
CIEM5110-2: FEM, lecture 3.1

Nonlinear FEM: solution procedure

Frans van der Meer

Agenda for today

1-18

1. Characteristics of nonlinear problems

2. Virtual work interpretation of weak form

3. Sources of nonlinearity

4. General formulation for the nonlinear system of equations

5. Incremental-iterative solution procedure

First some illustrations of linear vs nonlinear FEM

Example: Steel structures, Tom van Woudenberg (2020)

2-18

Objective: design optimization limiting the number of different steel profiles

Truss structure

Frame structure

Analysis type: linear elastic analysis

Example: Shell buckling, Tim Chen (2014)

3-18

Objective: investigate the influence of imperfections on shell buckling

Buckling modes of a cooling tower

Post-buckling deformations of a cylinder

Analysis types: linear buckling analysis, geometrically nonlinear analysis

Example: Bolted joints, Fruzsina Csillag (2018)

4-18

Objective: investigate the behavior of FRP-steel bolted connections

Setup

Deformation of the bolt

Damage of the FRP plate
Analysis type: nonlinear analysis (material nonlinearity)

Characteristics of nonlinear problems

5-18

In nonlinear simulations, we simulate a process

Often this is quasi-static→ no actual time, but still ‘time steps’ or increments

Even if we are only interested in a final state, a number of increments can be needed to get there

The classical output of a nonlinear finite element simulation is a force-displacement curve

u

F

Remember: this is a 1D representation of an ndof -dimensional solution

Interpreting the weak formulation as virtual work equation (continuum mechanics)

6-18

Weak form (before assuming linear elasticity):

−

∫

Ω

∇s
w :σ dΩ +

∫

Ω

w · b dΩ +

∫

Γt

w · t dΓ = 0, ∀ w

Let w← δu (just a change of symbol):

−

∫

Ω

∇s
δu :σ dΩ +

∫

Ω

δu · b dΩ +

∫

Γt

δu · t dΓ = 0, ∀ δu

With∇sδu = δε we can give a physical interpretation to the weak form:

−

∫

Ω

δε :σ dΩ +

∫

Ω

δu · b dΩ +

∫

Γt

δu · t dΓ = 0, ∀ δu

Interpreting the weak formulation as virtual work equation (continuum mechanics)

6-18

Weak form (before assuming linear elasticity):

−

∫

Ω

∇s
w :σ dΩ +

∫

Ω

w · b dΩ +

∫

Γt

w · t dΓ = 0, ∀ w

Let w← δu (just a change of symbol):

−

∫

Ω

∇s
δu :σ dΩ +

∫

Ω

δu · b dΩ +

∫

Γt

δu · t dΓ = 0, ∀ δu

With∇sδu = δε we can give a physical interpretation to the weak form:

−

∫

Ω

δε :σ dΩ +

∫

Ω

δu · b dΩ +

∫

Γt

δu · t dΓ = 0, ∀ δu

Wint Wext

Interpreting the weak formulation as virtual work equation (continuum mechanics)

6-18

Weak form (before assuming linear elasticity):

−

∫

Ω

∇s
w :σ dΩ +

∫

Ω

w · b dΩ +

∫

Γt

w · t dΓ = 0, ∀ w

Let w← δu (just a change of symbol):

−

∫

Ω

∇s
δu :σ dΩ +

∫

Ω

δu · b dΩ +

∫

Γt

δu · t dΓ = 0, ∀ δu

With∇sδu = δε we can give a physical interpretation to the weak form:

−

∫

Ω

δε :σ dΩ +

∫

Ω

δu · b dΩ +

∫

Γt

δu · t dΓ = 0, ∀ δu

After discretization (with δu = Nδa and δε = Bδa):

δa
T

∫

Ω

B
T
σ dΩ = δa

T

(
∫

Ω

N
T
b dΩ +

∫

Γt

N
T
t dΓ

)

⇒

∫

Ω

B
T
σ dΩ =

∫

Ω

N
T
b dΩ +

∫

Γt

N
T
t dΓ

Interpreting the weak formulation as virtual work equation (continuum mechanics)

6-18

Weak form (before assuming linear elasticity):

−

∫

Ω

∇s
w :σ dΩ +

∫

Ω

w · b dΩ +

∫

Γt

w · t dΓ = 0, ∀ w

Let w← δu (just a change of symbol):

−

∫

Ω

∇s
δu :σ dΩ +

∫

Ω

δu · b dΩ +

∫

Γt

δu · t dΓ = 0, ∀ δu

With∇sδu = δε we can give a physical interpretation to the weak form:

−

∫

Ω

δε :σ dΩ +

∫

Ω

δu · b dΩ +

∫

Γt

δu · t dΓ = 0, ∀ δu

After discretization (with δu = Nδa and δε = Bδa):

δa
T

∫

Ω

B
T
σ dΩ = δa

T

(
∫

Ω

N
T
b dΩ +

∫

Γt

N
T
t dΓ

)

⇒

∫

Ω

B
T
σ dΩ =

∫

Ω

N
T
b dΩ +

∫

Γt

N
T
t dΓ

fint fext

Interpreting the weak formulation as virtual work equation (extensible Timoshenko elements)

7-18

Recall the alternative extensible Timoshenko formulation

ε ≡







ε

γ

κ







=







u,x

w,x − φ

φ,x







= Ba
e

with

B =





Bu 0 0

0 Bw −Nφ

0 0 Bφ





The stiffness matrix takes a familiar form

K
e =

∫

Ω

B
T
DB dΩ

with

D =





EA 0 0
0 GA 0
0 0 EI





Collect stress-like quantities in a vector

σ =







N

V

M







Then we can here too write
∫

Ω

δε
T
σ dΩ = δa

T
fext

With the kinematic relation

δε = Bδa

we arrive at

fint = fext

with

fint =

∫

Ω

B
T
σ dΩ

Back to the linear case

8-18

This is the general discretized equilibrium equation:
∫

Ω

B
T
σ dΩ =

∫

Ω

N
T
b dΩ +

∫

Γt

N
T
t dΓ

fint fext

Assuming linear elasticity, we could substitute σ = DBa to get
∫

Ω

B
T
DB dΩa =

∫

Ω

N
T
b dΩ +

∫

Γt

N
T
t dΓ ⇒ Ka = fext

Linearity is assumed twice there

ε = Ba (kinematic relation)

and

σ = Dε (constitutive relation)

Sources of nonlinearity

9-18

This remains the general discretized equilibrium equation:
∫

Ω

B
T
σ dΩ =

∫

Ω

N
T
b dΩ +

∫

Γt

N
T
t dΓ

fint fext

For large displacements, we can have a nonlinear kinematic relation:

ε = ε(a) with B =
∂ε

∂a

Sources of nonlinearity

9-18

This remains the general discretized equilibrium equation:
∫

Ω

B
T
σ dΩ =

∫

Ω

N
T
b dΩ +

∫

Γt

N
T
t dΓ

fint fext

For large displacements, we can have a nonlinear kinematic relation:

ε = ε(a) with B =
∂ε

∂a

For instance, so-called true strain, which can in 1D be defined as

ε =

∫ l

l0

dl

l
= ln

l

l0
= ln(1 +∇u)

Note: for∇u≪ 1, we have ε ≈ ∇u

Sources of nonlinearity

9-18

This remains the general discretized equilibrium equation:
∫

Ω

B
T
σ dΩ =

∫

Ω

N
T
b dΩ +

∫

Γt

N
T
t dΓ

fint fext

For large displacements, we can have a nonlinear kinematic relation:

ε = ε(a) with B =
∂ε

∂a

and for modeling material behavior a nonlinear constitutive relation:

σ = σ(ε, history) with D =
∂σ

∂ε

For instance damage

ε

σ

1
(1− d)E

or plasticity

ε

σ

εp

Problem statement

10-18

We want to solve a nonlinear system of equations:
∫

Ω

B
T
σ dΩ =

∫

Ω

N
T
b dΩ +

∫

Γt

N
T
t dΓ

fint(a) fext(t)

Problem statement

10-18

We want to solve a nonlinear system of equations:
∫

Ω

B
T
σ dΩ =

∫

Ω

N
T
b dΩ +

∫

Γt

N
T
t dΓ

fint(a) fext(t)

- Internal force is a nonlinear function of a

- For given a we can compute fint =

∫

B
T
σ dΩ

Problem statement

10-18

We want to solve a nonlinear system of equations:
∫

Ω

B
T
σ dΩ =

∫

Ω

N
T
b dΩ +

∫

Γt

N
T
t dΓ

fint(a) fext(t)

- Internal force is a nonlinear function of a

- For given a we can compute fint =

∫

B
T
σ dΩ

- External force changes in increments

- At every increment t = tn, fext is known

- Possibly fext = 0 and Dirichlet boundary conditions change

Problem statement

10-18

We want to solve a nonlinear system of equations:
∫

Ω

B
T
σ dΩ =

∫

Ω

N
T
b dΩ +

∫

Γt

N
T
t dΓ

fint(a) fext(t)

- Internal force is a nonlinear function of a

- For given a we can compute fint =

∫

B
T
σ dΩ

- External force changes in increments

- At every increment t = tn, fext is known

- Possibly fext = 0 and Dirichlet boundary conditions change

For linear fint(a) we get a linear system of equations for every increment: Ka
n = f

n
ext

→ But what about a nonlinear fint(a)?

Problem statement

10-18

We want to solve a nonlinear system of equations:
∫

Ω

B
T
σ dΩ =

∫

Ω

N
T
b dΩ +

∫

Γt

N
T
t dΓ

fint(a) fext(t)

- Internal force is a nonlinear function of a

- For given a we can compute fint =

∫

B
T
σ dΩ

- External force changes in increments

- At every increment t = tn, fext is known

- Possibly fext = 0 and Dirichlet boundary conditions change

For linear fint(a) we get a linear system of equations for every increment: Ka
n = f

n
ext

→ But what about a nonlinear fint(a)?

→ For every increment, we will need to iterate

Incremental-iterative solution algorithm

11-18

In every time-step we solve a nonlinear system of equations with Newton-Raphson (or Newton’s) method

Require: Solution from previous time step a
n

Require: Nonlinear relation fint(a) with K(a) = ∂fint
∂a

1: Get new external force vector: fn+1
ext

2: Initialize new solution at old one: an+1 = a
n

3: Compute internal force and stiffness: fn+1

int (an+1), Kn+1(an+1)

4: Evaluate residual: r = f
n+1
ext − f

n+1

int

5: repeat

6: Solve linear system of equations: Kn+1∆a = r

7: Update solution: an+1 = a
n+1 +∆a

8: Compute internal force and stiffness: fn+1

int (an+1), Kn+1(an+1)

9: Evaluate residual: r = f
n+1
ext − f

n+1

int

10: until |r| < tolerance

Incremental-iterative solution algorithm

11-18

In every time-step we solve a nonlinear system of equations with Newton-Raphson (or Newton’s) method

Require: Solution from previous time step a
n

Require: Nonlinear relation fint(a) with K(a) = ∂fint
∂a

1: Get new external force vector: fn+1
ext

2: Initialize new solution at old one: an+1 = a
n

3: Compute internal force and stiffness: fn+1

int (an+1), Kn+1(an+1)

4: Evaluate residual: r = f
n+1
ext − f

n+1

int

5: repeat

6: Solve linear system of equations: Kn+1∆a = r

7: Update solution: an+1 = a
n+1 +∆a

8: Compute internal force and stiffness: fn+1

int (an+1), Kn+1(an+1)

9: Evaluate residual: r = f
n+1
ext − f

n+1

int

10: until |r| < tolerance

u

fint

f
n
ext

f
n+1
ext

Incremental-iterative solution algorithm, including time step loop

12-18

Require: Nonlinear relation fint(a) with K(a) = ∂fint
∂a

1: Initialize n = 0, a0 = 0

2: while n < number of time steps do

3: Get new external force vector: fn+1
ext

4: Initialize new solution at old one: an+1 = a
n

5: Compute internal force and stiffness: fn+1

int (an+1), Kn+1(an+1)

6: Evaluate residual: r = f
n+1
ext − f

n+1

int

7: repeat

8: Solve linear system of equations: Kn+1∆a = r

9: Update solution: an+1 = a
n+1 +∆a

10: Compute internal force and stiffness: fn+1

int (an+1), Kn+1(an+1)

11: Evaluate residual: r = f
n+1
ext − f

n+1

int

12: until |r| < tolerance

13: n = n+ 1

14: end while

What about boundary conditions?

13-18

Require: Nonlinear relation fint(a) with K(a) = ∂fint
∂a

1: Initialize n = 0, a0 = 0

2: while n < number of time steps do

3: Get new external force vector: fn+1
ext

4: Initialize new solution at old one: an+1 = a
n

5: Compute internal force and stiffness: fn+1

int (an+1), Kn+1(an+1)

6: Evaluate residual: r = f
n+1
ext − f

n+1

int

7: repeat

8: Solve linear system of equations: Kn+1∆a = r

9: Update solution: an+1 = a
n+1 +∆a

10: Compute internal force and stiffness: fn+1

int (an+1), Kn+1(an+1)

11: Evaluate residual: r = f
n+1
ext − f

n+1

int

12: until |r| < tolerance

13: n = n+ 1

14: end while

What about boundary conditions?

13-18

Require: Nonlinear relation fint(a) with K(a) = ∂fint
∂a

1: Initialize n = 0, a0 = 0

2: while n < number of time steps do

3: Get new external force vector: fn+1
ext

4: Initialize new solution at old one: an+1 = a
n

5: Compute internal force and stiffness: fn+1

int (an+1), Kn+1(an+1)

6: Evaluate residual: r = f
n+1
ext − f

n+1

int

7: repeat

8: Solve linear system of equations: Kn+1∆a = r

9: Update solution: an+1 = a
n+1 +∆a

10: Compute internal force and stiffness: fn+1

int (an+1), Kn+1(an+1)

11: Evaluate residual: r = f
n+1
ext − f

n+1

int

12: until |r| < tolerance

13: n = n+ 1

14: end while

What about boundary conditions?

13-18

Require: Nonlinear relation fint(a) with K(a) = ∂fint
∂a

1: Initialize n = 0, a0 = 0

2: while n < number of time steps do

3: Get new external force vector: fn+1
ext

4: Initialize new solution at old one: an+1 = a
n

5: Compute internal force and stiffness: fn+1

int (an+1), Kn+1(an+1)

6: Evaluate residual: r = f
n+1
ext − f

n+1

int

7: repeat

8: Solve linear system of equations: Kn+1∆a = r

9: Update solution: an+1 = a
n+1 +∆a

10: Compute internal force and stiffness: fn+1

int (an+1), Kn+1(an+1)

11: Evaluate residual: r = f
n+1
ext − f

n+1

int

12: until |r| < tolerance

13: n = n+ 1

14: end while

- Neumann boundary conditions

- Point loads also go here

- Possibly increasing step by step

What about boundary conditions?

13-18

Require: Nonlinear relation fint(a) with K(a) = ∂fint
∂a

1: Initialize n = 0, a0 = 0

2: while n < number of time steps do

3: Get new external force vector: fn+1
ext

4: Initialize new solution at old one: an+1 = a
n

5: Compute internal force and stiffness: fn+1

int (an+1), Kn+1(an+1)

6: Evaluate residual: r = f
n+1
ext − f

n+1

int

7: repeat

8: Solve linear system of equations: Kn+1∆a = r

9: Update solution: an+1 = a
n+1 +∆a

10: Compute internal force and stiffness: fn+1

int (an+1), Kn+1(an+1)

11: Evaluate residual: r = f
n+1
ext − f

n+1

int

12: until |r| < tolerance

13: n = n+ 1

14: end while

- Neumann boundary conditions

- Point loads also go here

- Possibly increasing step by step

What about boundary conditions?

13-18

Require: Nonlinear relation fint(a) with K(a) = ∂fint
∂a

1: Initialize n = 0, a0 = 0

2: while n < number of time steps do

3: Get new external force vector: fn+1
ext

4: Initialize new solution at old one: an+1 = a
n

5: Compute internal force and stiffness: fn+1

int (an+1), Kn+1(an+1)

6: Evaluate residual: r = f
n+1
ext − f

n+1

int

7: repeat

8: Solve linear system of equations: Kn+1∆a = r

9: Update solution: an+1 = a
n+1 +∆a

10: Compute internal force and stiffness: fn+1

int (an+1), Kn+1(an+1)

11: Evaluate residual: r = f
n+1
ext − f

n+1

int

12: until |r| < tolerance

13: n = n+ 1

14: end while

- Neumann boundary conditions

- Point loads also go here

- Possibly increasing step by step

- Dirichlet boundary conditions

- Enforced by manipulating system of eqs.

- ∆uc contains increments in first iteration

- ∆uc = 0 in other iterations

Convergence

14-18

Require: Nonlinear relation fint(a) with K(a) = ∂fint
∂a

1: Initialize n = 0, a0 = 0

2: while n < number of time steps do

3: Get new external force vector: fn+1
ext

4: Initialize new solution at old one: an+1 = a
n

5: Compute internal force and stiffness: fn+1

int (an+1), Kn+1(an+1)

6: Evaluate residual: r = f
n+1
ext − f

n+1

int

7: repeat

8: Solve linear system of equations: Kn+1∆a = r

9: Update solution: an+1 = a
n+1 +∆a

10: Compute internal force and stiffness: fn+1

int (an+1), Kn+1(an+1)

11: Evaluate residual: r = f
n+1
ext − f

n+1

int

12: until |r| < tolerance

13: n = n+ 1

14: end while

Convergence

14-18

Require: Nonlinear relation fint(a) with K(a) = ∂fint
∂a

1: Initialize n = 0, a0 = 0

2: while n < number of time steps do

3: Get new external force vector: fn+1
ext

4: Initialize new solution at old one: an+1 = a
n

5: Compute internal force and stiffness: fn+1

int (an+1), Kn+1(an+1)

6: Evaluate residual: r = f
n+1
ext − f

n+1

int

7: repeat

8: Solve linear system of equations: Kn+1∆a = r

9: Update solution: an+1 = a
n+1 +∆a

10: Compute internal force and stiffness: fn+1

int (an+1), Kn+1(an+1)

11: Evaluate residual: r = f
n+1
ext − f

n+1

int

12: until |r| < tolerance

13: n = n+ 1

14: end while

- Different norms are possible

- Additional criterion: max # of iterations

- Convergence is not always guaranteed

- Non-converged solutions should not be kept

- Adaptive step size may be needed

- Linearization is crucial

Convergence

14-18

Require: Nonlinear relation fint(a) with K(a) = ∂fint
∂a

1: Initialize n = 0, a0 = 0

2: while n < number of time steps do

3: Get new external force vector: fn+1
ext

4: Initialize new solution at old one: an+1 = a
n

5: Compute internal force and stiffness: fn+1

int (an+1), Kn+1(an+1)

6: Evaluate residual: r = f
n+1
ext − f

n+1

int

7: repeat

8: Solve linear system of equations: Kn+1∆a = r

9: Update solution: an+1 = a
n+1 +∆a

10: Compute internal force and stiffness: fn+1

int (an+1), Kn+1(an+1)

11: Evaluate residual: r = f
n+1
ext − f

n+1

int

12: until |r| < tolerance

13: n = n+ 1

14: end while

- Different norms are possible

- Additional criterion: max # of iterations

- Convergence is not always guaranteed

- Non-converged solutions should not be kept

- Adaptive step size may be needed

- Linearization is crucial

Linearization

15-18

In the algorithm we have K as the derivative of fint to a with :

fint =

∫

Ω

B
T
σ dΩ

Applying the product rule and chain rule of differentation:

K =

∫

Ω

∂BT

∂a
σ +B

T ∂σ

∂ε

∂ε

∂a
dΩ

We already had
∂σ

∂ε
= D and

∂ε

∂a
= B, so we get:

K =

∫

Ω

∂BT

∂a
σ +B

T
DB dΩ

For the geometrically linear situation, we get:

K =

∫

Ω

B
T
DB dΩ

Very similar to the matrix for linear FEM, but D should be the consistent linearization of σ(ε)

Linearization and convergence

16-18

Theoretically, consistent linearization offers quadratic convergence

Linearization and convergence

16-18

Theoretically, consistent linearization offers quadratic convergence

iter = 1, scaled residual = 6.9130e-02

iter = 2, scaled residual = 2.9266e-04

iter = 3, scaled residual = 1.8541e-08

Linearization and convergence

16-18

Theoretically, consistent linearization offers quadratic convergence

iter = 1, scaled residual = 6.9130e-02

iter = 2, scaled residual = 2.9266e-04

iter = 3, scaled residual = 1.8541e-08

Unfortunately, the conditions for the proof of quadratic convergence do not always apply

• smoothness of fint(a)

• sufficiently close initial guess

Linearization and convergence

16-18

Theoretically, consistent linearization offers quadratic convergence

iter = 1, scaled residual = 6.9130e-02

iter = 2, scaled residual = 2.9266e-04

iter = 3, scaled residual = 1.8541e-08

Unfortunately, the conditions for the proof of quadratic convergence do not always apply

• smoothness of fint(a)

• sufficiently close initial guess

Outside of these conditions, there is no guarantee for convergence

Linearization and convergence

16-18

Theoretically, consistent linearization offers quadratic convergence

iter = 1, scaled residual = 6.9130e-02

iter = 2, scaled residual = 2.9266e-04

iter = 3, scaled residual = 1.8541e-08

Unfortunately, the conditions for the proof of quadratic convergence do not always apply

• smoothness of fint(a)

• sufficiently close initial guess

Outside of these conditions, there is no guarantee for convergence

Sometimes a modified Newton-Raphson is helpful for robustness

u

F

Linearization and convergence

16-18

Theoretically, consistent linearization offers quadratic convergence

iter = 1, scaled residual = 6.9130e-02

iter = 2, scaled residual = 2.9266e-04

iter = 3, scaled residual = 1.8541e-08

Unfortunately, the conditions for the proof of quadratic convergence do not always apply

• smoothness of fint(a)

• sufficiently close initial guess

Outside of these conditions, there is no guarantee for convergence

Sometimes a modified Newton-Raphson is helpful for robustness

u

F

Although this requires many more iterations

iter = 1, scaled residual = 2.3269e-02

iter = 2, scaled residual = 2.2279e-02

iter = 3, scaled residual = 1.9872e-02

iter = 4, scaled residual = 1.6512e-02

iter = 5, scaled residual = 1.3107e-02

iter = 6, scaled residual = 1.0113e-02

iter = 7, scaled residual = 7.6675e-03

iter = 8, scaled residual = 5.7517e-03

iter = 9, scaled residual = 4.2868e-03

iter = 10, scaled residual = 3.1826e-03

iter = 11, scaled residual = 2.3574e-03

iter = 12, scaled residual = 1.7438e-03

iter = 13, scaled residual = 1.2890e-03

iter = 14, scaled residual = 9.5234e-04

iter = 15, scaled residual = 7.0348e-04

iter = 16, scaled residual = 5.1959e-04

iter = 17, scaled residual = 3.8374e-04

iter = 18, scaled residual = 2.8341e-04

iter = 19, scaled residual = 2.0931e-04

iter = 20, scaled residual = 1.5459e-04

iter = 21, scaled residual = 1.1417e-04

iter = 22, scaled residual = 8.4326e-05

iter = 23, scaled residual = 6.2282e-05

Modified Newton-Raphson

17-18

The algorithm remains the same but K is updated once per time step

• Convergence will be slower

• Reduced change of divergence or oscillatory behavior

Alternatives:

• Use incomplete linearization for D (secant matrix)

• Use initial elastic stiffness matrix K
0

• . . .

Recap of agenda for today

18-18

1. Characteristics of nonlinear problems

2. Virtual work interpretation of weak form

3. Sources of nonlinearity

4. General formulation for the nonlinear system of equations

5. Incremental-iterative solution procedure

	Agenda for today
	Example: Steel structures, Tom van Woudenberg (2020)
	Example: Shell buckling, Tim Chen (2014)
	Example: Bolted joints, Fruzsina Csillag (2018)
	Characteristics of nonlinear problems
	Interpreting the weak formulation as virtual work equation (continuum mechanics)
	Interpreting the weak formulation as virtual work equation (extensible Timoshenko elements)
	Back to the linear case
	Sources of nonlinearity
	Problem statement
	Incremental-iterative solution algorithm
	Incremental-iterative solution algorithm, including time step loop
	What about boundary conditions?
	Convergence
	Linearization
	Linearization and convergence
	Modified Newton-Raphson
	Recap of agenda for today

