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Outline:

q Introduction

q Overview of recent proposed models 

q Numerical Experiments
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Introduction
:

The importance of weather forecasting 
can be seen in:

• Agriculture and Tourism 
• Transportation
• Aviation
• Mining
• Construction
• Sports 
• ….
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Weather prediction :

q Data driven modelling:

• Learn from spatio-temporal historical weather variables to predict the future of the target variables.   

q Numerical weather prediction (model-driven): 

• Uses mathematical models derived from physical principles to predict the weather variables
• Requires immense computing power and time
• The uncertainties in the initial conditions of the governed differential equations (i.e. measurement noise)
• Incomplete understanding of complex atmospheric processes (i.e. process noise)
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Problem statement :

o Data driven modelling of complex systems.

o Wind speed prediction using spatio-temporal historical records.

o Precipitation nowcasting
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Related works on weather elements forecasting:

- RNN based models 
- CNN based models
- Graph based models
- Encoder-Decoder based models

• S. Xingjian et al., Convolutional LSTM network: a machine learning approach for precipitation nowcasting, NIPS 2015, pp. 802-810
• Duan Jikai et al., Short-term wind speed forecasting using recurrent neural networks with error correction, Energy, 2021.
• S. Mehrkanoon, Deep Shared representation learning for weather elements forecasting, Knowledge-based systems, vol. 79, pp. 120-128, 2019.
• K. Trebing and S. Mehrkanoon, Wind speed prediction using multidimensional convolutional neural networks, IEEE-SSCI, vol. 79, pp. 713-720, 2020.
• T. Stanczyk and S. Mehrkanoon, Deep Graph Convolutional Networks for Wind Speed Prediction, In proc. of ESANN,  pp. 147-152, 2021.
• S. Mehrkanoon, SmaAt-UNet: Precipitation nowcasting using a small attention-UNet architecture, Pattern Recognition Letters, Vol. 145, Pages 178-186, 2021.
• Jesús García Fernández  et al., Deep coastal sea elements forecasting using UNet-based models, Knowledge-Based Systems, vol. 252, pp. 2022.
• Jesús García Fernández  et al , Broad-UNet: Multi-scale feature learning for nowcasting tasks, Neural Networks, vol 144, pp. 419-427, 2021. 
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Let us assume that: 

• The number of weather stations is q. 
• Total number of weather elements is p. 
• 𝑦!

"! 𝑡 :  The j-th weather element of the i-th station at time t.

For modelling the target 𝑦!
"" 𝑡 , one can construct the following regressor vector at time 𝑡.

𝑦!
"! 𝑡 = 𝑓

𝑦#
"! 𝑡 − 1 , . . . , 𝑦$

"! 𝑡 − 1 , … , 𝑦#
"! 𝑡 − 𝑑 , . . . , 𝑦$

"! 𝑡 − 𝑑 ,
.
.
.

𝑦#
"" 𝑡 − 1 , . . . , 𝑦$

"" 𝑡 − 1 , … , 𝑦#
"" 𝑡 − 𝑑 , . . . , 𝑦$

"" 𝑡 − 𝑑

+ 𝑒(𝑡)

𝑧(𝑡)
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S. Mehrkanoon, Deep Shared representation learning for weather elements forecasting, 
Knowledge-based systems, vol. 79, pp. 120-128, 2019.
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- Exploit the spatio-temporal structure of the input data.

- Each regressor vector is casted into a tensor with
(stations,lags,variables) as (height,width,channel).

Deep CNN for weather forecasting: 
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- New shared representations of the data are obtained by convolving the learned kernels over weather 
stations and lags dimensions. 

2D-CNN based model:

S. Mehrkanoon, Deep Shared representation learning for weather elements forecasting, 
Knowledge-based systems, vol. 79, pp. 120-128, 2019.
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- Three-dimensional filters will be slided along the three dimensions (over weather stations, lags 
dimensions and weather elements).

3D-CNN based model:

S. Mehrkanoon, Deep Shared representation learning for weather elements forecasting, 
Knowledge-based systems, vol. 79, pp. 120-128, 2019.
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K. Trebing and S. Mehrkanoon, Wind speed prediction using multidimensional convolutional neural networks, 
IEEE Symposium Series on Computational Intelligence (IEEE-SSCI), vol. 79, pp. 713-720, 2020.

Multidimensional model:

Apply depthwise-separable convolutions (DSC) to all three input dimensions.

https://github.com/HansBambel/multidim_conv
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• Hourly measurements from 5 cities:
• Temperature
• Pressure
• Wind speed 
• Wind direction

• Training: 2000-2009, Test: 2010
• 96,402 samples
• Sample shape: 5x4x4
• Same dataset as used in [13]
• Predict 6h, 12h, 18h, 24h ahead

• Hourly measurements from 7 cities:
• Wind speed
• Wind direction
• Temperature
• Dew point
• Air pressure 
• Rain amount

• Training: 2011-2018, Test: 2019
• 81,000 samples
• Sample shape: 7x6x6
• Predict 1h, 2h, 3h, 4h ahead

Numerical Experiments: Wind speed
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S. Mehrkanoon, Deep Shared representation learning for weather elements forecasting, 
Knowledge-based systems, vol. 79, pp. 120-128, 2019.

Denmark dataset:
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Denmark Netherlands

K. Trebing and S. Mehrkanoon, Wind speed prediction using multidimensional convolutional neural networks, 
IEEE Symposium Series on Computational Intelligence (IEEE-SSCI), vol. 79, pp. 713-720, 2020.

q Multidimensional model outperforms other compared models in several forecasting times
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21T. Kipf, Thomas and M. Welling, Semi-Supervised Classification with Graph 
Convolutional Networks, arXiv preprint arXiv:1609.02907, 2016.



22



23T. Kipf, Thomas and M. Welling, Semi-Supervised Classification 
with Graph Convolutional Networks, arXiv preprint arXiv:1609.02907, 2016.
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T. Stanczyk and S. Mehrkanoon, Deep Graph Convolutional Networks for Wind Speed Prediction,
In proc. of European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN),  pp. 147-152, 2021.

https://github.com/tstanczyk95/WeatherGCNet
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T. Stanczyk and S. Mehrkanoon, Deep Graph Convolutional Networks for Wind Speed Prediction,
In proc. of European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN),  pp. 147-152, 2021.
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T. Stanczyk and S. Mehrkanoon, Deep Graph Convolutional Networks for Wind Speed Prediction,
In proc. of European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN),  pp. 147-152, 2021.
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T. Stanczyk and S. Mehrkanoon, Deep Graph Convolutional Networks for Wind Speed Prediction,
In proc. of European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN),  pp. 147-152, 2021.



29
T. Stanczyk and S. Mehrkanoon, Deep Graph Convolutional Networks for Wind Speed Prediction,
In proc. of European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN),  pp. 147-152, 2021.
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T. Stanczyk and S. Mehrkanoon, Deep Graph Convolutional Networks for Wind Speed Prediction,
In proc. of European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN),  pp. 147-152, 2021.
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T. Stanczyk and S. Mehrkanoon, Deep Graph Convolutional Networks for Wind Speed Prediction,
In proc. of European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN),  pp. 147-152, 
2021.
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T. Stanczyk and S. Mehrkanoon, Deep Graph Convolutional Networks for Wind Speed Prediction,
In proc. of European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN),  pp. 147-152, 2021.

https://github.com/tstanczyk95/WeatherGCNet
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WeatherGCNet:

T. Stanczyk and S. Mehrkanoon, Deep Graph Convolutional Networks for Wind Speed Prediction,
In proc. of European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN),  pp. 147-152, 2021.
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Precipitation Nowcasting 
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S. Mehrkanoon, SmaAt-UNet: Precipitation nowcasting using a small attention-UNet architecture, 
Pattern Recognition Letters, Vol. 145, Pages 178-186, 2021.

Precipitation maps of Netherlands in 5-minute 
intervals from 2016-2019.

•Training set: 2016-2018

•Test set: 2019

Task:

Ø Use the previous 12 precipitation maps (1 hour) and predict the precipitation map 30 minutes into the future.
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K. Trebing, T Staǹczyk, S. Mehrkanoon, SmaAt-UNet: Precipitation nowcasting using a small attention-UNet architecture, 
Pattern Recognition Letters, Vol. 145, Pages 178-186, 2021.

§ Convolution Block Attention Modules
(CBAM)

§ The regular convolutions are changed to
Depthwise Separable Convolutions to
reduce the parameters.

UNet with: 

https://github.com/HansBambel/SmaAt-UNet
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39S. Mehrkanoon, SmaAt-UNet: Precipitation nowcasting using a small attention-UNet architecture, 
Pattern Recognition Letters, Vol. 145, Pages 178-186, 2021.

Compared models:

o Persistence(Baseline) 
o OriginalUNet
o UNet with CBAM
o UNet with DSC
o UNet with CBAM and DCS (SmaAt-Unet)
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K. Trebing, T Staǹczyk, S. Mehrkanoon, SmaAt-UNet: Precipitation nowcasting using a small attention-UNet architecture, 
Pattern Recognition Letters, Vol. 145, Pages 178-186, 2021.
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Small Attention Residual UNet (SAR-UNet):

https://github.com/mathieurenault1/SAR-UNet

R Mathieu, S. Mehrkanoon, SAR-UNet: Small Attention Residual UNet for Explainable Nowcasting Tasks, accepted for publication In proc. of IEEE-IJCNN, 2023.
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R Mathieu, S. Mehrkanoon, SAR-UNet: Small Attention Residual UNet for Explainable 
Nowcasting Tasks, accepted for publication In proc. of IEEE-IJCNN, 2023.
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Experiments:

Precipitation nowcasting in the Netherlands:
o Radar images measuring precipitation intensities every 5 minutes.
o 15 different setups:

• Input data: 30, 60 and 90 minutes (6,12 and 18 images)
• Minutes ahead: 30, 60, 90, 120 and 180 minutes



Experiments:
• Cloud cover nowcasting in France:

• Images collected every 15 minutes.
• Binary value per pixel: 1 for cloud and 0 for no 

cloud
• Input data:  60 minutes (4 images)
• Minutes ahead: predict all images from 15 to 90 

minutes (6 images)
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47R Mathieu, S. Mehrkanoon, SAR-UNet: Small Attention Residual UNet for Explainable 
Nowcasting Tasks, accepted for publication In proc. of IEEE-IJCNN, 2023.
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Precipitation nowcasting performance:

R Mathieu, S. Mehrkanoon, SAR-UNet: Small Attention Residual UNet for Explainable 
Nowcasting Tasks, accepted for publication In proc. of IEEE-IJCNN, 2023.



49R Mathieu, S. Mehrkanoon, SAR-UNet: Small Attention Residual UNet for Explainable 
Nowcasting Tasks, accepted for publication In proc. of IEEE-IJCNN, 2023.
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Ø Each row represents a level of the encoder part.

Ø The columns are different parts of each level:

o Residual DSC block
o DSC path 
o Residual Path 
o CBAM

Precipitation nowcasting task

R Mathieu, S. Mehrkanoon, SAR-UNet: Small Attention Residual UNet for Explainable Nowcasting Tasks, accepted for publication In proc. of IEEE-IJCNN, 2023.
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Ø Each row represents a level of the decoder part.

Ø The columns are different parts of each level:

o Residual DSC block
o DSC path 
o Residual Path 
o CBAM

Precipitation nowcasting task

ü The final three levels of the decoder
are much more similar to the
prediction made by the network.

R Mathieu, S. Mehrkanoon, SAR-UNet: Small Attention Residual UNet for Explainable Nowcasting Tasks, accepted for publication In proc. of IEEE-IJCNN, 2023.
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Cloud cover nowcasting task:

Ø Four selected levels to summarize the network
Ø Activation heatmaps of the Residual DSC blocks

ü Encoder paths are activated at the borders between cloud 
and non-cloud zones. 

ü Decoder paths: activation zones are more in the center of 
the cloudy areas of the image. 

R Mathieu, S. Mehrkanoon, SAR-UNet: Small Attention Residual UNet for Explainable Nowcasting Tasks, accepted for publication In proc. of IEEE-IJCNN, 2023.
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https://sites.google.com/view/siamak-mehrkanoon/projects

For other related data-driven based models see:

https://sites.google.com/view/siamak-mehrkanoon/projects
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Thank you for your attention!


