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PERSISTENCE AND VOLATILITY OF BEVERIDGE CYCLES∗

BY FLORIAN SNIEKERS1

Utrecht University, the Netherlands

This article explains the cyclical behavior of the fluctuations in unemployment and vacancies by demand
externalities. Adding such externalities to an otherwise standard search and matching model reduces the need for
exogenous shocks in explaining these fluctuations. Under plausible parameter values, the equilibrium dynamics
include a stable limit cycle that resembles the empirically observed counterclockwise cycles around the Beveridge
curve. Calibrated to the duration of the business cycle, these endogenous “Beveridge cycles” are as persistent
as the data, without losing any of the amplification of the standard model.

1. INTRODUCTION

The dynamic relation between vacancies and unemployment is characterized by counter-
clockwise cycles in unemployment–vacancy space. After removing any long-term trends with
an HP-filter, the cycles for the United States are presented in Figure 1(a). It shows that the
cycles mostly consist of movements parallel to an almost perfectly inverse relationship between
vacancies and unemployment—the Beveridge curve—where downturns trace out a lower path
than recoveries.

Table 1 reports standard deviations, autocorrelations, and cross-correlations of the unem-
ployment and vacancy rate and other variables: market tightness v/u, the job-finding rate f , the
destruction rate δ, and labor productivity y. The standard deviations of the unemployment and
vacancy rate v are similar, their autocorrelations are about 0.95, and their correlation is almost
−0.9. Note also that the standard deviation of productivity is almost ten times smaller than that
of the unemployment and vacancy rate. Finally, the average (unfiltered) unemployment and
quarterly job finding and destruction rates are 0.0587, 1.738, and 0.100 respectively.

In the canonical search and matching model of Pissarides (1985), unemployment is a state
variable whereas vacancies respond to shocks immediately. As a result, the model captures the
counterclockwise direction of the cycles along the Beveridge curve. However, the model fails to
describe these cycles in at least two dimensions. First, as is well known, the model lacks sufficient
amplification to generate the observed volatility in unemployment and vacancies in response to
realistic exogenous shocks in productivity and/or the destruction rate (Shimer, 2005). Second,
the model lacks cyclical responses, as can be seen by comparing the panels of Figure 1. Panel
(b) of Figure 1 plots a realization of a detrended Beveridge curve as simulated by Shimer (2005)
in his calibration with productivity shocks only. The simulation not only lacks unemployment
volatility (note the scaling differences across the panels), but it also mainly features near vertical

∗Manuscript received November 2014; revised June 2016.
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(a) United States, 1951-2014.
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(b) Simulation of Shimer (2005).

NOTES: The seasonally adjusted unemployment rate u is constructed by the Bureau of Labor Statistics (BLS) from
the Current Population Survey (CPS). The seasonally adjusted vacancy rate v is obtained by dividing a measure of
vacancies by the labor force from the CPS. Following Daly et al. (2012), the former is the Composite Help-Wanted
Index constructed by Barnichon (2010) for the 1951–2000 period, rescaled to equal the JOLTS in December 2000,
which is used from that month onward. I thank Bart Hobijn for providing me with these data. The data are quarterly
averages of a monthly series. The simulation is a representative realization with productivity shocks only. Both data
and simulation are expressed in logs as deviations from an HP trend with smoothing parameter 105.

FIGURE 1

CYCLICAL COMPONENT OF THE BEVERIDGE CURVE

TABLE 1
SUMMARY STATISTICS, QUARTERLY U.S. DATA, 1951–2014

u v v/u f δ y

Standard deviation 0.195 0.178 0.362 0.175 0.073 0.02
Quarterly autocorrelation 0.946 0.946 0.948 0.926 0.735 0.894

u 1 −0.888 −0.974 −0.962 0.64 −0.35
v 1 0.969 0.887 −0.647 0.327

Correlation matrix v/u 1 0.953 −0.662 0.349
f 1 −0.522 0.333
δ 1 −0.504
y 1

NOTES: Labor-market tightness v/u is the ratio of the seasonally adjusted quarterly unemployment rate u and vacancy
rate v, both described under Figure 1. Appendix A.1.1 describes the construction of the job-finding rate f and destruction
rate δ from the monthly seasonally adjusted employment, unemployment, and short-term unemployment rate as
provided by the Bureau of Labor Statistics (BLS) from the Current Population Survey. Average labor productivity y
is the seasonally adjusted real average output per person in the nonfarm business sector constructed by the BLS from
the National Income and Product Accounts as well as the Current Employment Statistics. All variables are reported in
logs as deviations from an HP trend with smoothing parameter 105.

dynamics, in contrast to the data in panel (a) of Figure 1. As a result, vacancies in the model
are neither as persistent as in the data, nor as persistent as unemployment.2

The current article explains the cyclical behavior of unemployment and vacancies with an
endogenous cycle driven by a positive externality. The interpretation throughout this article is
that of a demand externality that results from spillovers across both a monopolistic goods mar-
ket and a labor market with search frictions, in which high aggregate unemployment feeds back

2 The lack of propagation in Shimer (2005) can also be understood from a univariate regression of labor-market
tightness (or the job-finding rate) on productivity, which results in an R2 of 1.00.
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to low demand for output and thus a low revenue per worker–firm match. Instead of modeling
the goods market explicitly, I assume that revenue per match is a function of aggregate employ-
ment. Combined with the delay in matching and the congestion externality that are standard
in search models of the labor market, the positive externality can give rise to equilibrium paths
in vacancies and unemployment that never converge to a steady state, but converge to a deter-
ministic periodic closed path. I refer to these rational expectations limit cycles in vacancies and
unemployment as Beveridge cycles. Expectations of high revenue per match are self-fulfilling
because such expectations make firms open vacancies, resulting in higher employment and—
via the demand externality—higher revenue per match in the future. However, congestion in a
tight labor market may make hiring so costly that firms may reduce vacancies before reaching
a steady state. In that case, the equilibrium path turns and job destruction takes over from job
creation, unemployment increases, and revenue per match drops. Hiring picks up again when
the labor market becomes sufficiently slack.

I add the reduced-form relationship between revenue per match and aggregate employment
to a Pissarides (2000) search and matching model with variable search intensity, and analyze the
global dynamics of the model. Theoretically, the occurrence of a Bogdanov–Takens bifurcation
shows that Beveridge cycles exist and are stable for a range of parameter values. This implies
that a small perturbation to a parameter, or introducing a small amount of risk aversion, would
not eliminate cycles. Quantitatively, I investigate whether these cycles can match the empirically
observed standard deviation and autocorrelation of unemployment and vacancies. Calibrating
the cycle to the average duration of the business cycle, the simulated autocorrelations of both
unemployment and vacancies closely match their observed autocorrelations. Persistence is an
endogenous feature of the Beveridge cycle and results from the neighborhood of a steady state
with saddle-path stability. In particular, it is not a result of a persistent stochastic process for
productivity, and it does not compromise volatility. Indeed, the model is subject to the same
amplification mechanisms or lack thereof as the standard model but generates its volatility in
revenue per match endogenously, reducing the need for exogenous shocks. Variable search
intensity and a high positive value of leisure are important for the empirical performance of
the model. The flow value of unemployment does not only contribute to amplification, but also
brings the size of the required demand externalities in line with the literature. The existence of
limit cycles does not rely on either variable search intensity or a positive value of leisure.

My model is formally equivalent to the model of Mortensen (1999), who shows the existence
of limit cycles in employment and the surplus of a match. He gives the intuition of the coun-
terclockwise cycles along the Beveridge curve, but does not perform a calibration. I present
the model in the standard search and matching variables—unemployment and labor-market
tightness—and add a positive value of leisure, which has a nontrivial impact on the existence and
characteristics of equilibria in this nonlinear model. In Mortensen (1999), following Mortensen
(1989), the positive externality results from increasing returns in production. Alternatively, it
can result from increasing returns in the matching function for the goods market as in Diamond
(1982) and Howitt and McAfee (1987). Diamond and Fudenberg (1989) and Boldrin et al.
(1993) show that such increasing returns can result in endogenous cycles, but their models do
not contain vacancies. In a reduced form, however, the three interpretations of the relationship
between aggregate employment and revenue per match are equivalent and capture the three
examples of Cooper and John (1988) that can result in strategic complementarities: production
technology, matching technology, and agents’ demands.

With respect to the latter, Heller (1986) and Roberts (1987) show that demand externalities
can generate multiple equilibria. Exploiting equilibrium multiplicity, Howitt and McAfee (1992)
propose belief shocks to switch from one equilibrium path to another. Drazen (1988) shows that
demand externalities can generate endogenous cycles in firm match value and unemployment.
However, he assumes an equal number of vacancies and unemployed and thus rules out cycles
in the two. Recently, novel interactions between frictional labor and product markets have been
proposed to generate endogenous cycles or multiplicity. Beaudry et al. (2015) obtain demand
externalities from unemployment risk and precautionary savings, and embed the resulting
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limit cycle in a model with exogenous disturbances. They estimate this model and show that
the endogenous cycle can explain U.S. business-cycle fluctuations in output and employment
well, provided that the productivity shocks make the cycle sufficiently irregular. They do not
investigate the dynamics of vacancies. Kaplan and Menzio (2016) argue that the unemployed
do not only spend less, but are also more likely to pay low prices for the same goods. They use
the combination of these effects—referred to as shopping externalities—to explain the outward
shift of the Beveridge curve since the Great Recession. In particular, this shift results from the
transitional dynamics after a belief shock switches coordination to an equilibrium with higher
unemployment and smaller markups.

The literature on the outward shift of the Beveridge curve is growing. In Ravn and Sterk
(2012), lower aggregate demand results from precautionary savings in the wake of higher
unemployment and further reduces job finding prospects. Heterogeneity in search efficiency
introduces negative duration dependence and an outward shift in the Beveridge curve. In
Eeckhout and Lindenlaub (2015), sorting makes on-the-job search improve the composition
of job searchers, boosting labor demand and justifying on-the-job search. The shift in the
Beveridge curve results from a switch from an equilibrium without to an equilibrium with on-
the-job search. Consistent with my model and suggested by Figure 1(a), Diamond and Sahin
(2015) show that outward shifts in the Beveridge curve after a trough are common in U.S.
historical data and not likely to be persistent.

My article is also related to the large literature proposing mechanisms that increase the am-
plification of the standard search and matching model. Mortensen and Nagypal (2007) provide
an overview. Recently, Gomme and Lkhagvasuren (2015) have shown that procyclical search
intensity increases amplification by making the net flow value of leisure countercyclical and as
the result of a strategic complementarity in search and recruiting activity. My model features
procyclical search intensity but, given the elasticity of the matching function, constrains its ef-
fect to the estimated elasticity of the job-finding rate with respect to labor-market tightness.
A few other papers address the persistence of the standard model. Fujita and Ramey (2007)
show that cyclical responses can be generated by the introduction of sunk costs from vacancy
creation. They show, however, that spreading out the impact of a shock in such a way results
in a counterfactually high cross correlation between labor-market variables and productivity
across time. Coles and Kelishomi (2011) achieve persistence of vacancies by replacing the free
entry condition by searching business opportunities and time to build an identified opportunity
into a vacancy. Dromel et al. (2010) and Petrosky-Nadeau (2014) address propagation by credit
frictions and therefore follow Fujita and Ramey (2007) in focusing on the costs of vacancy cre-
ation. In contrast, persistence in my model results from a self-reinforcing effect on the benefits
of vacancy creation while maintaining free entry of vacancies.

The calibration of Chéron and Decreuse (2016) is most closely related to mine. They show
that phantoms—traders that are still present in the market but that are no longer available
for trade—can result in a labor market matching function with increasing returns to scale
in the short run and constant returns in the long run, which results in excess volatility and
self-fulfilling fluctuations. They also calibrate a deterministic limit cycle and can explain the
persistence of unemployment and labor-market tightness if wages are rigid, if phantoms mostly
consist of vacancies, and if they “haunt” the market for a long time. Ellison et al. (2014) show
that locally decreasing returns to scale in labor market matching can increase amplification
and persistence. However, with respect to their quantitative results, they focus on saddle-path
dynamics. Sterk (2016) shows that skill losses upon unemployment can result in multiple steady
states, and slower dynamics in their neighborhoods result in more persistence. Technically, the
same mechanism delivers persistence for the Beveridge cycle, but the model of Sterk (2016)
features a unique equilibrium. Golosov and Menzio (2015) propose a theory of stochastic en-
dogenous fluctuations that result from firms’ incentives under decreasing returns in matching to
fire shirking workers simultaneously. Unemployment increases fast as the result of correlated
dismissals, whereas decreasing returns make unemployment decrease slowly. For the Beveridge
cycle, the proximity of steady states makes unemployment dynamics asymmetric as well, with
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periods of low unemployment lasting longer than periods with high unemployment. Only
Chéron and Decreuse (2016) calibrate a deterministic model to quantify its performance in
explaining labor-market dynamics, whereas Beaudry et al. (2015) show that fundamental shocks
on top of a deterministic cycle can reproduce the spectrum of the data.

Finally, my article is related to applications of the Bogdanov–Takens bifurcation in economics.
Using this bifurcation, Benhabib et al. (2001) show that an active monetary policy rule in the
presence of a zero lower bound results in indeterminacy and can direct an economy into a
liquidity trap. In models with search frictions, phase diagrams in Howitt and McAfee (1988),
Coles and Wright (1998), and Kaplan and Menzio (2016) also suggest the occurrence of a
Bogdanov–Takens bifurcation, although these authors do not explore this possibility.

2. A MODEL OF UNEMPLOYMENT AND TIGHTNESS

This section presents a Pissarides (2000) equilibrium search and matching model with variable
search intensity and feedback from employment to revenue per match. Time is continuous and
lasts forever, and there is no aggregate uncertainty.

2.1. Preferences, Markets, and Choices. The economy consists of a measure one of infinitely
lived workers and an endogenous measure of firms owned by workers. All firms have access
to the same technology. They maximize expected profits and discount future profits at rate r.
Workers are endowed with an indivisible unit of homogeneous labor every period. They are risk
neutral too and maximize lifetime utility, discounted at the same rate r. At time t, an endogenous
measure nt of workers is employed, and the remainder ut = 1 − nt is unemployed. Unemployed
workers receive a flow utility z > 0 that is independent of labor-market conditions. It captures
the combination of the unemployment benefit, the stigma of unemployment, the value of home
production, and the pure value of leisure that come with unemployment.

Matches of a single worker and firm produce consumption goods that are sold for a one-
period IOU in a goods market. A firm’s receipts are split into a wage wt and profits, are
immediately transferred to its employee and owners, respectively, and must be spent in the same
period on consumption goods produced by other worker–firm matches. Instead of modeling
the goods market explicitly, I propose a reduced-form relationship between the flow revenue
yt of a worker–firm match and aggregate employment. Assuming a constant elasticity, yt =
φ(nt) = φ(1 − ut) = φ0(1 − ut)α. I normalize φ0 to one and assume that α > 0, so that revenue is
increasing in aggregate employment. As explained in the introduction, several interpretations
can be given of the effect of aggregate employment on revenue per match, but throughout this
article I refer to this effect as a demand externality. In this interpretation the goods market is
characterized by imperfect competition. Revenue per match increases in aggregate employment
because when employment is high, customers spend more, possibly also in any given trade.

The labor market is characterized by search frictions, so that the formation of worker–firm
matches takes both time and resources. The total measure of matches mt formed in a certain pe-
riod is given by the common Cobb–Douglas matching function m(vt, stut) = m0v

η
t (stut)1−η, with

0 < η < 1. Inputs of this function are aggregate recruiting activity represented by the vacancy
rate vt (scaled by the labor force) and aggregate search effort given by the unemployment rate ut,
times the search intensity st of the unemployed. Normalize m0 to one and define labor-market
tightness θt as the ratio of the inputs of the matching function: θt ≡ vt/(stut).3 An individual
unemployed worker finds a job at the Poisson rate v

η
t (stut)1−η/ut = stθ

η
t . Similarly, individual

vacancies are filled at a rate v
η
t (stut)1−η/vt = θ

η
t /θt. Matches are destroyed at an exogenous rate

δ > 0. The surplus of a match is divided by Nash bargaining.
There are two choices to be made in this economy. First, at any moment in time t, unemployed

workers choose the intensity st at which they search for jobs. Search intensity comes at increasing
and strictly convex costs c(st) = c0sγ

t , with γ > 1. Simply scaling search intensity, I normalize

3 In this article, I study only the cases where st, ut > 0, so that θ is always defined.
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c0 to one.4 The discouraged worker effect—unemployed workers stop looking for a job if the
prospect of finding one is very bad—is modeled by st, because the labor force is fixed while
search intensity will be seen to increase with labor-market tightness. Combined with the gross
value of leisure z, the net flow utility of the unemployed is z − sγ

t .5 Second, at any moment in
time, potential firms freely decide whether to enter the labor market by opening a single vacancy
at a flow cost k > 0. Simultaneously any existing firm decides freely whether to withdraw its
unfilled vacancy from the market.

2.2. Asset Values of Workers and Firms. Free entry of vacancies implies that in equilibrium
the value of opening an additional vacancy cannot be positive. As described above, an individual
vacancy costs k per period and is filled at a rate θ

η
t /θt. Defining Jt as the value of a worker to a

firm, it must hold that

k ≥ θ
η
t

θt
Jt,(1)

and θt ≥ 0 with complementary slackness. The value of opening an additional vacancy is there-
fore only negative if the stock of vacancies is zero. In the remainder of this article I focus on
equilibria with economic activity, that is, with a positive level of labor-market tightness.

An unemployed worker enjoys a flow utility z − sγ
t and finds a job at the Poisson rate stθ

η
t .

The value Ut of unemployment to an individual worker is therefore described by

rUt = z − sγ
t + stθ

η
t (Wt − Ut) + U̇t,(2)

where Wt is the value of a job to a worker.
The flows to a firm are revenues (1 − ut)α minus wage wt, which is the periodical income to

the worker. The asset price equations of a job Jt and Wt to a firm and a worker, respectively,
are then

rJt = (1 − ut)α − wt − δJt + J̇ t,(3)

rWt = wt − δ(Wt − Ut) + Ẇt.(4)

The wage is determined by Nash bargaining over the surplus of a match pt ≡ Jt + Wt − Ut,
with worker’s bargaining power equal to β ∈ (0, 1) and separation (Ut, 0) as threat point. The
firm’s rent is therefore equal to its share of the surplus:

Jt = (1 − β)(Jt + Wt − Ut), and J̇ t = (1 − β)(J̇ t + Ẇt − V̇t),(5)

where the latter follows because wages are continuously renegotiated.6

As in (2), an unemployed worker’s net expected income from search activity gt is stθ
η
t (Wt −

Ut) − sγ
t . He optimally chooses his search intensity st, taking into account that the surplus of a

4 The model allows for normalization of m0 and c0, because the level of the ratio of vacancies to unemployment vt/ut

and the value of search intensity st are intrinsically meaningless.
5 Note that z does not affect c(st), which seems a reasonable assumption for risk-neutral agents. This assumption

highlights the effect of the value of leisure on vacancy creation instead of on labor supply.
6 Pissarides (2009) shows that the crucial assumption for job creation is that wages of new matches are given by this

rule. How rents in ongoing jobs are split is inconsequential for job creation and thus for the dynamics in this model.
Coles and Wright (1998) have shown that outside a steady state, Nash bargaining no longer necessarily corresponds to
the outcome of strategic bargaining with appropriately defined threat points as the time between offers goes to zero,
as it would in a stationary environment (Binmore et al., 1986). Consequently, the division rule in this article should not
be interpreted as the outcome of strategic bargaining, but as an axiomatic solution.
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match will be divided by Nash bargaining. Using (1) with equality, net expected income from
search activity can be expressed in terms of labor-market tightness:

g(θt) = max
st

[
β

1 − β
stkθt − sγ

t

]
.(6)

Finally, add (3) to (4), subtract (2), and substitute g(θt) to obtain the law of motion for match
surplus

ṗ t = (r + δ)pt − (1 − ut)α + z − g(θt).(7)

2.3. Equilibrium Behavior and Dynamics. Unemployed workers choose the intensity st at
which they search for jobs. Balancing the benefits of search with the costs, from (6) optimal
search intensity s∗(θt) is given by

s∗(θt) =
(

β

1 − β

k
γ

θt

) 1
γ−1

.(8)

As referred to above, optimal intensity increases in tightness and is positive for θ > 0. Together
with the stocks of vacancies and unemployed workers it determines the measure of matches
formed at any instant. Combined with the destruction of existing jobs, unemployment evolves
according to a differential equation in unemployment and tightness:

u̇t = δ(1 − ut) − s∗(θt)θ
η
t ut.(9)

By opening or closing vacancies, firms translate changes in expectations about the value of
a worker to the firm into changes in labor-market tightness with perfect foresight. Indeed, for
any positive level of tightness, (1) implies

Jt = kθt

θ
η
t

.(10)

Differentiating with respect to time, the value of a worker to a firm and labor-market tightness
move in tandem:

J̇ t = kθ̇t(1 − η)
θ
η
t

.(11)

Substituting (5) and (10) into (7), the value of a worker to a firm evolves according to

J̇ t = (r + δ)
kθt

θ
η
t

− (1 − β) [(1 − ut)
α − z + g(θt)] .(12)

Finally, combine (11) and (12) into a second differential equation in unemployment and tight-
ness:

θ̇t = (r + δ)
θt

1 − η
+ (1 − β)

θ
η
t

k(1 − η)
[g(θt) + z − (1 − ut)α] .(13)

Equilibrium can now be defined as follows.
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DEFINITION 1. A perfect foresight equilibrium with economic activity is a pair of functions
{ut, θt} such that:

1. For all t ≥ 0, unemployment ut ∈ [0, 1] evolves according to (9);
2. For all t ≥ 0, labor-market tightness θt > 0 evolves according to (13);
3. limt→∞ θt is finite and u0 is given.

In the presence of search frictions, an equilibrium is not necessarily efficient. Positive exter-
nalities of search and recruiting activity occur for trading partners for whom matching is more
likely because of the availability of more, or more effective, trading partners. Negative external-
ities of search and recruiting activity occur for searchers of the same type, for whom matching is
less likely because of increased congestion for trading partners. These externalities only cancel
once the net private returns from search and recruiting activity equal the net social returns.
Proposition 1 states that this happens if the familiar Hosios (1990) condition is satisfied. Note
that the Hosios condition only concerns the search externalities, not the demand externalities.
The proof in Appendix A.2.1 extends the efficiency results of the Pissarides (2000) model with
variable search intensity to out-of-steady-state dynamics.

PROPOSITION 1. Suppose revenue per match is independent of unemployment and constant,
that is, yt = y. Then search intensity st and labor-market tightness θt are efficient if and only if the
bargaining power of firms 1 − β is equal to the elasticity of the matching function η.

Thus, 1 − β = η is the efficient sharing rule for a social planner that takes the demand ex-
ternalities as given, just as firms and workers do, but does internalize search externalities. In
fact, the demand externalities result in multiple equilibria for the same fundamentals, and
Mortensen (1999) shows that these equilibria can be Pareto-ranked. The next section presents
steady-state equilibria, whereas the section after that presents the nonstationary equilibrium of
the Beveridge cycle that encloses one of these steady states.

3. STEADY-STATE EQUILIBRIA

In this section, I present the steady-state equilibria of the model economy and study their
stability. I show that if there exists a steady state with economic activity for z > 0, then there
are generically multiple of them. Knowledge of the stability of these steady states helps to
understand the Beveridge cycle that ultimately explains the data.

3.1. Nullclines. A steady state is a pair of functions {ut, θt} in which both unemployment
and labor-market tightness are constant. Unemployment is constant on the u̇t = 0-locus or
unemployment nullcline, where (9) is equal to zero:

ut = δ

δ + s∗(θt)θ
η
t
,(14)

with s∗(θt) as given in (8). One can see that in steady state all workers are unemployed if tightness
is zero and that steady-state unemployment decreases in tightness via the job-finding rate.

Tightness is constant on the θ̇t = 0-locus or tightness nullcline. Equalizing (13) to zero, the
tightness nullcline for equilibria with economic activity can also be expressed as unemployment
in terms of tightness:

ut = 1 −
[

(r + δ)
kθt

(1 − β)θη
t

+ g(θt) + z
] 1

α

.(15)
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NOTES: Parameters are k = 0.55, δ = 0.1, r = 0.012, η = 0.5, γ = 1.29, α = 0.3, β = 0.5, and z = 0.71.

FIGURE 2

NULLCLINES OF UNEMPLOYMENT (DASHED) AND LABOR-MARKET TIGHTNESS, RESULTING IN STEADY STATES N, L, AND H

Again unemployment decreases in tightness: At a lower level of unemployment, revenue will
be higher, and therefore in equilibrium firms will open more vacancies. From (15) with θt = 0,
we can see that the nullcline crosses the θ = 0-axis at

uθ=0 = 1 − z1/α.(16)

At this level of unemployment, revenue per worker–firm match equals the gross value of leisure,
and firms do not want to open any vacancies. For smaller values of leisure, wages are lower.
As a result, there is more surplus of a match, and firms open more vacancies. Figure 2 shows
representative unemployment and tightness nullclines and indicates the location of uθ=0 for
some z > 0.7

3.2. Existence of Steady States. A steady state with economic activity exists where the two
downward-sloping nullclines intersect. Figure 2 shows two steady states with activity: A steady
state L with a relatively low but positive employment and labor-market tightness and a steady
state H with high employment and tightness. Due to the complementary slackness condition,
there is also always a steady state N without economic activity at θ = 0 and u = 1. However, it
is not generally possible to give explicit solutions for steady states with economic activity, and
they may not always exist. In particular, for z > 0 there are only steady states with economic
activity if recruiting costs k are small enough. If not, the unemployment nullcline will lie entirely
above the tightness nullcline, and the steady state without activity is the only steady state.8

As soon as recruiting costs become small enough, the two nullclines touch, and a saddle-node
bifurcation occurs. In a bifurcation, the qualitative properties of a dynamical system change as
the result of a change in one or more parameters, k in this case.9 Bifurcations are of interest
because regions within the parameter space delimited by bifurcations are therefore structurally
stable, that is, the qualitative dynamics are invariant to small perturbations of the parameters.

7 Since unemployment can be expressed more easily as a function of tightness than the reverse, I plot unemployment
on the vertical axis and tightness on the horizontal one. Once I later on plot vacancies to unemployment, unemployment
will be on the horizontal axis as is common in the literature. With these conventions, counterclockwise cycles in
unemployment and vacancies thus correspond to clockwise cycles in unemployment and tightness.

8 If z = 0, at least one steady state with activity exists if η + (γ − 1)−1 < 1, independent of other parameters.
9 Alternatively, for a given k and α, the gross value of leisure z must be small enough. See, for example, Kuznetsov

(2004) for more on bifurcation theory.
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The qualitative change as the result of a saddle-node bifurcation is the emergence of two
additional steady states: a saddle point and an antisaddle (node or focus).10 Depending on the
shape of the nullclines, saddle-node bifurcations can happen multiple times. As a result, if any
steady state with economic activity exists for z > 0, there is generically an even number of them.
Focusing on this empirically relevant case, Proposition 2 states a sufficient condition for the
existence of exactly two steady states with economic activity. The proof is in Appendix A.2.2.

PROPOSITION 2. Suppose k is small enough to guarantee the existence of a steady state with eco-
nomic activity. Then if α ≤ 1 and z > (1 − δ/(δ + (r + δ)(1 − η)η(γ − 1)))α, exactly two of them
exist.

The sufficient condition in Proposition 2 ensures that the unemployment nullcline is convex
and the tightness nullcline is concave on the relevant sections, but my calibrations as presented
in Subsection 5.1 show that this condition is not necessary. In the next subsection, I characterize
the stability of the set of steady-state equilibria with activity.

3.3. Stability of Steady States. The local stability of the steady states with economic activity
can be studied by linearizing the dynamical system given by (9) and (13). In a steady state with
economic activity, the Jacobian matrix is

(
∂θ̇t
∂θt

∂θ̇t
∂ut

∂u̇t
∂θt

∂u̇t
∂ut

)∣∣∣∣∣
θ̇,u̇=0

=
(

r + δ + s∗(θt)θ
η
t

β

(1−η) (1 − β) θ
η
t

k(1−η)α(1 − ut)α−1

−s′(θt)θ
η
t ut − s∗(θt)ηθ

η−1
t ut −δ − s∗(θt)θ

η
t

)
,(17)

with

s′(θt) = 1
θt(γ − 1)

(
β

1 − β

k
γ

θt

) 1
γ−1

.

We see that ∂θ̇t/∂θt > 0, ∂θ̇t/∂ut > 0, ∂u̇t/∂θt < 0, and ∂u̇t/∂ut < 0 in steady state. Depending
on whether the product of the diagonal elements (∂θ̇t/∂θt)(∂u̇t/∂ut) or the product of the cross-
diagonal elements (∂θ̇t/∂ut)(∂u̇t/∂θt) is more negative, the determinant is negative or positive,
respectively. If and only if the determinant of the Jacobian matrix at a steady state is negative,
it has eigenvalues of different signs and thus saddle-path dynamics (see, e.g., Kuznetsov, 2004,
p. 49). If and only if the determinant is positive, the eigenvalues are of equal sign and the steady
state is an antisaddle. Since only an antisaddle can feature surrounding oscillatory dynamics,
Proposition 3 states a necessary condition for endogenous cycles.

PROPOSITION 3. A steady state with economic activity is an antisaddle if and only if the unem-
ployment nullcline crosses the tightness nullcline from above.

PROOF. The slopes of the nullclines in any of the steady states with economic activity are
given by

dut

dθt

∣∣∣∣∣u̇t=0 = −∂u̇t

∂θt

/
∂u̇t

∂ut
and

dut

dθt

∣∣∣∣
θ̇t=0

= −∂θ̇t

∂θt

/
∂θ̇t

∂ut
.

Now we see that

∂θ̇t

∂θt

∂u̇t

∂ut
>

∂θ̇t

∂ut

∂u̇t

∂θt

10 An antisaddle is a focus if its eigenvalues are complex, thus if tr2 < 4 det, and a node otherwise.
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if and only if the former is steeper than the latter. Since both terms are negative by the sign
restrictions, this corresponds to the unemployment nullcline crossing the tightness nullcline
from above. �

As can be seen in Figure 2, steady state L is the intersection of the unemployment nullcline
crossing the tightness nullcline from above. As a result, only this steady state can feature
endogenous oscillatory dynamics enclosing the steady state. Steady state H is a saddle point, so
that there is an equilibrium saddle path leading to it.

The trace of the Jacobian matrix in the antisaddle indicates whether the dynamics locally
converge to it (the trace is negative and the antisaddle is a sink), diverge from it (positive trace;
source), or neither (zero trace; center). The trace is given by the sum of the diagonal elements
of the Jacobian matrix (17), and is thus

∂θ̇t

∂θt
+ ∂u̇t

∂ut
= r + s∗(θt)θ

η
t

(
β

1 − η
− 1

)
.(18)

We see that the trace is exactly r > 0 if β = 1 − η, thus if the Hosios condition is satisfied. The
trace is also always positive for β > 1 − η. As a result, the antisaddle is unstable in these cases.
However, as we will again see in the next section, the trace can take either sign for β < 1 − η.

4. BEVERIDGE CYCLE EQUILIBRIA

In this section, I show that the steady states and equilibrium paths leading to them are not the
only equilibria. In particular, I show that there exists a stable limit cycle for a range of values for
workers’ bargaining power. A limit cycle is a periodic orbit enclosing an antisaddle such that at
least one other path converges to it as time approaches positive infinity (the cycle is stable) or
negative infinity (the cycle is unstable). Since the limit cycle in this article results in enduring
endogenous fluctuations in vacancies and unemployment, I refer to it as a Beveridge cycle.

The existence of a stable Beveridge cycle follows from the occurrence of a Bogdanov–Takens
bifurcation. This bifurcation generically occurs in a system of two or more parameters, in
which a Hopf bifurcation, a saddle-loop bifurcation, and a saddle-node bifurcation occur in a
single point in the parameter space. This Bogdanov–Takens point is important because it is an
organizing center for the dynamics: It characterizes the qualitative dynamics of the system in
the neighborhood of this point. The next subsection presents examples of the relevant kinds of
qualitative dynamics, as demarcated by a Hopf and a saddle-loop bifurcation, respectively. These
examples also show the existence of multiple equilibria for the same initial unemployment rate.
Next, I show the occurrence of the bifurcations more formally. Finally, I describe the economics
of the Beveridge cycle.

4.1. Examples of Oscillatory Dynamics. Figure 3 plots phase diagrams for four different
values of the workers’ bargaining power β. These phase diagrams zoom in on the steady states
with economic activity, and the nullclines are dashed. Starting off from a small β in panel (a) of
Figure 3, the antisaddle is a stable focus, so that it attracts oscillating paths from initial conditions
for unemployment outside itself. Note that the equilibrium path toward the antisaddle is locally
indeterminate and that, in between the two outer paths of the panel, there must also be an
equilibrium saddle path leading to the saddle point.

Increasing β, at some critical value the eigenvalues of the Jacobian matrix at the antisaddle
become purely imaginary, and a Hopf bifurcation occurs. In a Hopf bifurcation, a periodic orbit
emerges out of an antisaddle and inherits its stability. Because the antisaddle of panel (a) of
Figure 3 is stable, in this Hopf bifurcation it becomes unstable and gives rise to a stable limit
cycle. Panel (b) of Figure 3 presents this limit cycle. Equilibrium is still locally indeterminate,
and in between the two depicted paths there is again a saddle path.
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NOTES: Nullclines are dashed, intersecting twice. k and c0 used to normalize steady state L tightness to 1. Other
parameter values from Table 2, first column. βHopf ≈ 0.89290.

FIGURE 3

REPRESENTATIVE PHASE DIAGRAMS FOR DIFFERENT VALUES FOR β: (A) STABLE STEADY STATE; (B) STABLE LIMIT CYCLE; (C)
HOMOCLINIC ORBIT OF THE SADDLE-LOOP BIFURCATION; (D) NO CLOSED ORBITS AT EFFICIENT BARGAINING

The limit cycle grows for a larger and larger workers’ bargaining power, until it coincides
with the stable and unstable manifolds of the saddle point. When this happens, a saddle-loop
bifurcation occurs, which is depicted in panel (c) of Figure 3. At this bifurcation, the periodic
orbit connects the saddle point with itself and is therefore called a homoclinic orbit. At the
saddle-loop bifurcation the basin of attraction outside the periodic orbit has disappeared, except
for the remaining saddle path below the saddle point.

For larger values of β as in panel (d) of Figure 3, periodic orbits no longer exist. The anti-
saddle remains unstable, but now the paths originating from its neighborhood will no longer be
bounded, except for the saddle path. Equilibrium is, however, still locally indeterminate.

4.2. Hopf, Saddle-Loop, and Bogdanov–Takens Bifurcations. The phase diagrams suggest
the occurrence of both a Hopf and a saddle-loop bifurcation. In this subsection, I confirm the
occurrence of these bifurcations. Moreover, I show that parameter combinations for which these
bifurcations occur come together in a Bogdanov–Takens point. As a result, these bifurcations
fully describe the behavior of the dynamical system in the neighborhood of this point in the
parameter space.

AHopf bifurcation occurs when the eigenvalues of the Jacobian matrix at the antisaddle cross
the imaginary axis so that the trace becomes zero. Remember from discussion of Equation (18)
that the trace is always positive for β ≥ 1 − η. Proposition 4 shows that it can become zero for
a sufficiently small workers’ bargaining power.

PROPOSITION 4. Under the regularity condition that the job-finding rate in the antisaddle exceeds
the discount rate r > 0, there exists a βHopf ∈ (0, 1 − η) for which the antisaddle undergoes a Hopf
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bifurcation. As a result, there is a limit cycle in a one-sided neighborhood of βHopf or exactly at
βHopf .

PROOF. In any antisaddle the real parts of the eigenvalues are of the same sign, so that if
the trace has a simple zero in the antisaddle, the eigenvalues cross the imaginary axis. From
(18) we see that the trace has a simple zero at βHopf = (1 − η)(1 − r/(s∗(θt)θ

η
t )) ∈ (0, 1 − η) if

s∗(θt)θ
η
t > r > 0. Therefore, for s∗(θt)θ

η
t > r in the antisaddle there exists a 0 < βHopf < 1 − η for

which a Hopf bifurcation occurs. As a result, a limit cycle exists in a one-sided neighborhood of
βHopf or exactly at βHopf . �

Proposition 4 implies that the antisaddle is a sink for β < βHopf and a source for β > βHopf .
For at most one of these inequalities there exists a limit cycle enclosing the antisaddle for β

sufficiently close to βHopf , but the proposition does not tell in which case. If a limit cycle exists
for the left-sided neighborhood of βHopf it must be unstable, because the antisaddle is stable,
and vice versa for the right-sided neighborhood.

Although the limit cycle coincides with the antisaddle and the period of the cycle approaches
zero as β → βHopf , in a so-called saddle-loop bifurcation the cycle assumes its maximal size. A
saddle-loop bifurcation occurs when the stable and the unstable manifolds of a saddle point
connect to form a homoclinic orbit, a path that connects a steady state with itself. Because of the
neighborhood of the saddle point, the cycle’s period approaches infinity as the cycle approaches
the homoclinic orbit. In Hamiltonian systems (where all orbits are level curves) homoclinic
orbits are a generic phenomenon, but in systems where the trace is generically nonzero the
existence of a homoclinic orbit is not robust to small perturbations of a single parameter. In
such systems the existence of a homoclinic orbit can be proven by perturbing a Hamiltonian
system, and then the Andronov–Leontovich theorem (see, e.g., Kuznetsov, 2004, p. 200) states
that a limit cycle bifurcates on one side of the homoclinic orbit. Proposition 5 extends the result
of Mortensen (1999) on the existence of a homoclinic orbit to the case of a positive value of
leisure.11 The proof is in Appendix A.2.3.

PROPOSITION 5. Suppose that parameters are such that two steady states with economic activity
exist for z > 0, r = 0, and β = 1 − η, and define θH and uH as market tightness and unemployment
in the saddle point H, respectively. Suppose also that (1 − uH + αz1/α)α+1 < (1 − α)[(1 − uH)(z +
kθ

1−η
t /(1 − β)) − uHg(θH)]. Then there exists a βSL < 1 − η such that for a sufficiently small r > 0

a homoclinic orbit exists. Moreover, there exists a family of stable limit cycles for a one-sided
neighborhood of βSL.

Proposition 5 states that there exists an orbit that connects the saddle point with itself for
β = βSL, and (1 − uH + αz1/α)α+1 < (1 − α)[(1 − uH)(z + kθ

1−η
t /(1 − β)) − uHg(θH)] is a neces-

sary and sufficient condition to guarantee that θt > 0 on this homoclinic orbit. Although the
homoclinic orbit itself is not a robust phenomenon, it is of interest because it implies that a
family of limit cycles can be found in the neighborhood of βSL. However, although Proposition 5
tells us that these limit cycles are stable, it cannot tell us whether these cycles occur for β > βSL

or β < βSL. Moreover, we do not know yet whether βHopf < βSL or the other way around.
Given the limited number of ways that limit cycles can appear or disappear, if βHopf <

βSL, stable limit cycles would exist for the right-sided neighborhood of βHopf , delimited by
βSL. If βHopf > βSL, stable limit cycles would exist for the right-sided neighborhood of βSL,
upon collision (in a saddle-node bifurcation of cycles) annihilating an unstable limit cycle
that would exist for the left-sided neighborhood of βHopf . To rule out this latter case, and to
show that a stable limit cycle exists for a range of values for the workers’ bargaining power

11 Mortensen (1999) shows that (18) holds globally, not only in steady states, and as a result his system can be
described by a Hamiltonian function when the Hosios condition holds and r = 0. Moreover, Bendixson’s criterion
(Guckenheimer and Holmes, 1983, p. 44) then rules out limit cycles whenever both r > 0 and β ≥ 1 − η.
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NOTES: Other parameters from Table 3, first column. The gray curve corresponds to the saddle-node bifurcation, the
bold curve to the saddle-loop bifurcation, and the dashed curve to the Hopf bifurcation. Regions (a), (b), and (d) refer
to the panels of Figure 3, reprinted for convenience, and (d) extends beyond efficient bargaining at β = 0.9 (dotted
curve). BT refers to the Bogdanov–Takens-point, and there are no steady states with economic activity in region (0).
The homoclinic orbit hits the u-axis for α ≈ 0.73.

FIGURE 4

BIFURCATION DIAGRAM OF THE BOGDANOV–TAKENS BIFURCATION, WITH α AND β AS BIFURCATION PARAMETERS

β ∈ (βHopf , βSL), I will show the occurrence of a Bogdanov–Takens bifurcation. A necessary
condition for this bifurcation is Bogdanov–Takens singularity, which requires that, in a steady
state, both eigenvalues are zero. Proposition 6 states that such a point in parameter space exists.
The proof is in Appendix A.2.4.

PROPOSITION 6. DefineBogdanov–Takens singularity as a steady state with two zero eigenvalues
but a nonzero Jacobianmatrix.There exists a point in parameter space that satisfies this singularity,
and it is unique for α < 1.

Under certain genericity conditions, this singularity is sufficient for the occurrence of a
Bogdanov–Takens bifurcation. These conditions require that the Bogdanov–Takens point is not
more degenerate than required and that one can “travel” through it by varying the parameters.
To suggest that this is the case, I present the bifurcation diagram of Figure 4.12 The figure shows
combinations of parameters α and β for which bifurcations occur. The regions bounded by these
bifurcations can be represented by qualitatively similar phase diagrams, where (a), (b), and (d)
correspond to the respective panels of Figure 3, reprinted for convenience. The gray solid curve
represents combinations of α and β for which a saddle-node bifurcation occurs, so that above
the curve (in region (0)) no steady states with economic activity exist, whereas below it there
are two of them. The bold curve depicts the occurrence of a saddle-loop bifurcation as in Figure
3(c). Right of this curve is the familiar region (d) in which all equilibria are either steady states
or saddle paths and in which the dots indicate efficient bargaining. The dashed curve represents
combinations of α and β for which a Hopf bifurcation occurs, so that left of this curve (in region
(a)) there is a continuum of equilibria spiraling toward antisaddle L. Region (b), bounded by
the Hopf and the saddle-loop bifurcations, features the Beveridge cycle. This region increases
in r. Finally, there is a Bogdanov–Takens point BT, where the Hopf bifurcation curve and the

12 A formal proof requires the construction of a normal form and is too involved to present here; see, for example,
Kuznetsov (2004, p. 322).
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saddle-loop bifurcation curve connect tangentially to the saddle-node bifurcation curve, as they
should for a Bogdanov–Takens bifurcation to occur.

Consequently, for an elasticity of the demand externalities α in the left-sided neighborhood
of the Bogdanov–Takens point, there exists a family of limit cycles enclosed by a Hopf and
saddle-loop bifurcation. The Bogdanov–Takens bifurcation rules out another bifurcation that
could change the stability of these cycles. Because Proposition 5 shows that the limit cycles
born at the saddle-loop bifurcation are stable, the entire family is stable. This implies that
βHopf < βSL, because a stable limit cycle requires a positive trace in antisaddle L, which only
occurs for β > βHopf . As a result, a stable Beveridge cycle exists for β ∈ (βHopf , βSL). Because the
Beveridge cycle exists for a range of values for the parameters, it is structurally stable. The cycle
will thus continue to exist under small perturbations of the parameters or upon introduction of
some risk aversion.

4.3. The Economics of the Beveridge Cycle. Combined with delays in matching, the feed-
back from aggregate employment to revenue per match results in self-fulfilling expectations.
An expectation that unemployment will be low makes firms open vacancies, because low un-
employment implies a high revenue per match. This expectation is self-fulfilling because more
vacancies now result in lower unemployment in the future.

However, rational expectations Beveridge cycles do not only require positive feedback and
a propagation mechanism, but also a congestion externality. Howitt and McAfee (1988) argue
that in models with only a positive externality, because of positive discounting, antisaddles are
unstable and no cycles exist. However, they show that a negative externality can overturn this
effect. This negative externality is a standard ingredient in search models of the labor market,
where matching is less likely for a potential trader when many other potential traders search
on the same side of the market. The congestion externality makes firms with expectations of
low unemployment open vacancies immediately, not only because revenue per match will be
higher in the future and matching takes time, but also because hiring will be more costly in the
future. Proposition 1 shows that when β = 1 − η, thick-market externalities on one side of the
market exactly cancel congestion externalities on the other side of the market. It follows from
Propositions 4 and 5 that Beveridge cycles exist for a range of value for workers’ bargaining
power that satisfy β < 1 − η. This condition is required because free entry of firms drives the
evolution of market tightness, and if β < 1 − η, congestion occurs primarily on the firms’ side
of the market. Besides, variable search intensity is not essential for the existence of the cycle,
but is only helpful for the calibration.

It follows from Proposition 3 that oscillations enclose a steady state where the unemployment
nullcline crosses the tightness nullcline from above. At this antisaddle, the strategic comple-
mentarity from the demand externality dominates the strategic substitute from the congestion
externality: When firms increase their vacancies, this results in such a large decrease in un-
employment in the future that revenue per match will increase so much that firms will want
to open even more vacancies. As a result, firms overshoot the antisaddle’s tightness level for
the alluringly high revenue per match at high aggregate employment levels. However, with
so many vacancies, unemployment decreases fast, and it starts to take a long time to fill an
individual vacancy. Consequently, while unemployment still decreases but firms foresee an end
to the boom, they do not want to spend valuable resources on vacancies that are hard to fill.
Expecting higher unemployment in the future and thus smaller benefits of a filled vacancy, firms
reduce labor-market tightness. As a result, at some point fewer matches are made than jobs are
destroyed and unemployment increases. Higher unemployment feeds back to lower revenue
per match, so that firms also overshoot the steady-state level of tightness in the trough. With
so few vacancies, however, a single vacancy is filled very fast. So, while unemployment still
increases but firms foresee an end to the trough, they are willing to spend some resources on
vacancies that will be filled very soon and pay off at the higher employment levels of the future.
Job matching takes over from job destruction again and unemployment decreases, completing
the cycle.
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The relative size of the discount rate r and the distortion of the Hosios condition, β < 1 − η,
determines whether oscillations diverge, converge, or form a closed orbit. The asset-pricing
equation of the system, (13), shows that for a high r and given flow values, equilibrium requires
large capital gains or losses, that is, fast movements in market tightness. For that reason, for a
higher r and a given η, stability of the antisaddle requires a smaller β and so more congestion.
Alternatively, for a given r the oscillations converge for a small β, form closed orbits for an
intermediate β, and diverge for a large β, as in Figure 3. Remember that for a given r, the cycle
is largest for βSL. Otherwise, fix β ∈ (βHopf , βSL) and compare Beveridge cycles for different
discount rates. The cycle is small for a small discount rate, because when firms are patient they
heavily respond to expected future changes in the revenue per match. A limit cycle is then only
consistent with equilibrium if revenue per match does not vary too much over the cycle, so if
the cycle is small.

As the result of self-fulfilling expectations, the model features multiple equilibria for a suf-
ficiently low initial condition for unemployment, which results in the problem of equilibrium
selection. Because of the evidence on the cyclical dynamics as presented in Figure 1(a), I take
the dynamics of the Beveridge cycle to be the relevant dynamics to explain the actual data.
The stability of the limit cycle further supports its plausibility as a data-generating process,
although its basin of attraction may be small. Figure 4 shows that the set of β’s that give rise to a
Beveridge cycle has a positive but small measure, so that the proposed data-generating process
is not very robust to changes in β. On the other hand, for virtually all β < βHopf the dynamics
oscillate but eventually settle down in the antisaddle, as in Figure 3(a). Especially if β is smaller
than but close to βHopf , it may take a very long time to reach the steady state, so that many
business cycles could be explained by one exogenous shock in fundamentals or beliefs. Kaplan
and Menzio (2016) provide an example of the latter. I focus on the limit cycle, and therefore I do
not exploit the additional degrees of freedom that exogenous shocks provide. Instead, I use the
fixed period of the limit cycle to calibrate the model. The next section presents the quantitative
contribution of this article.

5. QUANTITATIVE RESULTS

In this section, I calibrate the model to the average duration of the business cycle and assess its
quantitative performance in describing unemployment and vacancies over the business cycle.
I compare the model-generated data both to the actual data and to data generated by the
canonical search and matching model of Pissarides (1985) with productivity shocks. Because
the latter features constant search intensity, I also calibrate a model of the Beveridge cycle
without variable search intensity. Next, I discuss robustness to alternative calibrations, including
alternative targets for the duration of the business cycle. Finally, I show that the model-generated
data move in the expected direction upon changes in unemployment benefits.

5.1. Calibration. I calibrate the parameters of the model using data on the duration of the
business cycle. Depending on its measurement, the typical cycle in Figure 1(a) lasts between 18
and 28 quarters. Because productivity in the model moves with employment, the duration of
the NBER business cycle provides an alternative calibration target that avoids some arbitrary
choices. Figure 5 shows the duration of the NBER business cycles falling entirely in the sample
period from 1951 to 2014. Irrespective of whether the cycle is measured from peak to peak or
from trough to trough, the average cycle lasts roughly 24 quarters.

The parameters that describe workers’ preferences are discount rate r, gross value of leisure
z, and the elasticity of the search cost function γ. Firms’ technology is described by the elasticity
of revenue per match with respect to aggregate employment α, the vacancy-creation cost k, and
the job-destruction rate δ. Matching and bargaining are described by the matching function’s
elasticity with respect to vacancies η and workers’ bargaining power β.

The bifurcation analysis of the preceding section makes clear that β is important for the
existence of the Beveridge cycle. I choose the β that is closest to efficient bargaining but still
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SOURCE: http://www.nber.org/cycles.html.

FIGURE 5

DURATION IN QUARTERS OF ALL COMPLETED NBER BUSINESS CYCLES BETWEEN 1951 AND 2014

gives rise to a limit cycle with a computationally significant basin of attraction outside its path.
This limit cycle is close to the homoclinic orbit, the largest closed orbit possible, taking the other
parameters to be given.13 By moving β further away from efficient bargaining in the direction
of the Hopf bifurcation, the limit cycle can be made arbitrarily small, but then the Beveridge
cycle will be able to explain little volatility. My calibration strategy therefore approaches an
upper bound to deterministic volatility.

I choose a period in the model to be one quarter. Given β, I set α such that the duration of
the Beveridge cycle corresponds to the average duration of the NBER business cycle over the
sample period. The value of r corresponds to an annual interest rate of 4%. I choose the value
for δ to equal the observed average quarterly job-destruction rate and the value for k so that
the average unemployment rate is the same in the model as in the data.

In the model, the elasticity ε of the job-finding rate with respect to the vacancy-to-
unemployment ratio is ε = η + (1 − η)/γ. Therefore I choose η and γ such that their com-
bination results in an estimated elasticity of 0.46. To distinguish the role of variable search
intensity from the role of the matching function, I exploit that (by definition) nonparticipants
do not search for jobs but still find jobs at cyclical rates. Assuming that nonparticipants and
unemployed workers find jobs via the same matching function and that the higher job-finding
rate of the unemployed is the result of their search effort, allows me to disentangle η and γ. I
use a matching function with ranking (similar to Blanchard and Diamond, 1994) to ensure that
nonparticipants do not create congestion for unemployed workers, as in the model. Appendix
A.1.1 describes this procedure and the data used in more detail.

I choose z such that I match an average flow value of leisure of 0.71 as in Hall and Milgrom
(2008). In my model, however, the flow benefit of leisure consists of a gross value of leisure z and
variable search costs sγ

t . On top of that, although average productivity is commonly normalized
to 1, productivity in my model never reaches 1. For that reason, the relevant calibration target
of my model is not z, but the net value of leisure relative to output:

ζ = z − s∗(θt)γ

(1 − ut)α
.

I calibrate the parameters of the Pissarides (1985) model using the same targets. I use the
same β as for the Beveridge cycle, because in the standard model it is unrelated to the size
of the cycle. However, I choose the parameters of the stochastic process for productivity such

13 As pointed out in Section 4, the period of the homoclinic orbit approaches infinity, but because it has no basin of
attraction outside itself, sampling from this cycle is computationally unstable.
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TABLE 2
CALIBRATED PARAMETERS FOR THE BENCHMARK CALIBRATION, THE PISSARIDES (1985) MODEL (PISSARIDES I), THE BEVERIDGE

CYCLE WITHOUT VARIABLE SEARCH INTENSITY (γ → ∞), AND THE PISSARIDES (1985) MODEL THAT USES THE SAME TARGETS AS

THE BEVERIDGE CYCLE WITHOUT VARIABLE SEARCH INTENSITY (PISSARIDES II)

Description Beveridge Cycle Pissarides I γ → ∞ Pissarides II

r Discount rate 0.012 0.012 0.012 0.012
z Gross value of leisure 0.527 0.71 0.345 0.71
γ Elasticity search cost 2.5 – – –
α Elasticity demand externality 6.887 – 11.05 –
k Vacancy-creation cost 2.079 × 10−8 1.155 × 10−2 4.561 × 10−2 7.974 × 10−2

δ Job-destruction rate 0.1 0.1 0.1 0.1
η Elasticity matching function 0.1 0.46 0.46 0.46
β Workers’ bargaining power 0.893 0.893 0.536 0.536

NOTES: For Pissarides I, the Ornstein–Uhlenbeck volatility parameter is σ = 0.02139, and its persistence parameter is
γ = 0.032. For Pissarides II, σ = 0.0546 and γ = 0.0459.

that the standard deviation and autocorrelation of revenue per match are the same for the
Beveridge cycle and the Pissarides (1985) model. Following the RBC literature’s convention
for stochastic processes, I match the statistics in logs as deviations from a linear trend.14 I repeat
this procedure to match the targets of the Beveridge cycle without variable search intensity.

The calibration strategy described above results in the parameters of Table 2. All calibra-
tions of the Beveridge cycle result in two steady states with economic activity. My calibration
procedure to disentangle γ and η results in an estimated γ of 2.5, which is a bit higher than
the quadratic cost function that the literature (e.g., Gomme and Lkhagvasuren, 2015) generally
assumes.15 The target for ε then implies η = 0.1, so that the Hosios condition corresponds to
β = 0.9. In both the Pissarides (1985) model and the model of the Beveridge cycle without
variable search intensity, η = ε. When, on top of that, average revenue per match is equal to
one, as in the Pissarides (1985) model, z = ζ.

To match the average unemployment rate over the cycle, my benchmark calibration results in
a demand externality of 6.9. This value is considerably higher than Kaplan and Menzio’s (2016)
estimate of shopping and demand externalities that implies α = 1.15 and lies completely out of
the range of estimates of increasing returns to scale, which provide an upper bound of α = 0.17
(Harrison, 2001). As can be seen in the last column of Table 2, this problem only deteriorates
for a fixed search intensity. The following two alternative calibration strategies show that either
a high value of leisure, or a high elasticity of the job-finding rate with respect to tightness results
in demand externalities that are of the same order of magnitude as Kaplan and Menzio’s (2016).

The estimation of the elasticity of the job-finding rate ε is very sensitive to the choices made
and the data selected. As a result, in the literature it takes almost any value between zero and
one; see Petrongolo and Pissarides (2001). Because the quantitative results are also sensitive
to ε, I consider an alternative calibration, exploiting that, from December 2000 onward, the
JOLTS provides an alternative source of the job-finding probability. Regressing the log of this
job-finding probability on the log of labor-market tightness for the relevant sample period
results in ε = 0.84. To disentangle γ and η, I set γ = 1.29 as estimated by Burdett et al. (1984).

Similarly, the literature disagrees on the flow value of leisure. For that reason, I also consider
Hagedorn and Manovskii’s (2008) target of 0.955 for the average ζ over the cycle. As a final
robustness check, I also calibrate the duration of the Beveridge cycle to a lower and upper
bound of 18 and 28 quarters (for the benchmark calibration targets of ε = 0.46 and ζ = 0.71),
as suggested by the evidence in Figure 1(a).

14 An HP-filter with a lower smoothing parameter biases autocorrelation coefficients to such an extent that an
Ornstein–Uhlenbeck process cannot match the filtered autocorrelation of the Beveridge cycle.

15 Note, however, that γ = 2 is not compatible with a positive elasticity of the matching function for an estimated
elasticity ε < 0.5.
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TABLE 3
CALIBRATED PARAMETERS FOR FOUR ALTERNATIVE TARGETS

Description ζ = 0.955 ε = 0.84 18 Quarters 28 Quarters

r Discount rate 0.012 0.012 0.012 0.012
z Gross value of leisure 0.909 0.839 0.490 0.538
γ Elasticity search cost 2.5 1.29 2.5 2.5
α Elasticity demand externality 1.064 1.342 7.500 6.706
k Vacancy-creation cost 1.936 × 10−11 1.226 × 10−3 2.943 × 10−8 1.862 × 10−8

δ Job-destruction rate 0.1 0.1 0.1 0.1
η Elasticity matching function 0.1 0.3 0.1 0.1
β Workers’ bargaining power 0.893 0.695 0.893 0.893

NOTES: ε = 0.45 and ζ = 0.71 unless specified otherwise.

The parameters resulting from these alternative calibrations are presented in Table 3. Re-
member that the estimate of Kaplan and Menzio (2016) corresponds to α = 1.15, so that for
ζ = 0.955 the calibrated demand externalities are smaller than theirs. Of course, in this case
the calibrated value for z is relatively high. For ε = 0.84, α is somewhat above the estimate of
Kaplan and Menzio (2016), but in the same order of magnitude. Besides, the calibration strategy
with γ = 1.29 results in η = 0.3, which is more common in the literature without variable search
intensity. Finally, a Beveridge cycle of shorter duration requires demand externalities that are
slightly higher than the benchmark parameter value, whereas a longer duration is obtained for
a smaller α.

A high value of leisure and a high elasticity of the job-finding rate reduce the calibrated
value for α, because both decrease the unemployment rate, or increase the job-finding rate, in
the antisaddle. Consequently, smaller demand externalities are required to target an average
unemployment rate of 0.587. A higher elasticity and more variable search intensity change
the unemployment nullcline so that the same market tightness results in lower unemployment.
A higher value of leisure shifts the tightness nullcline to the left, because for a high ζ, the
surplus of a match is lower and firms open fewer vacancies. The next subsection presents the
model-generated data.

5.2. Performance. In this subsection, I present the data generated by the Beveridge cycle,
and compare it to the actual data, the data generated by the calibrated Pissarides (1985) model,
and the data that result from a Beveridge cycle without variable search intensity. To assess
the quantitative performance of the Beveridge cycle, I sample 256 (quarterly) observations
from the calibrated Beveridge cycle and compute time series for unemployment, vacancies, the
ratio of vacancies to unemployment, the job-finding rate f t = s∗(θt)θ

η
t , and revenue per match

yt = (1 − ut)α. More specifically, for each variable I draw time series for each of the 24 different
starting points around the cycle and report the average statistics. As for the original data, I
take logs and deviations from an HP trend with smoothing parameter 105. Table 4 presents the
standard deviation, autocorrelation, and cross-correlations of the model’s variables.

Comparing the model-generated data to the actual data in Table 1, some features stand out.
First, the endogenous fluctuations in revenue per match almost account for the full observed
volatility of productivity. By construction, however, revenue per match is much more negatively
correlated with unemployment than observed productivity.

Second, the Beveridge cycle explains about 22% of the observed volatility in unemployment,
and more than one-third of the observed volatility in vacancies. Due to the strong negative
correlation between vacancies and unemployment, both in the model and in the data, the
standard deviation of the ratio of vacancies to unemployment is about the same as the sum of
the standard deviations of vacancies and unemployment, both in the model and in the data.
As a result, the model-generated standard deviation of the ratio of vacancies to unemployment
and the job-finding rate also fall short compared to the data.
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TABLE 4
SUMMARY STATISTICS OF THE BEVERIDGE CYCLE CALIBRATED TO ζ = 0.71 AND ε = 0.45

u v v/u f y

Standard deviation 0.043 0.060 0.101 0.047 0.019
Quarterly autocorrelation 0.942 0.934 0.939 0.939 0.940

u 1 −0.938 −0.979 −0.979 −1.000
v 1 0.989 0.989 0.938

Correlation matrix v/u 1 1.000 0.979
f 1 0.979
y 1

NOTES: f stands for the job-finding rate, y for revenue per match. Statistics are averages from 24 samples of 256 quarters
across the cycle. All variables are in logs as deviations from an HP trend with smoothing parameter 105.

TABLE 5
SUMMARY STATISTICS OF THE PISSARIDES (1985) MODEL CALIBRATED TO THE SAME TARGETS AS THE BEVERIDGE CYCLE

u v v/u f y

Standard deviation 0.018 0.027 0.044 0.02 0.013
Quarterly autocorrelation 0.931 0.781 0.873 0.873 0.873

u 1 −0.900 −0.963 −0.963 −0.962
v 1 0.984 0.984 0.983

Correlation matrix v/u 1 1.000 0.999
f 1 0.999
y 1

NOTES: Code from Shimer (2005), where the Ornstein–Uhlenbeck volatility parameter is σ = 0.02139 and its persistence
parameter is γ = 0.032, to target the standard deviation and autocorrelation of productivity in logs as deviations from a
linear trend of the 24-quarter Beveridge cycle. All variables are in logs as deviations from an HP trend with smoothing
parameter 105. The table reports averages across 10,000 simulations.

Third, the autocorrelation of unemployment, vacancies, the ratio of vacancies to unemploy-
ment, and the job-finding rate are about the same in the model as in the data. It is important
to note that this persistence is an endogenous result of calibrating the Beveridge cycle to the
duration of the average business cycle and is not generated by feeding in a persistent stochastic
process. The existence of a saddle point in the Beveridge cycle’s neighborhood slows down the
dynamics and therefore allows the cycle to be calibrated to the duration of the business cycle.
To assess to what extent the persistence of the labor-market variables is driven by the Beveridge
cycle instead of simply the persistence of the fluctuations in revenue per match, it is useful to
compare the model-generated data of the Beveridge cycle and the Pissarides (1985) model.

Table 5 reports the summary statistics of the Pissarides (1985) model, using the code from
Shimer (2005) but the parameters from Table 2, second column.16 Note that the autocorrelation
of unemployment approaches that of the Beveridge cycle and the observed data, but that
vacancies, and to a smaller extent the ratio of vacancies to unemployment and the job-finding
rate, are not as persistent. Similarly, the standard deviation of unemployment lags behind that
of the Beveridge cycle, in absolute terms, but also relative to filtered productivity. The ratios of
the standard deviations across the labor-market variables are the same for the Beveridge cycle
and the Pissarides (1985) model, resulting in a similar slope of the Beveridge curve. Finally, in
both models the cross-correlations are generally higher than in the data.

The differences between the Beveridge cycle and the Pissarides (1985) model can also be
seen graphically in Figure 6. Panel (a) of Figure 6 contains 25 simulated quarterly observations

16 In particular, the standard deviation and autocorrelation of revenue per match in logs as deviations from a linear
trend are the same as for the Beveridge cycle, 0.019 and 0.940, respectively, which allows the Ornstein–Uhlenbeck
process to match the autocorrelation of the Beveridge cycle.
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NOTES: Panel (a) plots 25 quarterly datapoints from the calibrated Beveridge cycle. Panel (b) plots one simulation of
256 quarters based on code from Shimer (2005), calibrated to the same targets as the Beveridge cycle. Simulated data
are in logs as deviations from an HP trend with smoothing parameter 105, connected by straight lines.

FIGURE 6

SIMULATED DYNAMICS OF UNEMPLOYMENT AND VACANCIES

that complete a Beveridge cycle, HP-filtered and connected by straight lines. The shape of the
Beveridge cycle is similar to the observed cycles in Figure 1(a), and it rotates counterclockwise.
Panel (b) of Figure 6 plots a representative realization of 256 quarters of the Pissarides (1985)
model. The model-generated Beveridge curve is somewhat less volatile than the Beveridge
cycle, but, most importantly, lacks cyclical dynamics. Although there are some swings parallel
to the inverse relationship between vacancies and unemployment, most of the dynamics are
almost vertical.

Figure 6 also shows that the Beveridge curve generated by both the Beveridge cycle and the
Pissarides (1985) model is too steep compared to the data. It is important to note, however, that
both the Beveridge cycle and the Pissarides (1985) model feature a constant job-destruction
rate and no transitions into employment from either employment or nonparticipation. It is well
known that job destruction shocks can flatten out the Beveridge curve, but only at the cost of
a counterfactually low correlation between vacancies and unemployment. Other mechanisms
can also increase the volatility of unemployment relative to the volatility of vacancies. It follows
from Elsby et al. (2015) that the participation margin contributes to unemployment volatility
and thus reduces the slope of the Beveridge curve. Menzio and Shi (2011) show that on-the-
job search affects firms’ incentives to post vacancies and can sharply reduce the volatility of
vacancies over the cycle. However, Eeckhout and Lindenlaub (2015) show that, in the presence
of sorting, on-the-job search can also contribute to the volatility of vacancies and even result in
self-fulfilling fluctuations.

In the model of the Beveridge cycle, both the absence of fluctuations in job destruction and the
absence of transitions into employment from unemployment or nonparticipation imply that the
model-generated data should not exactly match the observed volatility of both unemployment
and vacancies. For instance, Pissarides (2009) argues that in reality one-third to one-half of the
volatility in unemployment is driven by fluctuations in the inflow into unemployment instead of
the outflow. As a result, a model with constant job destruction should explain at most two-thirds
of the volatility in unemployment.

Summing up, vacancies are more persistent over the Beveridge cycle than in the Pissarides
(1985) model, without being less volatile. In fact, both unemployment and vacancies are some-
what more volatile over the Beveridge cycle than in the Pissarides (1985) model, also relative
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TABLE 6
SUMMARY STATISTICS OF THE BEVERIDGE CYCLE WITHOUT VARIABLE SEARCH INTENSITY (γ → ∞), AND THE PISSARIDES (1985)

MODEL RECALIBRATED TO FEATURE THE SAME β AND THE SAME STANDARD DEVIATION AND AUTOCORRELATION OF REVENUE

PER WORKER IN LOGS AS DEVIATIONS FROM A LINEAR TREND (PISSARIDES II)

u v v/u f y

Beveridge cycle, γ → ∞ Standard deviation 0.061 0.087 0.145 0.067 0.044
Quarterly autocorrelation 0.931 0.918 0.926 0.926 0.927

Pissarides II Standard deviation 0.045 0.066 0.109 0.05 0.031
Quarterly autocorrelation 0.926 0.763 0.864 0.864 0.863

TABLE 7
SUMMARY STATISTICS OF THE BEVERIDGE CYCLE CALIBRATED TO 18 AND 28 QUARTERS

u v v/u f y

18 quarters Standard deviation 0.095 0.143 0.231 0.106 0.047
Quarterly autocorrelation 0.888 0.855 0.875 0.875 0.879

28 quarters Standard deviation 0.027 0.037 0.063 0.029 0.011
Quarterly autocorrelation 0.960 0.957 0.959 0.959 0.960

to HP-filtered productivity. To investigate the source of additional volatility, I also compare
the data generated by the Pissarides (1985) model with data generated by the Beveridge cycle
without variable search intensity. Table 6 presents the standard deviations and autocorrelations
from the Beveridge cycle without variable search intensity and the Pissarides (1985) model cali-
brated to the same targets.17 The former features counterfactually large fluctuations in revenue
per match as the result of the large demand externalities. However, the table shows that relative
to the HP-filtered volatility of revenue per match, the volatility of the labor-market variables is
about the same for the Pissarides (1985) model and the Beveridge cycle without variable search
intensity. As a result, the Beveridge cycle does not feature any new amplification mechanisms.
Variable search intensity contributes to amplification because it makes the net flow value of
leisure countercyclical and because search and recruiting activity are strategic complements.

Regarding persistence, in both the Pissarides (1985) model and the Beveridge cycle (with
or without variable search intensity), the autocorrelation of labor-market tightness and the
job-finding rate is about the same as the autocorrelation of the (HP-filtered) revenue per
match. As a result, the higher persistence of these variables may be attributed to the higher
persistence of revenue per match after filtration. However, in the Pissarides (1985) model the
autocorrelation of vacancies is substantially smaller than that of labor-market tightness and the
job-finding rate, unlike in the Beveridge cycle. The feature of the Beveridge cycle that vacancies
are almost as persistent as unemployment (and the other variables) is exactly what results in
the counterclockwise cycles in unemployment and vacancies. The next subsection shows that
this feature is robust to alternative targets for the duration of the cycle.

5.3. Robustness. This subsection presents the model-generated data resulting from the four
alternative calibration strategies. Table 7 presents the standard deviation and autocorrela-
tions of the data generated by the Beveridge cycle calibrated to 18 and 28 quarters. Not
surprisingly, the 18-quarter Beveridge cycle results in a smaller autocorrelation coefficient
than the 24-quarter cycle, and larger demand elasticities result in a larger standard deviation.
Equivalently, the 28-quarter Beveridge cycle features smaller volatility but more persistence.
Note, however, that the relative persistence of vacancies compared to the other variables sur-
vives under alternative targets for the duration of the cycle, although it is higher for longer
cycles.

17 The cross-correlations for this calibration and all subsequent ones can be found in Appendix A.1.2.
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TABLE 8
SUMMARY STATISTICS OF THE BEVERIDGE CYCLE CALIBRATED TO ζ = 0.955 AND ε = 0.45 AND TO ζ = 0.71 AND ε = 0.84

u v v/u f y

ζ = 0.955; ε = 0.45 Standard deviation 0.033 0.046 0.079 0.036 0.002
Quarterly autocorrelation 0.946 0.940 0.944 0.944 0.945

ζ = 0.71; ε = 0.84 Standard deviation 0.042 0.015 0.054 0.045 0.004
Quarterly autocorrelation 0.952 0.934 0.951 0.951 0.951

NOTES: 256 quarterly datapoints from the calibrated Beveridge cycle, connected by straight lines.

FIGURE 7

SIMULATED TIME SERIES OF UNEMPLOYMENT

The calibration results in Table 3 have shown that either a high value of leisure or a high
elasticity of the job-finding rate with respect to tightness results in demand externalities that
are of the same order of magnitude as Kaplan and Menzio (2016). The summary statistics of
Table 8 show the familiar results that both also contribute to amplification. Although smaller
demand externalities result in only a fraction of the volatility in revenue per match, the volatility
of unemployment drops to a much smaller extent. The standard deviation of unemployment is
about the same in the benchmark calibration and the calibration with ε = 0.84, and still more
than three-quarters of the benchmark’s result in the calibration with ζ = 0.955. Moreover, the
persistence of vacancies does not suffer from additional amplification. Note, however, that
a high elasticity of the job-finding rate with respect to tightness results in a low volatility of
vacancies compared to unemployment.

As discussed above, a high value of leisure reduces the required externalities because it lowers
the steady state L’s unemployment rate. Although such comparative statics might seem counter-
intuitive, I will show that the dynamics of the Beveridge cycle move in the opposite “intuitive”
direction. Increasing the value of leisure to z = 0.5277 while keeping all other parameters fixed,
steady-state unemployment decreases from 0.062 to 0.060. This is the comparative statics ef-
fect described above. However, I claim that the equilibrium path of the Beveridge cycle is the
data-generating process. Sampling from the slightly displaced Beveridge cycle, the average un-
employment rate over the cycle increases from 0.059 to 0.060. Consequently, locally my model
predicts a positive effect of the unemployment benefit on observed unemployment, as most
economists would expect.

This argument does not rely on adjustment dynamics but compares datapoints on two different
Beveridge cycles. Figure 7 shows a time series of unemployment over 256 quarters, connected
by straight lines, resulting from the Beveridge cycle with the calibrated value of leisure. As can
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be seen in this figure, the Beveridge cycle’s unemployment dynamics can be very asymmetric.
The calibrated cycle spends most of its time on segments of the cycle with low unemployment
rates. A Beveridge cycle for a higher value of leisure spends its time more evenly over the cycle.
This nonlinear effect dominates the displacement of steady state L and its enclosing Beveridge
cycle. As a result, a Beveridge cycle with a high value of leisure produces a lower average
unemployment rate than a cycle with a high value of leisure, even though steady state L moves
in the opposite direction.

Finally, the time series in Figure 7 is very regular, much more so than actual data. However,
exogenous shocks in fundamentals or beliefs can cause variations in amplitude and period of the
cycle without altering its driving mechanism. Beaudry et al. (2015) show that adding exogenous
shocks on top of a deterministic cycle can reproduce the spectrum of business cycle fluctuations
in output and employment. Whether the persistence of vacancies survives such additional shocks
is a question for future research.

6. CONCLUSION

Mortensen (1999) presents a parsimonious model to show that multiple Pareto-ranked cycles
and steady states can coexist and that different expectations can be self-fulfilling and result in
each of these equilibria. By presenting a Bogdanov–Takens bifurcation, I show that a stable
limit cycle—the Beveridge cycle—exists for a range of values for the workers’ bargaining power
enclosed by a Hopf and a saddle-loop bifurcation. I calibrate this Beveridge cycle to the average
duration of the business cycle. The calibrated cycle looks qualitatively similar to the observed
counterclockwise cycles in the unemployment–vacancy space. In addition, it can account for the
persistence of unemployment and vacancies for plausible parameter values, but suffers from the
same lack of amplification as the Pissarides (1985) model. However, volatility can be generated
endogenously by the interplay of demand and congestion externalities.

A limitation of this study is that the range of parameter values that results in a limit cycle
is small. Although my calibration focuses on this purely deterministic Beveridge cycle, for a
much bigger set of parameter values a single shock can result in counterclockwise fluctuations
that are able to explain many business cycles but eventually settle down into a steady state.
Separation rate and productivity shocks provide a natural complement to the endogenous
mechanism of this article. On top of that, the indeterminacy of equilibrium allows for belief
shocks, which directly result in another level of labor-market tightness by the opening or closing
of vacancies by firms. However, while additional exogenous shocks can result in more irregular
time series than those generated by my calibration, they also provide additional degrees of
freedom.

APPENDIX

A.1. Calibration and Cross-Correlations.

A.1.1. Data and calibration. I follow Shimer (2005) in the construction of the monthly job-
finding probability Ft and job-destruction probability t. In particular,

Ft = 1 − ut+1 − us
t+1

ut
,

t = us
t+1

et
(
1 − 1

2 Ft
) ,

where us denotes the short-term unemployment rate and e denotes the employment rate. Fol-
lowing Elsby et al. (2009), I inflate the short-term unemployment rate by 1.16 from January
1994 onward to correct for changes in the way the Current Population Survey measures un-
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employment duration. These probabilities are subsequently transformed in job-finding and
job-destruction rates according to

f t = − log(1 − Ft),

δt = − log(1 − t),

respectively. I add three monthly rates to obtain the quarterly rate. Regressing the HP-filtered
job-finding rate on the HP-filtered vacancy-to-unemployment ratio results in an estimate of
0.46.

In my model, the elasticity of the job-finding rate with respect to the vacancy-to-
unemployment ratio is η + (1 − η)/γ. I exploit the cyclicality in the job-finding rate of non-
participants (who by definition do not search) to isolate the elasticity of the matching function.
I assume that nonparticipants and unemployed workers find jobs according to a matching func-
tion with the same parameters, but that the unemployed have a superior ranking. In particular,
denoting the number of nonparticipants, unemployed workers, and vacancies by N, U, and V ,
respectively, the total number of matches in any period is given by μ0V η(N + sU)1−η. Consistent
with the model, the number of unemployed workers finding a job is given by μ0V η(sU)1−η, which
is not affected by the number of nonparticipants. Consequently, the number of nonparticipants
finding a job is given by μ0V η(N + sU)1−η − μ0V η(sU)1−η = μ0V η((N + sU)1−η − (sU)1−η).
Note that unless η = 0, unemployed workers do create congestion for nonparticipants. This
variant of Blanchard and Diamond (1994), similar in spirit to Blanchard and Diamond (1989,
p. 32), can be justified by the search effort of the unemployed that allows them to form all
potential matches before any nonparticipants arrive.

I take data on the job-finding rate of nonparticipants from Elsby et al. (2015), using their
classification-error adjusted (“deNUNified”) and time-aggregation adjusted hazard rates. These
hazard rates are based on monthly gross worker flows, which the Bureau of Labor Statistics
(BLS) provides from February 1990 onward. The data from June 1967 and December 1975
were tabulated by Joe Ritter and made available by Hoyt Bleakley. This leaves a gap of 15
years. These data were constructed by Robert Shimer. For additional details, please see Shimer
(2012). Extending the series of Elsby et al. (2015) with recent data from the BLS, I have monthly
job-finding rates from 1967 to 2014.

A first-stage regression of the unemployed’s job-finding rate from these same sources on the
vacancy-to-unemployment ratio results in an elasticity of 0.45, virtually the same elasticity as
for the job-finding rate based on short-term unemployment available for 1951–2014. In my
nonlinear second-stage regression of the job-finding rate of nonparticipants, I therefore im-
pose that η + (1 − η)/γ = 0.45. Moreover, I impose that the scale parameter of the matching
function is the same, so that any differences in the level of the job-finding rate of the unem-
ployed from that of nonparticipants results from both the search intensity and the superior
ranking of the unemployed. Using the matching function with ranking above and the expres-
sion for optimal search intensity in (8), the logarithm of the job-finding rate of nonparticipants is
given by

μ − 1 − η

γ
c + η log(V ) − log(N) + log

⎛
⎝(U

(
ecV
U

)1/γ

+ N

)1−η

−
(

U
(

ecV
U

)1/γ
)1−η

⎞
⎠ ,

where μ is the estimated constant in the first-stage regression of the unemployed’s job-finding
rate on the vacancy-to-unemployment ratio and where c is a constant of the second-stage
regression that takes out the difference in the level of the job-finding rates of the unemployed
and nonparticipants that results from the search intensity of the former. Minimizing the sum
of squared residuals under the restriction that η + (1 − η)/γ = 0.45 results in η = 0.0975 and
γ = 2.537. Rounding off at one decimal results in a combination of η and γ that is consistent with
the estimated elasticity for the job-finding rate based on short-term unemployment available
for 1951–2014: 0.1 + (1 − 0.1)/2.5 = 0.46.
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A.1.2. Cross-correlations of alternative calibrations.

TABLE A1
CROSS-CORRELATIONS OF THE BEVERIDGE CYCLE WITHOUT VARIABLE SEARCH INTENSITY

u v v/u f y

u 1 −0.925 −0.974 −0.974 −1.000
v 1 0.987 0.987 0.925
v/u 1 1.000 0.973
f 1 0.973
y 1

TABLE A2
CROSS-CORRELATIONS OF THE PISSARIDES (1985) MODEL RECALIBRATED TO THE BEVERIDGE CYCLE WITHOUT VARIABLE SEARCH

INTENSITY

u v v/u f y

u 1 −0.890 −0.960 −0.960 −0.956
v 1 0.982 0.982 0.977
v/u 1 1.000 0.995
f 1 0.995
y 1

TABLE A3
CROSS-CORRELATIONS OF THE BEVERIDGE CYCLE CALIBRATED TO 18 QUARTERS

u v v/u f y

u 1 −0.879 −0.955 −0.955 −0.999
v 1 0.981 0.981 0.878
v/u 1 1.000 0.955
f 1 0.955
y 1

TABLE A4
CROSS-CORRELATIONS OF THE BEVERIDGE CYCLE CALIBRATED TO 28 QUARTERS

u v v/u f y

u 1 −0.958 −0.986 −0.986 −1.000
v 1 0.993 0.993 0.958
v/u 1 1.000 0.986
f 1 0.986
y 1

TABLE A5
CROSS-CORRELATIONS OF THE BEVERIDGE CYCLE CALIBRATED TO ζ = 0.955 AND ε = 0.46

u v v/u f y

u 1 −0.944 −0.981 −0.981 −1.000
v 1 0.990 0.990 0.943
v/u 1 1.000 0.981
f 1 0.981
y 1
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TABLE A6
CROSS-CORRELATIONS OF THE BEVERIDGE CYCLE CALIBRATED TO ζ = 0.71 AND ε = 0.84

u v v/u f y

u 1 −0.742 −0.983 −0.983 −1.000
v 1 0.853 0.853 0.742
v/u 1 1.000 0.983
f 1 0.983
y 1

A.2. Proofs.

A.2.1. Proof of Proposition 1. Social welfare is given by

∫ ∞

0
e−rt [(1 − ut)y + ut(z − sγ

t ) − kθtstut
]
dt.(A.1)

The social planner maximizes this function by choosing both the socially efficient level of labor-
market tightness and search intensity, subject to the law of motion of unemployment given in
(9). First-order conditions for the optimal θt and st, where μt denotes the co-state variable for
the constraint on the dynamics of ut, are

− e−rt [y − z + sγ
t + kθtst

]+ μt
[
δ + stθ

η
t

]− μ̇t = 0,(A.2)

− e−rtkstut + μtstutηθ
η−1
t = 0,(A.3)

− e−rt
[
γsγ−1

t ut + kθtut

]
+ μtutθ

η
t = 0.(A.4)

Both (A.3) and (A.4) can be rewritten to yield μt, so that

μt = e−rtθtk
ηθ

η
t

= e−rtkθt

ηθ
η
t

(A.5)

=
e−rt

[
γsγ−1

t + kθt

]
θ
η
t

.(A.6)

The efficient search intensity st is therefore given by

1 − η

η
kθt = γsγ−1

t .

Comparing this expression with the privately chosen intensity in (8), search intensity is efficient
if and only if β = 1 − η, the Hosios condition.

The expression for μt in (A.5) can be used to derive

μ̇t = e−rtkθ̇t − re−rtkθt

ηθ
η
t

−
e−rtkθtη

2 θ
η
t

θt
θ̇t

η2(θη
t )2

= e−rtk[(1 − η)θ̇t − rθt]
ηθ

η
t

.(A.7)
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Substituting (A.5) and (A.7) into (A.2) and rearranging yields

(1 − η)kθ̇t − rkθt

ηθ
η
t

= kθt
[
δ + stθ

η
t

]
ηθ

η
t

− [
y − z + sγ

t + kθtst
]
,

⇔ (1 − η)kθ̇t

θ
η
t

= kθt [δ + r]
θ
η
t

− η

[
y − z + sγ

t − 1 − η

η
kθtst

]
,

⇔ θ̇t = θt

1 − η
[δ + r] − ηθ

η
t

(1 − η)k

[
y − z + sγ

t − 1 − η

η
kθtst

]
.

Comparing this expression with the privately chosen tightness in (13), taking into account the
definition of g(θt) in (6), labor-market tightness is efficient if and only if β = 1 − η.

A.2.2. Proof of Proposition 2. The second derivative with respect to θt of the tightness
nullcline in (15) is

d2ut

dθ2
t

= − 1
α

[
(r + δ)kθt

(1 − β)θη
t

+ g (θt) + z
] 1−α

α
[

kβs∗(θt)
(γ − 1)(1 − β)θt

− (r + δ)k(1 − η)η
(1 − β)θη

t θt

]

−1 − α

α2

[
(r + δ)kθt

(1 − β)θη
t

+ g(θt) + z
] 1

α
−2 [ (r + δ)k(1 − η)

(1 − β)θη
t

+ kβs∗(θt)
(1 − β)

]2

.

One can see that for α ≤ 1, the tightness nullcline is concave at least on the segment of the
nullcline for which

s∗(θt)θ
η
t > (r + δ)(1 − η)η(γ − 1).

Define ξ as the job-finding rate equal to (r + δ)(1 − η)η(γ − 1) and χ ≡ η + (γ − 1)−1. Now note
that the unemployment nullcline is convex or has the shape of a negative logistic function. In
particular, differentiate (14) twice with respect to θ to obtain

d2ut

dθ2
t

=
δχ
(

β

1−β
k
γ

) 1
γ−1

θ
χ−2
t

[
δ (1 − χ) + (1 + χ)

(
β

1−β
k
γ

) 1
γ−1

θ
χ
t

]
[
δ +

(
β

1−β
k
γ

) 1
γ−1

θ
χ
t

]3 .

For χ ≤ 1 the second derivative is positive for all θt > 0, so that the unemployment nullcline
is convex. For χ > 1, the second derivative can be positive or negative, depending on θt. More
specifically, for χ > 1 there exists a unique inflection point at the positive labor-market tightness
given by

θ∗ =

⎡
⎢⎣ δ(χ − 1)

(1 + χ)
(

β

1−β
k
γ

) 1
γ−1

⎤
⎥⎦

1
χ

.

Consequently, for χ > 1 the unemployment nullcline is concave for 0 < θt < θ∗ and convex for
all θt > θ∗ so that as a whole it has the shape of a negative logistic function.

Given that the unemployment nullcline is convex or negative logistic, if any steady state
with economic activity exists, generically exactly two steady states with economic activity exist
if the tightness nullcline lies below the unemployment nullcline for any potential nonconcave
segment of the former. In that case, the concave segment of the tightness nullcline intersects
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at most twice with the unemployment nullcline. A sufficient condition for any nonconcave
segment of the tightness nullcline to lie below the unemployment nullcline is the maximum
unemployment rate giving rise to any vacancy creation (uθ=0 as given by (16)) to be lower
than the unemployment rate consistent with the job-finding rate ξ. Consequently, assuming the
existence of a steady state in the positive quadrant, for α ≤ 1 generically exactly two steady
states exist if

z >

(
1 − δ

δ + ξ

)α

.

�

A.2.3. Proof of Proposition 5. This proof and the next can be more concisely written after
a change in coordinates from labor-market tightness θt to match surplus pt. To point out the
similarities with Mortensen (1999), I also change ut to nt. Lemma A.1 then first shows equiva-
lence between Mortensen’s system in pt and nt and the one presented here. It is proven by the
recognition that there is a smooth one-to-one correspondence between employment and unem-
ployment and surplus and tightness, respectively. Following the definition of Kuznetsov (2004,
p. 42), two smooth systems ẋ = μ(x), x ∈ R

n and ẏ = ν(y), y ∈ R
n are not only topologically

equivalent, but also smoothly equivalent if (i) an invertible map f : R
n → R

n exists such that
y = f (x), if (ii) this map is smooth together with its inverse, and if (iii) f can be used to change
coordinates such that μ(x) = M−1(x)ν(f (x)), where M(x) = df (x)/dx is the Jacobian matrix of
f (x) at x. As a result, f is not only a homeomorphism, but also a diffeomorphism.

LEMMA A.1. The dynamical system in unemployment ut and labor-market tightness θt and
Mortensen’s (1999) dynamical system in employment nt and surplus pt for β(θt) = β and a
positive value of leisure z are smoothly equivalent for all equilibria with economic activity.

PROOF. My dynamical system in ut and θt is for all equilibria with economic activity given by
the two smooth differential equations in (13) and (9), for convenience reprinted below

θ̇t = (r + δ)
θt

1 − η
+ (1 − β)

θ
η
t

k(1 − η)
[g(θt) + z − (1 − ut)α] ,

u̇t = δ(1 − ut) − s∗(θt)utθ
η
t ,

with ut ∈ [0, 1] and θt > 0. The dynamical system of Mortensen (1999) extended with z follows
from (7) and the definition of the labor force. For all interior equilibria, it is given by the
following two smooth differential equations

ṗ t = (r + δ)pt + g(pt) + z − nα
t ,(A.8)

ṅt = h(pt)(1 − nt) − δnt,(A.9)

with pt > 0 and nt ∈ [0, 1], and where h(pt) = s∗(θt)θ
η
t and g(pt) = g(θt), for the invertible map

defined by

pt = kθt

(1 − β)θη
t
,(A.10)

nt = 1 − ut.(A.11)
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Nash bargaining implies Jt = (1 − β)pt, so that the first equation follows from the free-entry
condition in (1), whereas the second equation is true by definition. Both equations are smooth
together with their inverses, so that they satisfy the second requirement as well. The Jacobian
matrix of this diffeomorphism is given by

M(x) =
(

k(1−η)
(1−β)θη

t
0

0 −1

)
.

If we apply the map in (A.10) and (A.11), then indeed

(
(r + δ) θt

1−η
+ (1 − β) θ

η
t

k(1−η) [g(θt) + z − (1 − ut)α]
δ(1 − ut) − s∗(θt)utθ

η
t

)
=
(

(1−β)θη
t

k(1−η) 0
0 −1

)

×
(

(r + δ) kθt

(1−β)θη
t
+ g(θt) + z − (1 − ut)α,

s∗(θt)utθ
η
t − δ(1 − ut)

)
,

so that the two systems also satisfy the last of the three requirements. As a result, they are
smoothly equivalent as long as θ > 0. �

Lemma A.1 shows that the two systems are the same system written in different coordinates,
retaining the same eigenvalues of the corresponding equilibria and the same periods of the
corresponding limit cycles (Kuznetsov, 2004, p. 42). I can thus prove Proposition 5 in nt and pt.

PROOF. The system in (A.8) and (A.9) is characterized by Hamiltonian dynamics if the
discount rate r is zero and the sharing rule is efficient. The Hamiltonian function is

H(pt, nt) =
∫ nt

0
φ(x)dx+ (1 − nt)[g(pt) + z] − δptnt,(A.12)

as can be checked by noting that ∂H/∂pt = ṅt and ∂H/∂nt = −ṗ t for β = 1 − η and r = 0.
Indeed, remember that h(pt) = s∗(θt)θ

η
t and g(pt) = g(θt) for the map in (A.10), so that g(pt) =∫ p

0 h(q)dq.
Although a homoclinic orbit generically exists in this Hamiltonian system, for z > 0 part of

this homoclinic orbit may fall outside of the positive quadrant. Define nθ=0 ≡ 1 − uθ=0 as the
employment level at the intersection of the tightness nullcline with the unemployment axis (thus
with uθ=0 as defined in (16)). Note that (1 − uH + αz1/α)α+1 < (1 − α)[(1 − uH)(z + kθ

1−η
t /(1 −

β)) − uHg(θH)] is equivalent to H(pH, nH) < H(0, nθ=0). If and only if the latter holds, the
homoclinic orbit is entirely situated in the positive quadrant. Because in a Hamiltonian system
all equilibrium paths are level curves, combinations of n and p on the homoclinic orbit have
the same value of the Hamiltonian as the saddle point on it. The laws of motion in (A.8) and
(A.9) show that the antisaddle L is a local minimum in the system. Moving along the continuum
of surrounding closed orbits, the largest possible closed orbit in the positive quadrant lies on
nθ=0. Consequently, with H(pH, nH) < H(0, nθ=0), a homoclinic orbit connecting H to itself lies
entirely in the positive quadrant.18

For a small perturbation toward positive discounting and a smaller than efficient β, two steady
states with economic activity continue to exist by continuity. Melnikov perturbation (see, e.g.,
Guckenheimer and Holmes, 1983, p. 184) shows that the same holds for the homoclinic orbit.

18 Substituting (16) into (A.3) it can be checked for z, α > 0 that H(0, nθ=0) < H(0, 0) = z, so that H(pH, nH) <

H(0, nθ=0) implies H(pH, nH) < H(0, 0). The latter ensures that the saddle point on the homoclinic orbit is steady state
H instead of the no-trade steady state.
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The differential vector system allowing for a small distortion such that r > 0 and β < 1 − η is
defined by

ẋt = F (xt) + εG(xt) with xt =
(

pt

nt

)
,

F (xt) =
[

F1(xt)
F2(xt)

]
=
[

− ∂H(pt,nt)
∂nt

∂H(pt,nt)
∂pt

]
=
[

δpt + ∫ pt

0 h(q)dq − nα
t + z

h(pt)[1 − nt] − δnt

]
,

G(x) =
[

G1(x)
G2(x)

]
=
[

rpt + g(pt) − ∫ pt

0 h(q)dq
0

]
,

where ε is a small positive number. F (xt) is the Hamiltonian vector field, and εG(xt) is a
perturbation attributable to positive discounting and a smaller than efficient bargaining power.

Because the perturbation is time independent, the Melnikov function M(pt, nt) is simply

M(pt, nt) =
∫

�

[
r + h(pt)

(
β

1 − η
− 1

)]
dptdnt,

where � = {x ∈ R
2|H(x) ≤ H(pH, nH)} is the area enclosed by the homoclinic orbit in the

Hamiltonian system. Note that the Melnikov function is independent of ε. Now βSL < 1 − η can
be chosen to target any sufficiently small r = r̂ > 0 with

r̂ =
∫
�

[
h(pt)

(
1 − βSL

1−η

)]
dptdnt∫

�
dptdnt

.

For r = r̂ the Melnikov function has a simple zero at βSL, so that for a sufficiently small distortion
a homoclinic orbit in pt and nt continues to exist and remains in the positive quadrant. By Lemma
A.1 the same must hold for the system in θt and ut.

According to the Andronov–Leontovich theorem, a family of limit cycles bifurcates on one
side of this homoclinic orbit, and these are stable if the trace of the Jacobian matrix at saddle
point H is negative. Because the homoclinic orbit is proven for a perturbed Hamiltonian system,
the trace is only based on the distortion and is simply equal to ε times the integrand of the
Melnikov function at H:

tr(H) = ε

[
r + h(pH)

(
β

1 − η
− 1

)]
.

Given that β < 1 − η, the integrand of the Melnikov function is monotonically decreasing in pt.
Consequently, when the Melnikov function is zero, the tr(H) is negative for values of β in the
neighborhood of βSL, so that the limit cycles are stable. �

A.2.4. Proof of Proposition 6. Because the proof is more concisely written in surplus than
in tightness, I present it for Mortensen’s (1999) system extended with z > 0. Remember that by
Lemma A.1 the two systems are smoothly equivalent so that the eigenvalues are the same. The
nullclines of the dynamical system in (A.8) and (A.9) are

(r + δ)pt + g(pt) + z = (nt)α(A.13)
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nt = h(pt)
h(pt) + δ

,(A.14)

and its nonzero Jacobian matrix is

J =
(

r + δ + g′(pt) −α
(nt)α

nt

h′(pt)(1 − nt) −h(pt) − δ

)
.

Both eigenvalues are zero if and only if both the determinant and the trace are zero, so that

tr = r + g′(pt) − h(pt) = 0,(A.15)

det = α
(nt)α

nt
h′(pt)(1 − nt) − (r + δ + g′(pt))(h(pt) + δ) = 0.(A.16)

Remember that g(pt) = β/(1 − η)
∫ pt

0 h(q)dq and moreover that h(pt) = s∗(θt)θ
η
t so that using

the map in (A.10) h′(pt)pt/h(pt) = (1 − η + ηγ)/((1 − η)(γ − 1)) ≡ κ. Substituting (A.15) and
the elasticities into (A.16) yields

α
(nt)α

nt
κ

h(pt)
p

(1 − n) = (h(pt) + δ)2.

Substituting the nullclines of (A.13) and (A.14),

ακδ
(r + δ)pt + g(pt) + z

pt
= (h(pt) + δ)2.

Consequently, both eigenvalues are nondegenerately zero in steady state if the function

B(pt) = (h(pt) + δ)2 − ακδ

[
r + δ + h(pt) − r

1 + κ
+ z

pt

]
,(A.17)

has a simple zero. Because limpt→∞ B(pt) = ∞, limpt→0 B(pt) = −∞, and B(pt) is continuous,
this condition is satisfied by the Intermediate Value Theorem. Moreover, for α < 1 the condition
is satisfied only once, because B′(pt) > 0 if 2 > ακ/(1 + κ).19 �
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