. l-r\;__@ﬁ

(rcanre

Solution

Provide a Ul with dark background cclors. This is particularly beneficial for mobile devices with
AMOLED screens, which are more energy efficient when displaying dark colors. In some cases,
it might be reasonable to allow users to choose between a light and & dark theme. The dark

theme can also be activated using a special trigger (e.g., when battery is running low).
Display a menu

https://tgrg.github.io/energy-patterns

https://tqrg.github.io/energy-patterns

Dark Ul Colors

Provide a dark Ul color theme to

save Dbattery on devices with
AMOLED screens.

 Context: [...] Apps that require heavy usage of screen can
have a substantial negative impact on battery life.

e Solution: Provide a Ul theme with dark background colors. [...]

« Example: In a reading app, provide a theme with a dark
background using light colors to display text. [...]

Dark Ul Colors

Provide a dark Ul color theme to

save Dbattery on devices with
AMOLED screens.

 Context: [...] Apps that require heavy usage of screen can

have a substantial negative impact on battery

ife.

e Solution: Provide a Ul theme with dark background colors. [...]

« Example: In a reading app, provide a tr

background using light colors to display text. |..

11

eme with a dark

|

Dynamic Retry Delay

Whenever an attempt to access a

resource fails, Increase the time '
interval betfore retrying. % /\

Context: [...] In a mobile app, when a given resource Is
unavailable, the app will unnecessarily try to connect the resource
for a number of times, leading to unnecessary power consumption.

e Solution: Increase retry interval after each tailed connection. |...]

« Example: Consider a mobile app that provides a news feed and
the app is not able to reach the server to collect updates. [...] use
the Fibonacci series to increase the time between attempits.

12

Batch Operations

 Context: Executing operations separately leads to extraneous
tall energy consumptions

* Solution: Bundle multiple operations in a single one. |[...]

« Example: Use system provided APIs to schedule backgrounad
tasks. These APls, guarantee that device will exit sleep mode
only when there is a reasonable amount of work to do or when a
given task is urgent. [...]

13

Avoid Extraneous Graphics and
Animations

Despite being iImportant to iImprove user experience, graphics
and animations are battery intensive and should be used with
moderation.

 Context: Mobile apps that feature impressive graphics
and animations. |...]

 Solution: Study the importance of graphics and
animations to the user experience and reduce them when
applicable. [...]

 Example: Resort to low frame rates for animations when
possible.

14

QO
G o O
—
w S 2
c 0o
- 3 <
283
®© - O
. n L =
.m > Q dﬂu purwa(] U ‘OUAG [enuey
g0 2 O i wiuy N ydeio) "e1xyg pPloAy
nnv = c UOT}ORIDUI USSIOS ON
- - LLl SHSE], [eULIOU]Y [

uoIsn,J J0SU9S
uornjosal ybnouyg
SI9S() ULIOJU]

1S9g SMoUY J19SN
91y 9SROINI(]
ayoe)

suorjeiad() yoleg

SPboT ssaaddng

Ie[n[[a) I8A0 TJIM
9Z1g 90NPaY

Energy Pattern

SSouaIeMy JoMOJ

OPOJN 9ARS JoMOJ

[10d I2A0 Ysnd

AIeSS900N UBUM ATuQ uad(
o[PI-0]-90®€Y

MIOA SNOSURIIXH PIOAY
Ae19(1 A119Y OTWRUA(]

SI0TO0D 1IN JJIed

Example case: Nextcloud

Google Play

. GETITON
k »>

= = i Droid

’ Available on the

' App Store

f

. - - e . I
Server accress ntpsiy .

https://cloud.nextcloud.com

a Secure connection established

john
Password

NEW TO NEXTCLOUD?

©

CONNECT

\

nweeE P 8 % 1l 2al 76% m 15:43

Nextcloud Q

Documents

Photos

hirschmilch_d...rcg_hous.pls

Nextcloud.mp4

Nextcloud.png

Example case: Nextcloud

* Users complain that sometimes they go on a trip and Nextcloud drains their
battery. Users consider uninstalling the app when battery life is essential.

* File sync can be energy-greedy. Send large files to the server, long 3G/4G data connections.
* |t is mostly used for backup. No real-time collaboration is needed.

* Energy requirements vary depending on context and user. Some days you really
need all the battery you can get.

o https://github.com/nextcloud/android/commit/
8bc43202/7e0d33e8043ct40192203203a40ca29c

Solutions?

17

https://github.com/nextcloud/android/commit/8bc432027e0d33e8043cf40192203203a40ca29c
https://github.com/nextcloud/android/commit/8bc432027e0d33e8043cf40192203203a40ca29c

xample case: K-9 mail

Accounts
&.

Syncing disabled
Unified Inbox

Al messages in unified folders

All messages
Al messages in scarchable folders

Personal
3.3MB *] @

Club
225 0KB

[GETITON
b\ Google Play

|f ' GET IT ON

F-Droid

.\‘
7

GETITON

amaz@en
v‘.’

GETIT ON

GitHub

" |

—

Work 'S 2 i

1.5MB

)

18

\

=0 1430

- Turing Award 3

Syncing disabled

Flements of Interaction 3/20/2013

Robin Milner | am greatly honored to receive this
award, bearing the name of Alan Turing. Perhaps

The Paradigms of Programming 3/20/2013

Robert Floyd Today ' want to talk about the
paradigms cf programming, how they affect our

One Man's View cf Computer Science 3/20/2013

Richard Hamming Let e begin with a few
persona words. When one is notified thal he has

Computers Then and Now 3/20/2013

Matrrice V. Wilkes | do not imagine that many of
the Turing 'ecturers whe will fcllow me wil' he

Notetion as a Tool of Thought 3/20/2013

Kenneth E. Iverson The importance of
nomenciature, notation, and language as tools of

Can Programming Be | iberated from. 3/20/2013

John W. Backus Conventional programming
languages are growing ever morc enormous, but

Generality in Artifcial Intelligence 3/20/2013

John McCarthy Postscript My 1971 Turing Award
Lecture was entitled "Generality in Artificial

r - N
o, — nd

——

Example case: K-9 mail

« Some users noticed that K-9 mail was spending more energy than usual. &

* A user that was having issues with a personal mail server noticed that K-9

mail was the one of the most energy-greedy apps. IMAP IDLE protocol for real-time
notifications.

 When a connection is not possible, the app automatically retries later.

o https://github.com/k9mail/k-9/commit/
86f3b28f79509d1a4d613eb39f60603e0857/9¢ea3

Solutions?

19

https://github.com/k9mail/k-9/commit/86f3b28f79509d1a4d613eb39f60603e08579ea3
https://github.com/k9mail/k-9/commit/86f3b28f79509d1a4d613eb39f60603e08579ea3

EcoAndroid

* Plugin for Intellid (Android Studio ‘

JET
BRAINS Marketplace Edu Cours

 Dynamic Retry Delay o AT droid

% % & ¢ Comngalibe with aleli) DEA (Utanate, Cormurity
Ecolindroid Educaticna), Anc-oic Studo
Software Reliability L23

+ Push Over Poll e

N
)

es Themes Pluginldeas Build Plugine @ Signn

Get

e Reduce Size

e Cache

Cevandrod suggesls Ta havea full functionzlity yau have to accept Flugin Marketplace Agreemans: X s based or e idez ol

onorgy pattorn an d it rEr amresay eSen Uses 1O IMProve TNe enerny SMICICHSy O aozZens oF ANarold appicatons

* Avoid Graphics and Animations

20

Energy Efficiency Across
Programming Languages

Rui Pereira, Marco Couto, Francisco Ribeiro, Rui Rua, Jacome
Cunha, Joao Paulo Fernandes, and Joao Saraiva

https://sites.google.com/view/energy-efficiency-languages

21

Energy Efficiency across Programming Languages
How Do Energy, Time, and Memory Relatle?

Rari Pereira Mareo Couto Francisco Ribeira, Rui Rua
ELASLab/INESC TEC HASLab/INESC TEC HASLab/AINESC TEC
Universidade do Minho, Purtugal Universidade do Minhe, Pertugal Universidade do Minho, Poctugal

ruipercira@di.uminha pt marco Leoutal@inesctec.pt triheira@diuminho pt

rruagd di.uminhopt

Jacome Cunha Jodo Paulo Fernandes Jodo Saraiva
NOVA LINCS DL FOT Relesisef/LISP. CISUC HASLulINESC TEC
Cniv Nova de Lishoa, Portugal Universidade de Cowunbra, Portugal Unwversidade do Mmho, Portugal

Jacamed@tetunlpt jpr@sleiuc . pt saraivai@cdi.uminho.pt

Abstract

This paper presents a sbucdy of the mntime. memory nsage
end energy consumption of twenty scven well known soft
wire Languages We munitor the perforoaance ul such Lus-
gnages naing ten difterent programming prablems, expressed
it esch of the Janguages. Our rezults show interesting fing-
ing= such us, slower/lusier angzapes consuming, kessfmore
cncrgy, and how memory usage wflucnces coergy consump
tvn. We show how Lo use our results (o provide sollware
engineers suppart ta decide which language to nae wwhen
ENneXzxy eﬁ\mncv L5 a concern

COS Conceptx « Soltware and ity engineering — Soflt-
ware performance; General programming languages;

Keypwords Fnergy Fricieney, Pragramming Langna pes, Lan
guage Benchmarking Green Seftware

ACM Rulerenve Formal:

Fui Pereira, Marco Couto, Prancsco Risero, Ruz Rus, Jicome Cuanba,
Indn Padn Fermandec, and Jadn Saraiva. 20075, Fnerpye 'ficiency
MRS I’m:'rumm "y l.xrl-‘uul:rv How N Froeryly, Timn aml Memi-
ury Rl Tn .c'mmr."'iab.& x:.'. 1T AT SR AN Saternedionud
Canlirenve on Suflwure Larguage Enpinecering (GLEIT) ACNM, Now
York NY, USA, 12 pages. hetps 'dolarg 70,1145/ 2132014, 2136031

1 Introduction
Softosare language engineering provides powerful techniques

amit toals Lo desipn, implement amd evolve sallware Lan-

-

E_IIRW‘,‘, Such N‘i‘.hl‘.il’llﬂﬂ Aim at 2"\')1“‘1’"!‘[PIT\E?AH\I‘TII‘.I‘

Permisniar sa =take & ptal or hard copies af all o0 ot of “hie wark for
presonsl co cliarioo soric pranied withot Tee proeideal “hal capiec sav nnl
made or Erdhmtes foe preoft ee somyneecal sdvantage and shat copres hear
Eroerntion and e tnlleian conon e it geoge Capgriphile T anmporsnts
nhthe week cowned =y athees thon ACR et ke honared Ahetrarsing with
ol G pennitied Te oy oteraiss anrepalilion o pod cowssmcarnd
rrdictribnite bo Face requires price oaeribe femvisian wedor s fre Tl et
Pt cens fiven pwe sabsveails sl
ST Cpsber e, 200, Vimeauews, Catade
¥ NT Asensation hee Camparting Mashivary
AN LN 57 L01-2583 =L I L SR

ARV I

productivity by tecorporeting edvanced features in the lan

guigge design ke for instance powerfu] modular and type
systems - and at etficiently exeonte such software - by de

veloping, for example, azzressive compeler optimizations.
Trebesend, st techmigques were tevelopesd with the main goal
of Ielpme software developers o producing faster programs.
In [acl, in the Just cenlury performance in sollwace languages
was in almast all cases symanymous of fase axecition tinue
{embedded svsteps were probably the single exception).

In thix century, this rezlity is gueckly changing and alt-
WAIC cnergy consumption is becoming a key concern for
compnter wanufacturers, sotbware langrage engineers, pro
gramuners, uod even repular compuler users. Nowadays, il
ozl o see mehile phane wsers (which ane powaerll com
paters) avoldmg using CPU ntensive applicatzons just to
save ballery/energy. While the convern on the compulers’
encrgy efficiency started hy the hardware manitacturers, it
quickly became a concern for software developers too [28].
In fuet, thicis n rerent anld intensivie ang ol research whers
several techuugues to apalyze and optimize the energy con
sumplion of svllware svstems are being developed. Such
techniques already pravide knowledge on the energy offi
crercy of data stroctures (15, 27] and android language [25],

impact af diflerent propramming prictices nth in

y | and desktop applications [26, 22], the en
ergy elficiency of spplicativas within the same seepe [217].
or caen on how ta predict energy cansumption in several
software systems 1, 11], among saveral other works.

Aninteresting questinn that frequeently arises in the sall-
ware cacrgy cfficiency arca s whether a fasrer program is
wlse an energy eflivient program, or not. I the wns wer is ves,
then apBmizing a pragram far speed alsa meanz optimizing
it for epergy, and tlus is exacthy what the compiler con-
struction community his been handly doing sinee the very
beginnmg of software languages, However, cncrgy consump
lwen does ol depends valy on execubion bme, ws shown
m the mpuation Eeo = Tine X P In liel there ane

several research works showing different recalts regarding

https://sites.google.com/view/energy-efficiency-languages

* |s a faster programming language also more energy efficient?
 Comparing different programming languages is not an easy task.
* They differ in many mechanisms:
* Interpreted vs Compiled
* Optimisations at the compiler level
* Virtual machine
» Garbage collector

e Avalilable libraries

22

Research Questions

« Can we compare the energy efficiency of software languages”
* |s the faster language always the most energy efficient?
* How-does-memory-usage-relate-to-energy-consumption?-(\We donr’tcoverthisone)

 Can we automatically decide what is the best programming language
considering energy, time, and memory usage”?

 How do the results of our energy consumption analysis of programming
languages gathered from rigorous performance benchmarking solutions
compare to results of average day-to-day solutions?

23

Methodology

The Computer Language Benchmarks Game

e https:.//benchmarksgame-team.pages.debian.net/benchmarksgame/

o ® [[] < > [) & benchmarksuame-team.pages,.debian.net e ¢

The Computer Language
22.02 Benchmarks Game

“Which programming language 1is
fastest?”

Let's go measure ... benchmark programs !

Fastest means lowest .. cpu seconds?

C++ C Rust Fortran Julia Ef

Ada Chapel Haskell Go Pascal

F# OCaml Java Swift JavaScript

Lisp Dart Racket PHP Erlang

Lua Python Smalltalk Ruby Perl

{ box plot summary charts }

25

https://benchmarksgame-team.pages.debian.net/benchmarksgame/

Problems in the Computer Language Benchmarks Game

Benchmark

Description

[Input

n-body
fannkuch-redux
spectral-norm
mandelbrot
pidigits
regex-redux
fasta
k-nucleotide
reverse-complement
binary-trees
chameneos-redux
meteor-contest
thread-ring

Double precision N-body simulation

Indexed access to tiny integer sequence

Eigenvalue using the power method

Generate Mandelbrot set portable bitmap file
Streaming arbitrary precision arithmetic

Match DNA 8mers and substitute magic patterns
Generate and write random DNA sequences
Hashtable update and k-nucleotide strings

Read DNA sequences, write their reverse-complement
Allocate, traverse and deallocate many binary trees
Symmetrical thread rendezvous requests

Search for solutions to shape packing puzzle
Switch from thread to thread passing one token

50M

12

5,500
16,000
10,000

fasta output
25M

fasta output
fasta output
21

6M

2,098

50M

e 27 Programming languages across different paradigms
* Functional (e.g., Ocaml, F#, Haskell)
* Imperative (e.g., C, Go, Python)
 Object-oriented (e.g., C++, C#, Java)
» Scripting (or interpretative) (e.qg., JavaScript, Python, Ruby)
e (These are not mutual exclusive)

* Intel RAPL’s C library to measure energy consumption

27

 Execute each benchmark solution 10 times.
* Collect energy data and timestamps.

e Two-minute interval between executions

28

binary-trees

Energy (J)

39.80

Time (ms)
1125 0.035

Ratio (J/ms)

Mb
131

(c) C++ 41.23 1129 0.037 132

(c) Rust >

(¢) Fortran 14

(c) Ada {4

(c) Ocaml |1 12

49.07
69.82
95.02
100.74

1263 0.039
2112 0.033
2822 0.034
3525 0.029

180
133
197
148

(v) Java 11 16 111.84 3306 0.034 1120

v) Lisp |3 U3
v) Racket |4 s
i) Hack 12 {9
v)GF 1 U
v)F#F |3

c) Pascal |3 15
c) Chapel 15 114

v) Erlang 15 1
) Haskell 12 {>

i) JavaScript |2 4

i) TypeScript |2 {2
) Go 13 fhi3

i) Jruby 12 {3

149.55
155.81
156.71
189.74
20713
214.64
237.29
266.14
270.15
290.27
312.14
315.10
636.71
720.53
855.12

10570 0.014
11261 0.014
4497 0.035
10797 0.018
15637 0.013
16079 0.013
7265 0.033
7327 0.036
11582 0.023
17197 0.017
21349 0.015
21686 0.015
16292 0.039
19276 0.037
26634 0.032

373
467
502
427
432
256
335
433
494
475
916
915
228
1671
482

1,397.51 42316 0.033 786
1,793.46 45003 0.040 275
2,452.04 209217 0.012 1961
3,542.20 96097 0.037 2148

i) Python fts

(
(
(
(
(
(
(
(
(c
(i 1
(
(
(c)
(
(i
(i
(
(i
(i
(c

binary-trees

Energy (J) Time (ms) Ratio (J/ms) Mb
(c) C 39.80 1125 0.035 131
(c) C++ 41.23 1129 0.037 132
(c) Rust |}, 49.07 1263 0.039 180
(c) Fortran 1t 69.82 2112 0.033 133
(c) Ada 1 95.02 2822 0.034 197
(c) Ocaml |1 1 100.74 3525 0.029 148
(v) Java t1 116 111.84 3306 0.034 1120
(v) Lisp {3 3 149.55 10570 0.014 373
(v) Racket |4 U6 155.81 11261 0.014 467
(i) Hack 12 9 156.71 4497 0.035 502
(v) C# |1 4 189.74 10797 0.018 427
(v) F# |3 {4 20713 15637 0.013 432
(c) Pascal |3 15 214.64 16079 0.013 256
(c) Chapel 15 14 237.29 7265 0.033 335
(v) Erlang 15 11 266.14 7327 0.036 433
(c) Haskell 12 > 270.15 11582 0.023 494
(i) Dart |1 11 290.27 17197 0.017 475
(i) JavaScript |2 4 312.14 21349 0.015 916
(i) TypeScript |2 > 315.10 21686 0.015 915
(c) Go 13 13 636.71 16292 0.039 228
(i) Jruby 1> 3 720.53 19276 0.037 1671

855.12 0.032 482

(i) Ruby 15

- P —

26634

P P —

Normalized global results for Energy, Time, and Memory.

Total

Energy (]) Time (ms) Mb
(c) C 1.00 (c) C 1.00 (c) Pascal 1.00
(c) Rust 1.03 (c) Rust 1.04 (c) Go 1.05
(c) C++ 1.34 (c) C++ 1.56 (c) C 117
(c) Ada 1.70 (c) Ada 1.85 (c) Fortran 1.24
(v) Java 1.98 (v) Java 1.89 (c) C++ 1.34
(c) Pascal 214 (c) Chapel 2.14 (c) Ada 1.47
(c) Chapel 2.18 (c) Go 2.83 (¢) Rust 1.54
(v) Lisp 2.27 (c) Pascal 3.02 (v) Lisp 1.92
(c) Ocaml 2.40 (c) Ocaml 3.09 (c) Haskell 2.45
(c¢) Fortran 2.52 (v) C# 3.14 (i) PHP 2.57
(c) Swift 2.79 (v) Lisp 3.40 (c) Swift 2.71
(c) Haskell 3.10 (c) Haskell 3.55 (i) Python 2.80
(v) Gi# 3.14 (c) Swift 4.20 (c) Ocaml 2.82
(c) Go 3.23 (c) Fortran 4.20 (v) C# 2.85
(i) Dart 3.83 (v) F# 6.30 (i) Hack 3.34
(v) F# 413 (1) JavaScript 6.52 (v) Racket 3.52
(i) JavaScript 445 (i) Dart 6.67 (i) Ruby 3.97
(v) Racket 7.91 (v) Racket 11.27 (c) Chapel 4.00
(i) TypeScript 21.50 (i) Hack 26.99 (v) F# 425
(i) Hack 24.02 (i) PHP 27.64 (i) JavaScript 459
(i) PHP 29.30 (v) Erlang 36.71 (i) TypeScript 469
(v) Erlang 42.23 (i) Jruby 43.44 (v) Java 6.01
(i) Lua 4598 (i) TypeScript 46.20 (i) Perl 6.62
(i) Jruby 46.54 (i) Ruby 59.34 (i) Lua 6.72
(i) Ruby 69.91 (i) Perl 65.79 (v) Erlang 7.20
(i) Python 75.88 (i) Python 71.90 (i) Dart 8.64
(i) Perl 79.58 (i) Lua 82.91 (i) Jruby 19.84

Critical thinking

* There is no doubt this is an excellent study. Yet, as any excellent study, there’s
a lot we can discuss and criticise constructively.

 What kind of issues you see in drawing conclusions from such a table of
results?

* |s the benchmark representative of the most common usage behaviour?

* Are the implemented solutions representative”?

* Does it make sense to use the average to compare energy consumption
across different problems?

32

Reproducing with Rosetta Code

(?)
 Rosetta Code is a programming chrestomathy repository

< chrestomathy

/kre 'stomaBi/

noun FORMAL

a selection of passages from an author or authors, designed to help in learning a language.

* 900 usecases/tasks solved across 700 different programming languages

 Purpose: if you know a programming language we can easily learn how the
same task is solved in a language you are not familiar with.

33

Remove-duplicates

(c) Rust
(c) C++
(c) C

(c) Go

(1) Lua

(i) Perl

(i) JavaScript
(v) Erlang
(v) Java
(i) PHP

(i) Python
(i) Ruby
(v) Racket

Time (ms)

1

5

10
13
21
53
73
96

Rosetta Code global ranking based on Energy.
Rosetta Code Global Ranking

Position Language

C

Pascal

Ada

Rust

C++, Fortran
Chapel

OCaml, Go

Lisp

Haskell, JavaScript
Java

PHP

Lua, Ruby

Perl

Dart, Racket, Erlang
Python

1
2
3
4
5
6
7/
8

Revisiting Research Questions

 Can we compare the energy efficiency of software languages?

* |s the faster language always the most energy efficient?

 Can we automatically decide what is the best programming language considering
energy, time, and memory usage?

 How do the results of our energy consumption analysis of programming
languages gathered from rigorous performance benchmarking solutions
compare to results of average day-to-day solutions?

 What would happen if we cherry picked the tasks?

36

arbon-Aware Computing for

Datacenters

Ana Radovanovic’, Ross Koningstein, lan Schneider, Bokan
Chen, Alexandre Duarte, Binz Roy, Diyue Xiao, Maya
Haridasan, Patrick Hung, Nick Care, Saurav Talukdar, Eric
Mullen, Kendal Smith, MariEllen Cottman, and Walfredo Cirne

https://sites.google.com/view/energy-efficiency-languages

37

o
P~
-
N
-
=
=~
O
=
o
O
-
=
S~
lrl
[\
\O
2
S~
-
>
P
—
—

-

«

Carbon-Aware Computing for Datacenters

Ana Radovanovi€¢, Ross Koningstein, lan Schneider, Bokan Chen, Alexandre Duarte, Binz Roy, Diyue Xiao,
Maya Handasan, Patrick Hung, Nick Care, Saurav Talukdar, Eric Mullen, Kendal Smith, MariEllen Cottman, and
Walfredo Cime

Abstract—The amount of CO,; emitted per Kilowatt-hour on
an chectricity grid varies by time of day and substantially
varies by location due to the types of generation. Networked
collections of warchouse scale computers, sometimes called Hy-
perscale Computing, emit more carbon than needed if operated
without regard to these variations in carbon intensity, This pa-
per introduces Google's system for Carbon-Intelligent Compute
Management, which actively minimizes electricity-based carbon
footprint and power infrastructure costs by delaying temporally
flexible workloads. The core component of the system Is a sulte of
analytical pipelines used to gather the next day's carbon intensity
forecasts, train day-ahead demand prediction models, and use
risk-aware optimization to generate the mext day's carbon-aware
Virtual Capacity Curves (VOCs) for all datacenter clusters across
Google’s fleet. VCCs impose hourly limits on resources available
to temporally flexible workloads while preserving overall daily
capacity, enabling all such workloads to complete within a day.
Data from operation shows that VOCs effectively limit hourly
capacity when the grid’s energy supply mix is carbon intensive
and delay the execution of temporally fexible workloads to
“greener’” times.

Index Terms—Dutacenter computing, carbon- and efficiency-
aware compute management, power management.

1. INTRODUCTION

Demand for computing resources and datacenter power
worldwide has been continwously growing, now accounting
for approximately 1% of total electricity usage [1). Between
2010 and 2018, global datacenter workloads and compute
instances increased more than sixfold [1). In response, new
methodologies for increasing datacenter power and energy
efficiency are required to limit their growing environmental,
economic and performance impacts [2), [3).

The datacenter industry has the potential to facilitate carbon
emissions reductions in electricity grids, A considerable fraction
of compute workloads have flexibility in both when and where
they run. Given that emissions from electricity production
vary substantially by time and location [4}-[7), we can exploit
load flexibility to consume power where and when the grid
is kess carbon intensive, By effectively managing its load,
the datacenter industry can contribute to a more robust,
resilient, and cost-cfficient energy system, facilitating grid
decarbonization. Electric gnd operators, in turn, can possibly
benefit by as much as EUR | Blyear [8).

Furthermore, shifting execution of flexible workloads in
time and space can decrease peak demand for resources and

The authors are with Google, Inc. Moustain View, CA, 98043 (Emsaul:
ssaradovanovic® google com, ross @ googhe com, ischaeid @ google com,
bokanchen @ google com, alexandredu® googhe com, binzroy @ google com,
diyeexiao @ google.com, haridasan® poogle com, pfhung @ google.com,
ncare @ google com, stalukdar@google com, encmullen @ google.com,
kendalumith @ google com, meacottman® pooghe com, walfrodo @ google com)

power. Since datacenters are planned based on peak power and
resource usage, smaller peaks reduce the need for more capacity.
Not only does this save money, it also reduces environmental
impacts.

This paper describes the methodology and principles behind
Google's system for Carbon-Intelligent Compute management,
whach reduces grid carbon emissions from Google's datacenter
clectricity use and reduces operating costs by increasing
resource and power efficiency. To accomplish this goal, the
system hamesses the temporal flexibility of a significant fraction
of Google's internal workloads that tolerate delays as long as
their work gets completed within 24 hours, Typical examples
of such workloads are data compaction, machine leamning, sim-
ulation, and data processing (¢.g., video processing) pipelines -
many of the tasks that make information found through Google
products more accessible and useful. Note that other loads
include user-facing services (Search, Maps and YouTube) that
people rely on around the clock, and our cloud customers’
workloads running in allocated Virtual Machines (VMs), which
are not temporally fiexible and therefore not affected by the
new system,

Workloads are comprised of compute jobs. The system needs
o consider compute jobs’ arnval patterns, resource usage,
dependencies and placement consequences, which generally
have high uncertainty and are hard 1o predict (ie., we do
not know in advance what jobs will run over the course
of the next day). Fortunately, in spite of high uncertainties
at the job level, Googles flexible resource usage and daily
consumplion M a cluster-level and beyond have demonstrated
1o be quite predictable within a day-ahead forecasting hoeizon.
The aggregate outcome of job scheduling ultimately affects
global costs, carbon footpeint, and future resource utilization.
The workload scheduler implementation must be simple (ie.,
with as hule as possible computational complexity in making
placement decisions) to cope with the high volume of job
requests.

The core of the carbon-aware load shaping mechanism is a
set of cluster-level (9] Virtual Capacity Curves (VCOCs), which
are hourly resource usage limits that serve to shape each cluster
resource and power usage profile over the following day. These
limits are computed using an optimization process that takes
account of aggregate flexible and inflexible demand predictions
and their uncertainty, hourly carbon intensity forecasts [10],
explicit charactenzation of business and environmental targets,
infrastructure and workload performance expectations, and
usage limits set by energy providers for different datacenters
across Google’s fleet.

The cluster-level VCCs are pushed to all of Google's
datacenter clusters prior to the start of the next day, where they

https://sites.google.com/view/energy-efficiency-languages

LOW CARBON HIGH CARBON LOW CARBON
INTENSITY INTENSITY INTENSITY

default cluster capacity

virtual capacity curve (VCC)
delayed to next day

previous day’s W//
flexible load, -

* Google’s Carbon-Intelligent Computing System (CICS)
 Main idea: use carbon-intensity data to shift datacenter jobs in time

* Typically, job schedulers use a metric of cluster capacity to schedule a job in
a particular cluster.

* CICS overrides this metric with the virtual capacity curve (VCC) that
factors in Carbon intensity

 When a new job comes in, the scheduler estimates its CPU load and power
usage and assigns it to a cluster if the VCC is not exceeded.

39

e Jobs are divided between flexible and inflexible.

* Flexible load is considered shapeable/shiftable as long as its total daily
compute (CPU) demand is preserved

* The system needs to consider that, while running a job, the virtual capacity
curve (VCC) might drop. Hence, this job should not start in the first place.

* They forecast VCC for the next day

40

LOW CARBON HIGH CARBON LOW CARBON
INTENSITY INTENSITY INTENSITY

default cluster capacity

virtual capacity curve (VCC)
delayed to next day

previous day’s W//
flexible load, -

Virtual Cluster Capacity (VCC)

 Aims at reducing the peak load at carbon intensive hours but in total it should allow for the
some amount of daily computation!

 Factors in Carbon intensity

* Using data from electricityMap.org

* |t does not use carbon intensity directly.
Carbon intensity is converted to a cost (kgCO2 -> $9%)

* This way, they can factor in other metrics that can also be converted to money. E.g., the
cost saved by preventing peak load

* Peak workload entails extra cost at the infrastructure level (e.g., control faclities’
temperature).

* By using money cost instead of carbon cost, they have more data available.

42

http://electricityMap.org

Virtual Cluster Capacity (VCC)

 |f the forecast of VCC fails it might lead to shifting flexible workload more than
expected.

* This happens because the amount of workload forecasted was below the
workload needed and VCC was “aggressively” low.

* The systems falls back to the real cluster capacity for 1 week until results
start being realistic again.

43

Next steps

* They will consider spatial-flexibility
e |.e., tasks that can be shifted over time and over space.

* |t needs to factor in relocation overheads, though

44

Critical questions

e Who defines what is flexible and inflexible?

* How do you estimate the CPU load of a given task?

45

