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Agenda for today
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1. Characteristics of nonlinear problems

2. Virtual work interpretation of weak form

3. Sources of nonlinearity

4. General formulation for the nonlinear system of equations

5. Incremental-iterative solution procedure

First some illustrations of linear vs nonlinear FEM



Example: Steel structures, Tom van Woudenberg (2020)

2-18

Objective: design optimization limiting the number of different steel profiles

Truss structure

Frame structure

Analysis type: linear elastic analysis



Example: Shell buckling, Tim Chen (2014)
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Objective: investigate the influence of imperfections on shell buckling

Buckling modes of a cooling tower

Post-buckling deformations of a cylinder

Analysis types: linear buckling analysis, geometrically nonlinear analysis



Example: Bolted joints, Fruzsina Csillag (2018)
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Objective: investigate the behavior of FRP-steel bolted connections

Setup

Deformation of the bolt

Damage of the FRP plate
Analysis type: nonlinear analysis (material nonlinearity)



Characteristics of nonlinear problems
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In nonlinear simulations, we simulate a process

Often this is quasi-static→ no actual time, but still ‘time steps’ or increments

Even if we are only interested in a final state, a number of increments can be needed to get there

The classical output of a nonlinear finite element simulation is a force-displacement curve

u

F

Remember: this is a 1D representation of an ndof -dimensional solution



Interpreting the weak formulation as virtual work equation (continuum mechanics)
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Weak form (before assuming linear elasticity):

−

∫

Ω

∇s
w :σ dΩ +

∫

Ω

w · b dΩ +

∫

Γt

w · t dΓ = 0, ∀ w

Let w← δu (just a change of symbol):

−

∫

Ω

∇s
δu :σ dΩ +

∫

Ω

δu · b dΩ +

∫

Γt

δu · t dΓ = 0, ∀ δu

With∇sδu = δε we can give a physical interpretation to the weak form:

−

∫

Ω

δε :σ dΩ +

∫

Ω

δu · b dΩ +

∫

Γt

δu · t dΓ = 0, ∀ δu
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∫

Ω

B
T
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T

(
∫

Ω

N
T
b dΩ +
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Γt

N
T
t dΓ
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⇒

∫

Ω

B
T
σ dΩ =

∫

Ω

N
T
b dΩ +

∫

Γt

N
T
t dΓ
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fint fext



Interpreting the weak formulation as virtual work equation (extensible Timoshenko elements)
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Recall the alternative extensible Timoshenko formulation

ε ≡







ε

γ

κ







=







u,x

w,x − φ

φ,x







= Ba
e

with

B =





Bu 0 0

0 Bw −Nφ

0 0 Bφ





The stiffness matrix takes a familiar form

K
e =

∫

Ω

B
T
DB dΩ

with

D =





EA 0 0
0 GA 0
0 0 EI





Collect stress-like quantities in a vector

σ =







N

V

M







Then we can here too write
∫

Ω

δε
T
σ dΩ = δa

T
fext

With the kinematic relation

δε = Bδa

we arrive at

fint = fext

with

fint =

∫

Ω

B
T
σ dΩ



Back to the linear case
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This is the general discretized equilibrium equation:
∫

Ω

B
T
σ dΩ =

∫

Ω

N
T
b dΩ +

∫

Γt

N
T
t dΓ

fint fext

Assuming linear elasticity, we could substitute σ = DBa to get
∫

Ω

B
T
DB dΩa =

∫

Ω

N
T
b dΩ +

∫

Γt

N
T
t dΓ ⇒ Ka = fext

Linearity is assumed twice there

ε = Ba (kinematic relation)

and

σ = Dε (constitutive relation)



Sources of nonlinearity
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This remains the general discretized equilibrium equation:
∫

Ω

B
T
σ dΩ =

∫

Ω

N
T
b dΩ +

∫

Γt

N
T
t dΓ

fint fext

For large displacements, we can have a nonlinear kinematic relation:

ε = ε(a) with B =
∂ε

∂a
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This remains the general discretized equilibrium equation:
∫

Ω

B
T
σ dΩ =

∫

Ω

N
T
b dΩ +

∫

Γt

N
T
t dΓ

fint fext

For large displacements, we can have a nonlinear kinematic relation:

ε = ε(a) with B =
∂ε

∂a

For instance, so-called true strain, which can in 1D be defined as

ε =

∫ l

l0

dl

l
= ln

l

l0
= ln(1 +∇u)

Note: for∇u≪ 1, we have ε ≈ ∇u



Sources of nonlinearity
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This remains the general discretized equilibrium equation:
∫

Ω

B
T
σ dΩ =

∫

Ω

N
T
b dΩ +

∫

Γt

N
T
t dΓ

fint fext

For large displacements, we can have a nonlinear kinematic relation:

ε = ε(a) with B =
∂ε

∂a

and for modeling material behavior a nonlinear constitutive relation:

σ = σ(ε, history) with D =
∂σ

∂ε

For instance damage

ε

σ

1
(1− d)E

or plasticity

ε

σ

εp



Problem statement
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We want to solve a nonlinear system of equations:
∫

Ω

B
T
σ dΩ =

∫

Ω

N
T
b dΩ +

∫

Γt

N
T
t dΓ

fint(a) fext(t)
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We want to solve a nonlinear system of equations:
∫

Ω

B
T
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∫

Ω

N
T
b dΩ +

∫
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N
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B
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σ dΩ
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- At every increment t = tn, fext is known

- Possibly fext = 0 and Dirichlet boundary conditions change

For linear fint(a) we get a linear system of equations for every increment: Ka
n = f

n
ext

→ But what about a nonlinear fint(a)?

→ For every increment, we will need to iterate



Incremental-iterative solution algorithm
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In every time-step we solve a nonlinear system of equations with Newton-Raphson (or Newton’s) method

Require: Solution from previous time step a
n

Require: Nonlinear relation fint(a) with K(a) = ∂fint
∂a

1: Get new external force vector: fn+1
ext

2: Initialize new solution at old one: an+1 = a
n

3: Compute internal force and stiffness: fn+1

int (an+1), Kn+1(an+1)

4: Evaluate residual: r = f
n+1
ext − f

n+1

int

5: repeat

6: Solve linear system of equations: Kn+1∆a = r

7: Update solution: an+1 = a
n+1 +∆a

8: Compute internal force and stiffness: fn+1

int (an+1), Kn+1(an+1)

9: Evaluate residual: r = f
n+1
ext − f

n+1

int

10: until |r| < tolerance
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u

fint

f
n
ext

f
n+1
ext



Incremental-iterative solution algorithm, including time step loop
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Require: Nonlinear relation fint(a) with K(a) = ∂fint
∂a

1: Initialize n = 0, a0 = 0

2: while n < number of time steps do

3: Get new external force vector: fn+1
ext

4: Initialize new solution at old one: an+1 = a
n

5: Compute internal force and stiffness: fn+1

int (an+1), Kn+1(an+1)

6: Evaluate residual: r = f
n+1
ext − f

n+1

int

7: repeat

8: Solve linear system of equations: Kn+1∆a = r

9: Update solution: an+1 = a
n+1 +∆a

10: Compute internal force and stiffness: fn+1

int (an+1), Kn+1(an+1)

11: Evaluate residual: r = f
n+1
ext − f

n+1

int

12: until |r| < tolerance

13: n = n+ 1

14: end while



What about boundary conditions?
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- Point loads also go here

- Possibly increasing step by step
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- Neumann boundary conditions

- Point loads also go here

- Possibly increasing step by step

- Dirichlet boundary conditions

- Enforced by manipulating system of eqs.

- ∆uc contains increments in first iteration

- ∆uc = 0 in other iterations
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- Non-converged solutions should not be kept

- Adaptive step size may be needed

- Linearization is crucial



Convergence

14-18

Require: Nonlinear relation fint(a) with K(a) = ∂fint
∂a

1: Initialize n = 0, a0 = 0

2: while n < number of time steps do

3: Get new external force vector: fn+1
ext

4: Initialize new solution at old one: an+1 = a
n

5: Compute internal force and stiffness: fn+1

int (an+1), Kn+1(an+1)

6: Evaluate residual: r = f
n+1
ext − f

n+1

int

7: repeat

8: Solve linear system of equations: Kn+1∆a = r

9: Update solution: an+1 = a
n+1 +∆a

10: Compute internal force and stiffness: fn+1

int (an+1), Kn+1(an+1)

11: Evaluate residual: r = f
n+1
ext − f

n+1

int

12: until |r| < tolerance

13: n = n+ 1

14: end while

- Different norms are possible

- Additional criterion: max # of iterations

- Convergence is not always guaranteed

- Non-converged solutions should not be kept

- Adaptive step size may be needed

- Linearization is crucial



Linearization
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In the algorithm we have K as the derivative of fint to a with :

fint =

∫

Ω

B
T
σ dΩ

Applying the product rule and chain rule of differentation:

K =

∫

Ω

∂BT

∂a
σ +B

T ∂σ

∂ε

∂ε

∂a
dΩ

We already had
∂σ

∂ε
= D and

∂ε

∂a
= B, so we get:

K =

∫

Ω

∂BT

∂a
σ +B

T
DB dΩ

For the geometrically linear situation, we get:

K =

∫

Ω

B
T
DB dΩ

Very similar to the matrix for linear FEM, but D should be the consistent linearization of σ(ε)
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• sufficiently close initial guess

Outside of these conditions, there is no guarantee for convergence

Sometimes a modified Newton-Raphson is helpful for robustness

u

F

Although this requires many more iterations

iter = 1, scaled residual = 2.3269e-02

iter = 2, scaled residual = 2.2279e-02

iter = 3, scaled residual = 1.9872e-02

iter = 4, scaled residual = 1.6512e-02

iter = 5, scaled residual = 1.3107e-02

iter = 6, scaled residual = 1.0113e-02

iter = 7, scaled residual = 7.6675e-03

iter = 8, scaled residual = 5.7517e-03

iter = 9, scaled residual = 4.2868e-03

iter = 10, scaled residual = 3.1826e-03

iter = 11, scaled residual = 2.3574e-03

iter = 12, scaled residual = 1.7438e-03

iter = 13, scaled residual = 1.2890e-03

iter = 14, scaled residual = 9.5234e-04

iter = 15, scaled residual = 7.0348e-04

iter = 16, scaled residual = 5.1959e-04

iter = 17, scaled residual = 3.8374e-04

iter = 18, scaled residual = 2.8341e-04

iter = 19, scaled residual = 2.0931e-04

iter = 20, scaled residual = 1.5459e-04

iter = 21, scaled residual = 1.1417e-04

iter = 22, scaled residual = 8.4326e-05

iter = 23, scaled residual = 6.2282e-05



Modified Newton-Raphson

17-18

The algorithm remains the same but K is updated once per time step

• Convergence will be slower

• Reduced change of divergence or oscillatory behavior

Alternatives:

• Use incomplete linearization for D (secant matrix)

• Use initial elastic stiffness matrix K
0

• . . .



Recap of agenda for today

18-18

1. Characteristics of nonlinear problems

2. Virtual work interpretation of weak form

3. Sources of nonlinearity

4. General formulation for the nonlinear system of equations

5. Incremental-iterative solution procedure
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