

Are you old enough to buy this?

Zero-Knowledge Age Restriction for GNU Taler

Özgür Kesim
31 May 2024

Code Blau GmbH, FU Berlin, TU Dresden

Prolog

Sponsors

NGI Taler and NGI Pointer programs of the European Commission

Project
Concrete Contracts in the KMU-innovativ programm

Federal Ministry of Education and Research

Who am I

Özgür Kesim,

- security consultant for 20+ years,
- PhD candidate at FU Berlin,
- member of GNU Taler dev-team.

What to expect

Deliverable

Present a solution to age restriction and its integration in GNU Taler.

What to expect

Deliverable

Present a solution to age restriction and its integration in GNU Taler.

Drive-By

Show concepts from cryptography by example:
Zero-Knowledge protocol, Security Game and Security Proof

What to expect

Deliverable

Present a solution to age restriction and its integration in GNU Taler.

Drive-By
Show concepts from cryptography by example:
Zero-Knowledge protocol, Security Game and Security Proof

Non-goals
Rigorous introduction into GNU Taler
Demos

Chapters

Introduction

Chapters

Introduction

The quest for a solution to age restriction

Chapters

Introduction

The quest for a solution to age restriction

Integration with GNU Taler

Chapters

Introduction

The quest for a solution to age restriction

Integration with GNU Taler

Discussion \& Conclusion

Introduction

Age Restriction in E-commerce

Youth protection

Broad consensus in society about the necessity to protect minors from harmful content.

Also wanted from policy makers:
11. Member states should encourage the use of conditional access tools by content and service providers in relation to content harmful to minors, such as ageverification systems, ...

From the Recommendation Rec (2001) 8 of the Committee of Ministers to member states on self-regulation concerning cyber content of the Council of Europe.

Age restriction in E-commerce

Problem:

Verification of minimum age requirements in e-commerce.

Age restriction in E-commerce

Problem:

Verification of minimum age requirements in e-commerce.

Common solutions:

1. ID Verification
2. Restricted Accounts
3. Attribute-based

Age restriction in E-commerce

Problem:

Verification of minimum age requirements in e-commerce.

Common solutions:

Privacy	
1. ID Verification	bad
2. Restricted Accounts	bad
3. Attribute-based	good

Age restriction in E-commerce

Problem:

Verification of minimum age requirements in e-commerce.

Common solutions:

	Privacy	Ext. authority
1. ID Verification	bad	required
2. Restricted Accounts	bad	required
3. Attribute-based	good	required

Age restriction in E-commerce

Problem:

Verification of minimum age requirements in e-commerce.

Common solutions:

1. ID Verification bad 2. Restricted Accounts bad 3. Attribute-based good	required required required

Principle of Subsidiarity

Functions of government
—such as granting and restricting rightsshould be performed
at the lowest level of authority possible, as long as they can be performed adequately.

Principle of Subsidiarity

Functions of government
-such as granting and restricting rightsshould be performed
at the lowest level of authority possible, as long as they can be performed adequately.

For age-restriction, the lowest level of authority is:

Parents, guardians and caretakers

Our goal

A design and implementation of an age restriction scheme with the following properties:

Our goal

A design and implementation of an age restriction scheme with the following properties:

1. It ties age restriction to the ability to pay (not to ID's),

Our goal

A design and implementation of an age restriction scheme with the following properties:

1. It ties age restriction to the ability to pay (not to ID's),
2. maintains the anonymity of buyers,

Our goal

A design and implementation of an age restriction scheme with the following properties:

1. It ties age restriction to the ability to pay (not to ID's),
2. maintains the anonymity of buyers,
3. maintains unlinkability of transactions,

Our goal

A design and implementation of an age restriction scheme with the following properties:

1. It ties age restriction to the ability to pay (not to ID's),
2. maintains the anonymity of buyers,
3. maintains unlinkability of transactions,
4. aligns with the principle of subsidiarity,

Our goal

A design and implementation of an age restriction scheme with the following properties:

1. It ties age restriction to the ability to pay (not to ID's),
2. maintains the anonymity of buyers,
3. maintains unlinkability of transactions,
4. aligns with the principle of subsidiarity,
5. is practical and efficient.

Digital cash withdrawal

```
Exchange
https://exchange-age.taler.ar/
Details
Withdraw
Transaction fees
5.0 ARS
-0.7 ARS
Total
4.3 ARS
```


Age restriction

```
Not restricted \checkmark
```

Not restricted \checkmark
Not restricted
under }
under 10
under 12
under 14
under 16
under 18

```

\section*{The quest for a solution to age restriction}

A journey through cryptic territory

\section*{Basic assumption and ideas}

Assumption: Bank accounts are under control of adults/guardians.

Sketch of scheme, independent of payment service protocol:

\section*{Basic assumption and ideas}

Assumption: Bank accounts are under control of adults/guardians.

Sketch of scheme, independent of payment service protocol:
1. Guardians commit to a maximum age


\section*{Basic assumption and ideas}

Assumption: Bank accounts are under control of adults/guardians.

Sketch of scheme, independent of payment service protocol:
1. Guardians commit to a maximum age


\section*{Basic assumption and ideas}

Assumption: Bank accounts are under control of adults/guardians.

Sketch of scheme, independent of payment service protocol:
1. Guardians commit to a maximum age
2. Minors attest their adequate age


\section*{Basic assumption and ideas}

Assumption: Bank accounts are under control of adults/guardians.

Sketch of scheme, independent of payment service protocol:
1. Guardians commit to a maximum age
2. Minors attest their adequate age


\section*{Basic assumption and ideas}

Assumption: Bank accounts are under control of adults/guardians.

Sketch of scheme, independent of payment service protocol:
1. Guardians commit to a maximum age
2. Minors attest their adequate age
3. Merchants verify the attestations


\section*{Basic assumption and ideas}

Assumption: Bank accounts are under control of adults/guardians.

Sketch of scheme, independent of payment service protocol:
1. Guardians commit to a maximum age
2. Minors attest their adequate age
3. Merchants verify the attestations
4. Minors derive age commitments from existing ones


\section*{Basic assumption and ideas}

Assumption: Bank accounts are under control of adults/guardians.

Sketch of scheme, independent of payment service protocol:
1. Guardians commit to a maximum age
2. Minors attest their adequate age
3. Merchants verify the attestations
4. Minors derive age commitments from existing ones


\section*{Basic assumption and ideas}

Assumption: Bank accounts are under control of adults/guardians.

Sketch of scheme, independent of payment service protocol:
1. Guardians commit to a maximum age
2. Minors attest their adequate age
3. Merchants verify the attestations
4. Minors derive age commitments from existing ones
5. Exchanges compare the derived age commitments


\section*{Basic assumption and ideas}

Assumption: Bank accounts are under control of adults/guardians.

Sketch of scheme, independent of payment service protocol:
1. Guardians commit to a maximum age
2. Minors attest their adequate age
3. Merchants verify the attestations
4. Minors derive age commitments from existing ones
5. Exchanges compare the derived age commitments

6. GOTO 2.

\section*{Helpful figure - Commit}


\section*{Helpful figure - Attest and Verify}


\section*{Helpful figure - Derive and Compare}


\section*{Helpful figure}

\section*{Commit:}

\section*{Attest and Verify: Derive and Compare:}



\title{
Specification of the Function Signatures
}

Searching for functions
Commit
Attest
Verify
Derive
Compare

\section*{Specification of the Function Signatures}

Searching for functions with the following signatures
Commit :
\[
(\mathrm{a}, \omega) \mapsto(\mathrm{Q}, \mathrm{P})
\]
\(\mathbb{N}_{M} \times \Omega \rightarrow \mathbb{O} \times \mathbb{P}\),

Attest
Verify
Derive
Compare

Mnemonics:
\(\mathbb{O}=\) commitments, \(\mathrm{Q}=Q\)-mitment (commitment), \(\mathbb{P}=\mathbb{P r o o f s}\),

\section*{Specification of the Function Signatures}

Searching for functions with the following signatures
Commit :
\[
(\mathrm{a}, \omega) \mapsto(\mathrm{Q}, \mathrm{P})
\]
\[
\mathbb{N}_{\mathrm{M}} \times \Omega \rightarrow \mathbb{O} \times \mathbb{P}
\]
Attest :
\((\mathrm{m}, \mathrm{P}) \mapsto \mathrm{T}\)
\(\mathbb{N}_{M} \times \mathbb{P} \rightarrow \mathbb{T} \cup\{\perp\}\),
Verify
Derive
Compare

Mnemonics:
\(\mathbb{O}=c \mathbb{O}\) mmitments, \(\mathrm{Q}=Q\)-mitment (commitment), \(\mathbb{P}=\mathbb{P}\) roofs, \(\quad \mathrm{P}=\) Proof,
\(\mathbb{T}=a \mathbb{T}\) testations, \(\mathrm{T}=\mathrm{a}\) Testation,

\section*{Specification of the Function Signatures}

Searching for functions with the following signatures
Commit :
\[
\begin{aligned}
(\mathrm{a}, \omega) & \mapsto(\mathrm{Q}, \mathrm{P}) \\
(\mathrm{m}, \mathrm{P}) & \mapsto \mathrm{T} \\
(\mathrm{~m}, \mathrm{Q}, \mathrm{~T}) & \mapsto b
\end{aligned}
\]
\[
\mathbb{N}_{\mathrm{M}} \times \mathbb{O} \times \mathbb{T} \rightarrow \mathbb{Z}_{2}
\]

Derive
Compare

Mnemonics:
\(\mathbb{O}=\) © 0 mmitments, \(\mathrm{Q}=Q\)-mitment (commitment), \(\mathbb{P}=\mathbb{P}\) roofs, \(\quad \mathrm{P}=\) Proof,
\(\mathbb{T}=\) a \(\mathbb{T}\) testations, \(\mathrm{T}=\mathrm{a}\) Ttestation,

\section*{Specification of the Function Signatures}

Searching for functions with the following signatures

Commit :
\[
(\mathrm{a}, \omega) \mapsto(\mathrm{Q}, \mathrm{P})
\]
\((\mathrm{m}, \mathrm{P}) \mapsto \mathrm{T}\)
\((\mathrm{m}, \mathrm{Q}, \mathrm{T}) \mapsto b\)
Derive :
\((\mathrm{Q}, \mathrm{P}, \omega) \mapsto\left(\mathrm{Q}^{\prime}, \mathrm{P}^{\prime}, \beta\right)\)
\(\mathbb{N}_{\mathrm{M}} \times \Omega \rightarrow \mathbb{O} \times \mathbb{P}\),
\(\mathbb{N}_{\mathrm{M}} \times \mathbb{P} \rightarrow \mathbb{T} \cup\{\perp\}\),
\(\mathbb{N}_{\mathrm{M}} \times \mathbb{O} \times \mathbb{T} \rightarrow \mathbb{Z}_{2}\),
\(\mathbb{O} \times \mathbb{P} \times \Omega \rightarrow \mathbb{O} \times \mathbb{P} \times \mathbb{B}\),

Compare

Mnemonics:
\(\mathbb{O}=\) © 0 mmitments, \(\mathrm{Q}=Q\)-mitment (commitment), \(\mathbb{P}=\mathbb{P}\) roofs, \(\quad \mathrm{P}=\) Proof,
\(\mathbb{T}=\) aTtestations, \(\mathrm{T}=\) aTtestation, \(\quad \mathbb{B}=\mathbb{B}\) lindings, \(\beta=\beta\) linding.

\section*{Specification of the Function Signatures}

Searching for functions with the following signatures

Commit :
\[
(\mathrm{a}, \omega) \mapsto(\mathrm{Q}, \mathrm{P})
\]
\((\mathrm{m}, \mathrm{P}) \mapsto \mathrm{T}\)
\((\mathrm{m}, \mathrm{Q}, \mathrm{T}) \mapsto b\)
Derive :
\((Q, P, \omega) \mapsto\left(Q^{\prime}, P^{\prime}, \beta\right)\)
Compare :
\(\left(\mathrm{Q}, \mathrm{Q}^{\prime}, \beta\right) \mapsto b\)
Verify :
\(\mathbb{N}_{\mathrm{M}} \times \mathbb{O} \times \mathbb{T} \rightarrow \mathbb{Z}_{2}\),
\(\mathbb{O} \times \mathbb{P} \times \Omega \rightarrow \mathbb{O} \times \mathbb{P} \times \mathbb{B}\),
\(\mathbb{O} \times \mathbb{O} \times \mathbb{B} \rightarrow \mathbb{Z}_{2}\),

Mnemonics:
\(\mathbb{O}=\) © 0 mmitments, \(\mathrm{Q}=Q\)-mitment (commitment), \(\mathbb{P}=\mathbb{P}\) roofs, \(\quad \mathrm{P}=\) Proof,
\(\mathbb{T}=\) aTtestations, \(\mathrm{T}=\) aTtestation, \(\quad \mathbb{B}=\mathbb{B}\) lindings, \(\beta=\beta\) linding.

\section*{Specification of the Function Signatures}

Searching for functions with the following signatures

Commit :
\[
(\mathrm{a}, \omega) \mapsto(\mathrm{Q}, \mathrm{P})
\]
\((\mathrm{m}, \mathrm{P}) \mapsto \mathrm{T}\)
Verify: \(\quad(\mathrm{m}, \mathrm{Q}, \mathrm{T}) \mapsto b\)
Derive :
\((Q, P, \omega) \mapsto\left(Q^{\prime}, P^{\prime}, \beta\right)\)
Compare :
\(\left(\mathrm{Q}, \mathrm{Q}^{\prime}, \beta\right) \mapsto b\) \(\mathbb{N}_{\mathrm{M}} \times \mathbb{O} \times \mathbb{T} \rightarrow \mathbb{Z}_{2}\),
\(\mathbb{O} \times \mathbb{P} \times \Omega \rightarrow \mathbb{O} \times \mathbb{P} \times \mathbb{B}\),
\(\mathbb{O} \times \mathbb{O} \times \mathbb{B} \rightarrow \mathbb{Z}_{2}\),
with \(\Omega, \mathbb{P}, \mathbb{O}, \mathbb{T}, \mathbb{B}\) sufficiently large sets.

Mnemonics:
\(\mathbb{O}=c \mathbb{O}\) mmitments, \(\mathrm{Q}=Q\)-mitment (commitment), \(\mathbb{P}=\mathbb{P}\) roofs, \(\quad \mathrm{P}=\) Proof,
\(\mathbb{T}=a \mathbb{T}\) testations, \(\mathrm{T}=\) aTtestation, \(\quad \mathbb{B}=\mathbb{B}\) lindings, \(\beta=\beta\) linding.

\section*{Specification of the Function Signatures}

Searching for functions with the following signatures

Commit :
\[
(\mathrm{a}, \omega) \mapsto(\mathrm{Q}, \mathrm{P})
\]
\[
(m, P) \mapsto T
\]
\((\mathrm{m}, \mathrm{Q}, \mathrm{T}) \mapsto b\)
Derive :
\((Q, P, \omega) \mapsto\left(Q^{\prime}, P^{\prime}, \beta\right)\)
Compare :
\(\left(Q, Q^{\prime}, \beta\right) \mapsto b\)
with \(\Omega, \mathbb{P}, \mathbb{O}, \mathbb{T}, \mathbb{B}\) sufficiently large sets.
We will define basic and security requirements later.
Mnemonics:
\(\mathbb{O}=c \mathbb{O}\) mmitments, \(\mathrm{Q}=Q\)-mitment (commitment), \(\mathbb{P}=\mathbb{P}\) roofs, \(\quad \mathrm{P}=\) Proof,
\(\mathbb{T}=a \mathbb{T}\) testations, \(\mathrm{T}=\mathrm{a}\) Testation, \(\quad \mathbb{B}=\mathbb{B}\) lindings, \(\beta=\beta\) linding.

Naïve scheme


\section*{Problem of unlinkability}


Simple use of Derive() and Compare() is problematic.

\section*{Problem of unlinkability}

Compare()
Simple use of Derive() and Compare() is problematic.
- Calling Derive() iteratively generates sequence \(\left(Q_{0}, Q_{1}, \ldots\right)\) of commitments.

\section*{Problem of unlinkability}

Compare()
Simple use of Derive() and Compare() is problematic.
- Calling Derive() iteratively generates sequence ( \(Q_{0}, Q_{1}, \ldots\) ) of commitments.
- Exchange calls Compare \(\left(Q_{i}, Q_{i+1},.\right)\)

\section*{Problem of unlinkability}

Compare()
Simple use of Derive() and Compare() is problematic.
- Calling Derive() iteratively generates sequence ( \(Q_{0}, Q_{1}, \ldots\) ) of commitments.
- Exchange calls Compare \(\left(Q_{i}, Q_{i+1},.\right)\)
\(\Longrightarrow\) Exchange identifies sequence

\section*{Problem of unlinkability}

Simple use of Derive() and Compare() is problematic.
- Calling Derive() iteratively generates sequence ( \(Q_{0}, Q_{1}, \ldots\) ) of commitments.
- Exchange calls Compare \(\left(Q_{i}, Q_{i+1},.\right)\)
\(\Longrightarrow\) Exchange identifies sequence
\(\Longrightarrow\) Unlinkability broken

\section*{Achieving Unlinkability}

Given Derive() and Compare(), define the cut\&choose protocol DeriveCompare \({ }_{\kappa}\) as follows (sketch):

\section*{Achieving Unlinkability}

Given Derive() and Compare(), define the cut\&choose protocol DeriveCompare \({ }_{\kappa}\) as follows (sketch):


\section*{Achieving Unlinkability}

Given Derive() and Compare(), define the cut\&choose protocol DeriveCompare \({ }_{\kappa}\) as follows (sketch):
\[
\text { Let } \kappa \in \mathbb{N}(\text { say }: \kappa=3)
\]

\section*{Achieving Unlinkability}
\[
\begin{aligned}
& \text { Given Derive() and Compare(), define the cut\&choose protocol } \\
& \text { DeriveCompare }{ }_{\kappa} \text { as follows (sketch): } \\
& \qquad \begin{array}{r}
\text { Let } \kappa \in \mathbb{N}(\text { say: } \kappa=3) \\
\mathcal{C}: \quad \\
\text { 1. generates }\left(Q_{1}, \ldots, Q_{\kappa}\right) \text { and }\left(\beta_{1}, \ldots, \beta_{\kappa}\right) \text { from } \\
Q_{0} \text { by calling } \kappa \text { times Derive }\left(Q_{0}, P_{0}, \omega_{i}\right)
\end{array}
\end{aligned}
\]


\section*{Achieving Unlinkability}

Given Derive() and Compare(), define the cut\&choose protocol DeriveCompare \({ }_{\kappa}\) as follows (sketch):
\[
\text { Let } \kappa \in \mathbb{N}(\text { say: } \kappa=3)
\]

\(\mathcal{C}\) : 1. generates \(\left(Q_{1}, \ldots, Q_{\kappa}\right)\) and \(\left(\beta_{1}, \ldots, \beta_{\kappa}\right)\) from \(Q_{0}\) by calling \(\kappa\) times Derive \(\left(Q_{0}, P_{0}, \omega_{i}\right)\)
2. calculates
\[
h_{0}:=H\left(H\left(Q_{1}, \beta_{1}\right)\|\cdots\| H\left(Q_{\kappa}, \beta_{\kappa}\right)\right)
\]

\section*{Achieving Unlinkability}

Given Derive() and Compare(), define the cut\&choose protocol DeriveCompare \({ }_{\kappa}\) as follows (sketch):
\[
\text { Let } \kappa \in \mathbb{N}(\text { say: } \kappa=3)
\]

\(\mathcal{C}\) : 1. generates \(\left(Q_{1}, \ldots, Q_{\kappa}\right)\) and \(\left(\beta_{1}, \ldots, \beta_{\kappa}\right)\) from \(Q_{0}\) by calling \(\kappa\) times Derive \(\left(Q_{0}, P_{0}, \omega_{i}\right)\)
2. calculates
\[
h_{0}:=H\left(H\left(Q_{1}, \beta_{1}\right)\|\cdots\| H\left(Q_{\kappa}, \beta_{\kappa}\right)\right)
\]
3. sends \(Q_{0}\) and \(h_{0}\) to \(\mathcal{E}\)

\section*{Achieving Unlinkability}

Given Derive() and Compare(), define the cut\&choose protocol DeriveCompare \({ }_{\kappa}\) as follows (sketch):
\[
\text { Let } \kappa \in \mathbb{N}(\text { say: } \kappa=3)
\]

\(\mathcal{C}\) : 1. generates \(\left(Q_{1}, \ldots, Q_{\kappa}\right)\) and \(\left(\beta_{1}, \ldots, \beta_{\kappa}\right)\) from \(Q_{0}\) by calling \(\kappa\) times Derive \(\left(Q_{0}, P_{0}, \omega_{i}\right)\)
2. calculates
\[
h_{0}:=H\left(H\left(Q_{1}, \beta_{1}\right)\|\cdots\| H\left(Q_{\kappa}, \beta_{\kappa}\right)\right)
\]
3. sends \(Q_{0}\) and \(h_{0}\) to \(\mathcal{E}\)

\section*{Achieving Unlinkability}

Given Derive() and Compare(), define the cut\&choose protocol DeriveCompare \({ }_{\kappa}\) as follows (sketch):
\[
\text { Let } \kappa \in \mathbb{N}(\text { say : } \kappa=3)
\]

\(\mathcal{C}\) : 1. generates \(\left(Q_{1}, \ldots, Q_{\kappa}\right)\) and \(\left(\beta_{1}, \ldots, \beta_{\kappa}\right)\) from \(Q_{0}\) by calling \(\kappa\) times Derive \(\left(Q_{0}, P_{0}, \omega_{i}\right)\)
2. calculates
\[
h_{0}:=H\left(H\left(Q_{1}, \beta_{1}\right)\|\cdots\| H\left(Q_{\kappa}, \beta_{\kappa}\right)\right)
\]
3. sends \(Q_{0}\) and \(h_{0}\) to \(\mathcal{E}\)
\(\mathcal{E}\) : 4. saves \(Q_{0}\) and \(h_{0}\) and sends \(\mathcal{C}\) random \(\gamma \in\{1, \ldots, \kappa\}\)

\section*{Achieving Unlinkability}

Given Derive() and Compare(), define the cut\&choose protocol DeriveCompare \({ }_{\kappa}\) as follows (sketch):
\[
\text { Let } \kappa \in \mathbb{N}(\text { say : } \kappa=3)
\]

\(\mathcal{C}\) : 1. generates \(\left(Q_{1}, \ldots, Q_{\kappa}\right)\) and \(\left(\beta_{1}, \ldots, \beta_{\kappa}\right)\) from \(Q_{0}\) by calling \(\kappa\) times Derive \(\left(Q_{0}, P_{0}, \omega_{i}\right)\)
2. calculates
\[
h_{0}:=H\left(H\left(Q_{1}, \beta_{1}\right)\|\cdots\| H\left(Q_{\kappa}, \beta_{\kappa}\right)\right)
\]
3. sends \(Q_{0}\) and \(h_{0}\) to \(\mathcal{E}\)
\(\mathcal{E}\) : 4. saves \(Q_{0}\) and \(h_{0}\) and sends \(\mathcal{C}\) random \(\gamma \in\{1, \ldots, \kappa\}\)

\section*{Achieving Unlinkability}

Given Derive() and Compare(), define the cut\&choose protocol DeriveCompare \({ }_{\kappa}\) as follows (sketch):
\[
\text { Let } \kappa \in \mathbb{N}(\text { say : } \kappa=3)
\]

\(\mathcal{C}: \quad\) 1. generates \(\left(Q_{1}, \ldots, Q_{\kappa}\right)\) and \(\left(\beta_{1}, \ldots, \beta_{\kappa}\right)\) from \(\mathrm{Q}_{0}\) by calling \(\kappa\) times \(\operatorname{Derive}\left(\mathrm{Q}_{0}, \mathrm{P}_{0}, \omega_{i}\right)\)
2. calculates
\(h_{0}:=H\left(H\left(\mathrm{Q}_{1}, \beta_{1}\right)\|\cdots\| H\left(\mathrm{Q}_{\kappa}, \beta_{\kappa}\right)\right)\)
3. sends \(Q_{0}\) and \(h_{0}\) to \(\mathcal{E}\)
\(\mathcal{E}: \quad\) 4. saves \(Q_{0}\) and \(h_{0}\) and sends \(\mathcal{C}\) random \(\gamma \in\{1, \ldots, \kappa\}\)
\(\mathcal{C}: \quad\) 5. reveals \(h_{\gamma}:=H\left(\mathrm{Q}_{\gamma}, \beta_{\gamma}\right)\) and all \(\left(\mathrm{Q}_{i}, \beta_{i}\right)\), except \(\left(Q_{\gamma}, \beta_{\gamma}\right)\)

\section*{Achieving Unlinkability}

Given Derive() and Compare(), define the cut\&choose protocol DeriveCompare \({ }_{\kappa}\) as follows (sketch):
\[
\text { Let } \kappa \in \mathbb{N}(\text { say : } \kappa=3)
\]

\(\mathcal{C}: \quad\) 1. generates \(\left(Q_{1}, \ldots, Q_{\kappa}\right)\) and \(\left(\beta_{1}, \ldots, \beta_{\kappa}\right)\) from \(\mathrm{Q}_{0}\) by calling \(\kappa\) times \(\operatorname{Derive}\left(\mathrm{Q}_{0}, \mathrm{P}_{0}, \omega_{i}\right)\)
2. calculates
\(h_{0}:=H\left(H\left(\mathrm{Q}_{1}, \beta_{1}\right)\|\cdots\| H\left(\mathrm{Q}_{\kappa}, \beta_{\kappa}\right)\right)\)
3. sends \(Q_{0}\) and \(h_{0}\) to \(\mathcal{E}\)
\(\mathcal{E}: \quad\) 4. saves \(Q_{0}\) and \(h_{0}\) and sends \(\mathcal{C}\) random \(\gamma \in\{1, \ldots, \kappa\}\)
\(\mathcal{C}: \quad\) 5. reveals \(h_{\gamma}:=H\left(\mathrm{Q}_{\gamma}, \beta_{\gamma}\right)\) and all \(\left(\mathrm{Q}_{i}, \beta_{i}\right)\), except \(\left(Q_{\gamma}, \beta_{\gamma}\right)\)

\section*{Achieving Unlinkability}

Given Derive() and Compare(), define the cut\&choose protocol DeriveCompare \({ }_{\kappa}\) as follows (sketch):
\[
\text { Let } \kappa \in \mathbb{N}(\text { say : } \kappa=3)
\]
\(\mathcal{C}\) : 1. generates \(\left(\mathrm{Q}_{1}, \ldots, \mathrm{Q}_{\kappa}\right)\) and \(\left(\beta_{1}, \ldots, \beta_{\kappa}\right)\) from \(\mathrm{Q}_{0}\) by calling \(\kappa\) times Derive \(\left(\mathrm{Q}_{0}, \mathrm{P}_{0}, \omega_{i}\right)\)
2. calculates
\(h_{0}:=H\left(H\left(\mathrm{Q}_{1}, \beta_{1}\right)\|\cdots\| H\left(\mathrm{Q}_{\kappa}, \beta_{\kappa}\right)\right)\)
3. sends \(Q_{0}\) and \(h_{0}\) to \(\mathcal{E}\)
\(\mathcal{E}: \quad\) 4. saves \(Q_{0}\) and \(h_{0}\) and sends \(\mathcal{C}\) random \(\gamma \in\{1, \ldots, \kappa\}\)
\(\mathcal{C}: \quad\) 5. reveals \(h_{\gamma}:=H\left(\mathrm{Q}_{\gamma}, \beta_{\gamma}\right)\) and all \(\left(\mathrm{Q}_{i}, \beta_{i}\right)\), except \(\left(Q_{\gamma}, \beta_{\gamma}\right)\)

\(\mathcal{E}\) : 6. compares \(h_{0}\) and \(H\left(H\left(Q_{1}, \beta_{1}\right)\|\ldots\| h_{\gamma}\|\ldots\| H\left(\mathrm{Q}_{\kappa}, \beta_{\kappa}\right)\right)\)

\section*{Achieving Unlinkability}

Given Derive() and Compare(), define the cut\&choose protocol DeriveCompare \({ }_{\kappa}\) as follows (sketch):
\[
\text { Let } \kappa \in \mathbb{N}(\text { say : } \kappa=3)
\]
\(\mathcal{C}\) : 1. generates \(\left(Q_{1}, \ldots, Q_{\kappa}\right)\) and \(\left(\beta_{1}, \ldots, \beta_{\kappa}\right)\) from \(Q_{0}\) by calling \(\kappa\) times Derive \(\left(Q_{0}, P_{0}, \omega_{i}\right)\)
2. calculates
\(h_{0}:=H\left(H\left(Q_{1}, \beta_{1}\right)\|\cdots\| H\left(Q_{\kappa}, \beta_{\kappa}\right)\right)\)
3. sends \(Q_{0}\) and \(h_{0}\) to \(\mathcal{E}\)
\(\mathcal{E}: \quad\) 4. saves \(Q_{0}\) and \(h_{0}\) and sends \(\mathcal{C}\) random \(\gamma \in\{1, \ldots, \kappa\}\)
\(\mathcal{C}: \quad\) 5. reveals \(h_{\gamma}:=H\left(Q_{\gamma}, \beta_{\gamma}\right)\) and all \(\left(Q_{i}, \beta_{i}\right)\), except ( \(\mathrm{Q}_{\gamma}, \beta_{\gamma}\) )
\(\mathcal{E}: \quad\) 6. compares \(h_{0}\) and \(H\left(H\left(Q_{1}, \beta_{1}\right)\|\ldots\| h_{\gamma}\|\ldots\| H\left(Q_{\kappa}, \beta_{\kappa}\right)\right)\)
7. evaluates Compare \(\left(Q_{0}, Q_{i}, \beta_{i}\right)\) for all \(i \neq \gamma\).

\section*{Achieving Unlinkability}

Given Derive() and Compare(), define the cut\&choose protocol DeriveCompare \({ }_{\kappa}\) as follows (sketch):
\[
\text { Let } \kappa \in \mathbb{N}(\text { say : } \kappa=3)
\]
\(\mathcal{C}\) : 1. generates \(\left(Q_{1}, \ldots, Q_{\kappa}\right)\) and \(\left(\beta_{1}, \ldots, \beta_{\kappa}\right)\) from \(Q_{0}\) by calling \(\kappa\) times Derive \(\left(Q_{0}, P_{0}, \omega_{i}\right)\)
2. calculates
\(h_{0}:=H\left(H\left(Q_{1}, \beta_{1}\right)\|\cdots\| H\left(Q_{\kappa}, \beta_{\kappa}\right)\right)\)
3. sends \(Q_{0}\) and \(h_{0}\) to \(\mathcal{E}\)
\(\mathcal{E}: \quad\) 4. saves \(Q_{0}\) and \(h_{0}\) and sends \(\mathcal{C}\) random \(\gamma \in\{1, \ldots, \kappa\}\)
\(\mathcal{C}: \quad\) 5. reveals \(h_{\gamma}:=H\left(Q_{\gamma}, \beta_{\gamma}\right)\) and all \(\left(Q_{i}, \beta_{i}\right)\), except ( \(\mathrm{Q}_{\gamma}, \beta_{\gamma}\) )
\(\mathcal{E}: \quad\) 6. compares \(h_{0}\) and \(H\left(H\left(Q_{1}, \beta_{1}\right)\|\ldots\| h_{\gamma}\|\ldots\| H\left(Q_{\kappa}, \beta_{\kappa}\right)\right)\)
7. evaluates Compare \(\left(Q_{0}, Q_{i}, \beta_{i}\right)\) for all \(i \neq \gamma\).

\section*{Achieving Unlinkability}

Given Derive() and Compare(), define the cut\&choose protocol DeriveCompare \({ }_{\kappa}\) as follows (sketch):

Let \(\kappa \in \mathbb{N}(\) say: \(\kappa=3)\)
\(\mathcal{C}\) : 1. generates \(\left(Q_{1}, \ldots, Q_{\kappa}\right)\) and \(\left(\beta_{1}, \ldots, \beta_{\kappa}\right)\) from \(Q_{0}\) by calling \(\kappa\) times Derive \(\left(Q_{0}, P_{0}, \omega_{i}\right)\)
2. calculates
\(h_{0}:=H\left(H\left(Q_{1}, \beta_{1}\right)\|\cdots\| H\left(Q_{\kappa}, \beta_{\kappa}\right)\right)\)
3. sends \(Q_{0}\) and \(h_{0}\) to \(\mathcal{E}\)
\(\mathcal{E}: \quad\) 4. saves \(Q_{0}\) and \(h_{0}\) and sends \(\mathcal{C}\) random \(\gamma \in\{1, \ldots, \kappa\}\)
\(\mathcal{C}: \quad\) 5. reveals \(h_{\gamma}:=H\left(Q_{\gamma}, \beta_{\gamma}\right)\) and all \(\left(Q_{i}, \beta_{i}\right)\), except ( \(\mathrm{Q}_{\gamma}, \beta_{\gamma}\) )
\(\mathcal{E}: \quad\) 6. compares \(h_{0}\) and \(H\left(H\left(Q_{1}, \beta_{1}\right)\|\ldots\| h_{\gamma}\|\ldots\| H\left(Q_{\kappa}, \beta_{\kappa}\right)\right)\)
7. evaluates Compare \(\left(Q_{0}, Q_{i}, \beta_{i}\right)\) for all \(i \neq \gamma\).

If all steps succeed, \(Q_{\gamma}\) is the new commitment.

\section*{Achieving Unlinkability}

With DeriveCompare \({ }_{\kappa}\)
- \(\mathcal{E}\) learns nothing about \(\mathrm{Q}_{\gamma}\) or \(H\left(\mathrm{Q}_{\gamma}\right)\),
- trusts outcome with \(\frac{\kappa-1}{\kappa}\) certainty,
- i.e. \(\mathcal{C}\) has \(\frac{1}{\kappa}\) chance to cheat.

\section*{Achieving Unlinkability}

\section*{With DeriveCompare \({ }_{\kappa}\)}
- \(\mathcal{E}\) learns nothing about \(\mathrm{Q}_{\gamma}\) or \(H\left(\mathrm{Q}_{\gamma}\right)\),
- trusts outcome with \(\frac{\kappa-1}{\kappa}\) certainty,
- i.e. \(\mathcal{C}\) has \(\frac{1}{\kappa}\) chance to cheat.
\(\Longrightarrow\) Gives us unlinkability at the price of (adjustable) uncertainty!

\section*{Achieving Unlinkability}

\section*{With DeriveCompare \({ }_{\kappa}\)}
- \(\mathcal{E}\) learns nothing about \(\mathrm{Q}_{\gamma}\) or \(H\left(\mathrm{Q}_{\gamma}\right)\),
- trusts outcome with \(\frac{\kappa-1}{\kappa}\) certainty,
- i.e. \(\mathcal{C}\) has \(\frac{1}{\kappa}\) chance to cheat.
\(\Longrightarrow\) Gives us unlinkability at the price of (adjustable) uncertainty!

Notes:
- similar to the cut\&choose refresh protocol in GNU Taler
- still need to define Derive() and Compare().

Refined scheme

\section*{\(\mathcal{E}\)}
\(\mathcal{G}\)



Refined scheme
\(\mathcal{E}\)
\(\mathcal{G}\)

\(\mathcal{M}\)

\section*{\(\mathcal{E}\)}
\(\mathcal{G}\)


\section*{\(\mathcal{E}\)}

\section*{\(\mathcal{G}\)}



\section*{Refined scheme}


\section*{Sensible solutions}

Quest for functions should lead to sensible solutions.

\section*{Sensible solutions}

Quest for functions should lead to sensible solutions.
F. e. Verify() should not simply always return true.

\section*{Sensible solutions}

Quest for functions should lead to sensible solutions.
F. e. Verify() should not simply always return true.

We need more requirements.

\section*{Requirements}

\section*{Basic Requirements}

Candidate functions
(Commit, Attest, Verify, Derive, Compare) must meet basic requirements:
- Existence of attestations
- Efficacy of attestations
- Derivability of commitments and attestations

\section*{Basic Requirements}

Candidate functions
(Commit, Attest, Verify, Derive, Compare)
must meet basic requirements:
- Existence of attestations
- Efficacy of attestations
- Derivability of commitments and attestations

More details in the published paper and Appendix.

\section*{Security Requirements}

Candidate functions must also meet security requirements, defined via security games:

\section*{Security Requirements}

Candidate functions must also meet security requirements, defined via security games:

Requirement: Unforgeability of minimum age

\section*{Security Requirements}

Candidate functions must also meet security requirements, defined via security games:

Requirement: Unforgeability of minimum age
\(\leftrightarrow \quad\) Game: Forging an attestation

\section*{Security Requirements}

Candidate functions must also meet security requirements, defined via security games:

Requirement: Unforgeability of minimum age
\(\leftrightarrow \quad\) Game: Forging an attestation
Requirement: Non-disclosure of age

\section*{Security Requirements}

Candidate functions must also meet security requirements, defined via security games:

Requirement: Unforgeability of minimum age
\(\leftrightarrow \quad\) Game: Forging an attestation
Requirement: Non-disclosure of age
\(\leftrightarrow \quad\) Game: Age disclosure by commitment or attestation

\section*{Security Requirements}

Candidate functions must also meet security requirements, defined via security games:

Requirement: Unforgeability of minimum age
\(\leftrightarrow \quad\) Game: Forging an attestation
Requirement: Non-disclosure of age
\(\leftrightarrow \quad\) Game: Age disclosure by commitment or attestation
Requirement: Unlinkability of commitments and attestations

\section*{Security Requirements}

Candidate functions must also meet security requirements, defined via security games:

Requirement: Unforgeability of minimum age
\(\leftrightarrow \quad\) Game: Forging an attestation
Requirement: Non-disclosure of age
\(\leftrightarrow \quad\) Game: Age disclosure by commitment or attestation
Requirement: Unlinkability of commitments and attestations
\(\leftrightarrow \quad\) Game: Distinguishing derived commitments and attestations

\section*{Security Requirements}

Candidate functions must also meet security requirements, defined via security games:

Requirement: Unforgeability of minimum age
\(\leftrightarrow \quad\) Game: Forging an attestation
Requirement: Non-disclosure of age
\(\leftrightarrow \quad\) Game: Age disclosure by commitment or attestation
Requirement: Unlinkability of commitments and attestations
\(\leftrightarrow \quad\) Game: Distinguishing derived commitments and attestations

Meeting the security requirements means that adversaries can win those games only with negligible advantage.

\section*{Security Requirements}

Candidate functions must also meet security requirements, defined via security games:

Requirement: Unforgeability of minimum age
\(\leftrightarrow \quad\) Game: Forging an attestation
Requirement: Non-disclosure of age
\(\leftrightarrow \quad\) Game: Age disclosure by commitment or attestation
Requirement: Unlinkability of commitments and attestations
\(\leftrightarrow \quad\) Game: Distinguishing derived commitments and attestations

Meeting the security requirements means that adversaries can win those games only with negligible advantage.

Adversaries are arbitrary polynomial-time algorithms, acting on all relevant input.

\section*{Security Requirements}

\section*{Simplified Example}

Game \(G_{\mathcal{A}}^{\mathrm{FA}}\) : Forging an attest

\section*{Security Requirements}

\section*{Simplified Example}

Game \(G_{\mathcal{A}}^{\mathrm{FA}}\) : Forging an attest
1. \((\mathrm{a}, \omega) \stackrel{\Phi}{\leftarrow} \mathbb{N}_{\mathrm{M}-1} \times \Omega\)

\section*{Security Requirements}

Simplified Example

Game \(G_{\mathcal{A}}^{\mathrm{FA}}\) : Forging an attest
1. \((\mathrm{a}, \omega) \stackrel{\$}{\leftarrow} \mathbb{N}_{\mathrm{M}-1} \times \Omega\)
2. \((\mathrm{Q}, \mathrm{P}) \leftarrow \operatorname{Commit}(\mathrm{a}, \omega)\)

\section*{Security Requirements}

\section*{Simplified Example}

Game \(G_{\mathcal{A}}^{\text {FA }}\) : Forging an attest
1. \((\mathrm{a}, \omega) \stackrel{\$}{\leftarrow} \mathbb{N}_{\mathrm{M}-1} \times \Omega\)
2. \((\mathrm{Q}, \mathrm{P}) \leftarrow \operatorname{Commit}(\mathrm{a}, \omega)\)
3. \((\mathrm{m}, \mathrm{T}) \leftarrow \mathcal{A}(\mathrm{a}, \mathrm{Q}, \mathrm{P})\)

\section*{Security Requirements}

\section*{Simplified Example}

Game \(G_{\mathcal{A}}^{\text {FA }}\) : Forging an attest
1. \((\mathrm{a}, \omega) \stackrel{\$}{\leftarrow} \mathbb{N}_{\mathrm{M}-1} \times \Omega\)
2. \((\mathrm{Q}, \mathrm{P}) \leftarrow \operatorname{Commit}(\mathrm{a}, \omega)\)
3. \((\mathrm{m}, \mathrm{T}) \leftarrow \mathcal{A}(\mathrm{a}, \mathrm{Q}, \mathrm{P})\)
4. Return 0 if \(\mathrm{m} \leq \mathrm{a}\)

\section*{Security Requirements}

\section*{Simplified Example}

Game \(G_{\mathcal{A}}^{\text {FA }}\) : Forging an attest
1. \((\mathrm{a}, \omega) \stackrel{\$}{\leftarrow} \mathbb{N}_{\mathrm{M}-1} \times \Omega\)
2. \((\mathrm{Q}, \mathrm{P}) \leftarrow \operatorname{Commit}(\mathrm{a}, \omega)\)
3. \((\mathrm{m}, \mathrm{T}) \leftarrow \mathcal{A}(\mathrm{a}, \mathrm{Q}, \mathrm{P})\)
4. Return 0 if \(m \leq a\)
5. Return Verify (m, Q, T)

\section*{Security Requirements}

\section*{Simplified Example}

Game \(G_{\mathcal{A}}^{\text {FA }}\) : Forging an attest
1. \((\mathrm{a}, \omega) \stackrel{\$}{\leftarrow} \mathbb{N}_{\mathrm{M}-1} \times \Omega\)
2. \((\mathrm{Q}, \mathrm{P}) \leftarrow \operatorname{Commit}(\mathrm{a}, \omega)\)
3. \((\mathrm{m}, \mathrm{T}) \leftarrow \mathcal{A}(\mathrm{a}, \mathrm{Q}, \mathrm{P})\)
4. Return 0 if \(m \leq a\)
5. Return Verify (m, Q, T)

Adversary \(\mathcal{A}\) wins the game, if \(G_{\mathcal{A}}^{\text {FA }}\) returns 1 .

\section*{Security Requirements}

\section*{Simplified Example}

Game \(G_{\mathcal{A}}^{\text {FA }}\) : Forging an attest
\[
\begin{aligned}
& \text { 1. }(a, \omega) \stackrel{\$}{\mathbb{N}_{M-1} \times \Omega} \\
& \text { 2. }(Q, P) \leftarrow \operatorname{Commit}(a, \omega) \\
& \text { 3. }(\mathrm{m}, \mathrm{~T}) \leftarrow \mathcal{A}(\mathrm{a}, \mathrm{Q}, \mathrm{P}) \\
& \text { 4. Return } 0 \text { if } \mathrm{m} \leq \mathrm{a} \\
& \text { 5. Return Verify }(\mathrm{m}, \mathrm{Q}, \mathrm{~T})
\end{aligned}
\]

Adversary \(\mathcal{A}\) wins the game, if \(G_{\mathcal{A}}^{\text {FA }}\) returns 1 .
Requirement: Unforgeability of minimum age
\[
\underset{\mathcal{A} \in \mathfrak{A}\left(\mathbb{N}_{\mathrm{M}} \times \mathbb{O} \times \mathbb{P} \rightarrow \mathbb{N}_{\mathrm{M}} \times \mathbb{T}\right)}{\forall}: \operatorname{Pr}\left[G_{\mathcal{A}}^{\mathrm{FA}}=1\right] \leq \epsilon
\]

\section*{Our task}

Finding functions

\section*{(Commit, Attest, Verify, Derive, Compare)}
that meet the basic and security requirements.

A solution to our quest

\section*{Instantiation with ECDSA}

We propose a solution based on ECDSA.
Think: One key-pair per age group.

\section*{Definition of Commit with ECDSA}

To Commit to age group \(a \in\{1, \ldots, \mathrm{M}\}\)
1. Guardian generates ECDSA-keypairs, one per age group:
\[
\left\langle\left(q_{1}, p_{1}\right), \ldots,\left(q_{\mathrm{M}}, p_{\mathrm{M}}\right)\right\rangle
\]

\section*{Definition of Commit with ECDSA}

To Commit to age group \(a \in\{1, \ldots, \mathrm{M}\}\)
1. Guardian generates ECDSA-keypairs, one per age group:
\[
\left\langle\left(q_{1}, p_{1}\right), \ldots,\left(q_{\mathrm{M}}, p_{\mathrm{M}}\right)\right\rangle
\]
2. Guardian then drops all private keys \(p_{i}\) for \(i>a\) :
\[
\left\langle\left(q_{1}, p_{1}\right), \ldots,\left(q_{\mathrm{a}}, p_{\mathrm{a}}\right),\left(q_{\mathrm{a}+1}, \perp\right), \ldots,\left(q_{\mathrm{M}}, \perp\right)\right\rangle
\]

\section*{Definition of Commit with ECDSA}

To Commit to age group \(a \in\{1, \ldots, \mathrm{M}\}\)
1. Guardian generates ECDSA-keypairs, one per age group:
\[
\left\langle\left(q_{1}, p_{1}\right), \ldots,\left(q_{\mathrm{M}}, p_{\mathrm{M}}\right)\right\rangle
\]
2. Guardian then drops all private keys \(p_{i}\) for \(i>a\) :
\[
\left\langle\left(q_{1}, p_{1}\right), \ldots,\left(q_{\mathrm{a}}, p_{\mathrm{a}}\right),\left(q_{\mathrm{a}+1}, \perp\right), \ldots,\left(q_{\mathrm{M}}, \perp\right)\right\rangle
\]
then set

\section*{Definition of Commit with ECDSA}

To Commit to age group \(a \in\{1, \ldots, \mathrm{M}\}\)
1. Guardian generates ECDSA-keypairs, one per age group:
\[
\left\langle\left(q_{1}, p_{1}\right), \ldots,\left(q_{\mathrm{M}}, p_{\mathrm{M}}\right)\right\rangle
\]
2. Guardian then drops all private keys \(p_{i}\) for \(i>a\) :
\[
\left\langle\left(q_{1}, p_{1}\right), \ldots,\left(q_{\mathrm{a}}, p_{\mathrm{a}}\right),\left(q_{\mathrm{a}+1}, \perp\right), \ldots,\left(q_{\mathrm{M}}, \perp\right)\right\rangle
\]
then set
Commitment: \(\overrightarrow{\mathrm{Q}}:=\left(q_{1}, \ldots \ldots \ldots, q_{\mathrm{M}}\right)\)

\section*{Definition of Commit with ECDSA}

To Commit to age group \(a \in\{1, \ldots, \mathrm{M}\}\)
1. Guardian generates ECDSA-keypairs, one per age group:
\[
\left\langle\left(q_{1}, p_{1}\right), \ldots,\left(q_{\mathrm{M}}, p_{\mathrm{M}}\right)\right\rangle
\]
2. Guardian then drops all private keys \(p_{i}\) for \(i>a\) :
\[
\left\langle\left(q_{1}, p_{1}\right), \ldots,\left(q_{\mathrm{a}}, p_{\mathrm{a}}\right),\left(q_{\mathrm{a}+1}, \perp\right), \ldots,\left(q_{\mathrm{M}}, \perp\right)\right\rangle
\]
then set
Commitment: \(\overrightarrow{\mathrm{Q}}:=\left(q_{1}, \ldots \ldots \ldots, q_{\mathrm{M}}\right)\)
Proof: \(\overrightarrow{\mathrm{P}}_{\mathrm{a}}:=\left(p_{1}, \ldots, p_{\mathrm{a}}, \perp, \ldots, \perp\right)\)

\section*{Definition of Commit with ECDSA}

To Commit to age group \(a \in\{1, \ldots, \mathrm{M}\}\)
1. Guardian generates ECDSA-keypairs, one per age group:
\[
\left\langle\left(q_{1}, p_{1}\right), \ldots,\left(q_{\mathrm{M}}, p_{\mathrm{M}}\right)\right\rangle
\]
2. Guardian then drops all private keys \(p_{i}\) for \(i>a\) :
\[
\left\langle\left(q_{1}, p_{1}\right), \ldots,\left(q_{\mathrm{a}}, p_{\mathrm{a}}\right),\left(q_{\mathrm{a}+1}, \perp\right), \ldots,\left(q_{\mathrm{M}}, \perp\right)\right\rangle
\]
then set
Commitment: \(\overrightarrow{\mathrm{Q}}:=\left(q_{1}, \ldots \ldots \ldots, q_{\mathrm{M}}\right)\)
Proof: \(\overrightarrow{\mathrm{P}}_{\mathrm{a}}:=\left(p_{1}, \ldots, p_{\mathrm{a}}, \perp, \ldots, \perp\right)\)
3. Guardian gives child \(\left\langle\overrightarrow{\mathrm{Q}}, \overrightarrow{\mathrm{P}}_{\mathrm{a}}\right\rangle\)

\section*{Attest and Verify with ECDSA}

\section*{Child has}

\begin{tabular}{|l|l|}
\multicolumn{4}{c}{ key ID's } \\
age \\
groups & \begin{tabular}{ll}
\(1:\) & b5bb9d \\
\(2:\) & \(801 f a \theta\) \\
\(3:\) & \(19 d 8 d e\) \\
\(4:\) & \(52 f 23 c\) \\
\hline
\end{tabular}
\end{tabular}

- ordered public-keys \(\vec{Q}=\left(q_{1}, \ldots \ldots \ldots, q_{\mathrm{M}}\right)\),
- (some) private-keys \(\overrightarrow{\mathrm{P}}=\left(p_{1}, \ldots, p_{\mathrm{a}}, \perp, \ldots, \perp\right)\).

\section*{Attest and Verify with ECDSA}

\section*{Child has}

- ordered public-keys \(\vec{Q}=\left(q_{1}, \ldots \ldots \ldots, q_{\mathrm{M}}\right)\),
- (some) private-keys \(\overrightarrow{\mathrm{P}}=\left(p_{1}, \ldots, p_{\mathrm{a}}, \perp, \ldots, \perp\right)\).

To Attest a minimum age (group) \(\mathrm{m} \leq \mathrm{a}\) :
Sign a message with ECDSA using private key \(p_{\mathrm{m}}\).
The signature \(\sigma_{\mathrm{m}}\) is the attestation.


\section*{Attest and Verify with ECDSA}

\section*{Child has}


Contract

Age group: 3
Attestation:
\begin{tabular}{l} 
3: 19 d 8 de \\
4: 52 f 23 c \\
\hline
\end{tabular}
- ordered public-keys \(\overrightarrow{\mathrm{Q}}=\left(q_{1}, \ldots \ldots \ldots, q_{\mathrm{M}}\right)\),
- (some) private-keys \(\overrightarrow{\mathrm{P}}=\left(p_{1}, \ldots, p_{\mathrm{a}}, \perp, \ldots, \perp\right)\).

To Attest a minimum age (group) \(\mathrm{m} \leq \mathrm{a}\) :
Sign a message with ECDSA using private key \(p_{\mathrm{m}}\).
The signature \(\sigma_{\mathrm{m}}\) is the attestation.
Merchant gets
- ordered public-keys \(\overrightarrow{\mathrm{Q}}=\left(q_{1}, \ldots, q_{\mathrm{M}}\right)\)
- Signature \(\sigma_{\mathrm{m}}\)

\section*{Attest and Verify with ECDSA}

\section*{Child has}

Contract

Age group: 3.
Attestation:
R

1: b5bb9d
2: \(801 \mathrm{fa} \mathrm{\theta}\)
3: 19 d 8 de
4:
4: 52 f 23 c
- ordered public-keys \(\vec{Q}=\left(q_{1}, \ldots \ldots \ldots, q_{\mathrm{M}}\right)\),
- (some) private-keys \(\overrightarrow{\mathrm{P}}=\left(p_{1}, \ldots, p_{\mathrm{a}}, \perp, \ldots, \perp\right)\).

To Attest a minimum age (group) \(\mathrm{m} \leq \mathrm{a}\) :
Sign a message with ECDSA using private key \(p_{\mathrm{m}}\).
The signature \(\sigma_{\mathrm{m}}\) is the attestation.
Merchant gets
- ordered public-keys \(\overrightarrow{\mathrm{Q}}=\left(q_{1}, \ldots, q_{\mathrm{M}}\right)\)
- Signature \(\sigma_{\mathrm{m}}\)

To Verify a minimum age (group) m:
Verify the ECDSA-Signature \(\sigma_{\mathrm{m}}\) with public key \(q_{\mathrm{m}}\).

\section*{Reminder: Derive and Compare}


\section*{Derive and Compare with ECDSA}

Child has \(\overrightarrow{\mathrm{Q}}=\left(q_{1}, \ldots, q_{\mathrm{M}}\right)\) and \(\overrightarrow{\mathrm{P}}=\left(p_{1}, \ldots, p_{\mathrm{a}}, \perp, \ldots, \perp\right)\).

\section*{Derive and Compare with ECDSA}

Child has \(\overrightarrow{\mathrm{Q}}=\left(q_{1}, \ldots, q_{\mathrm{M}}\right)\) and \(\overrightarrow{\mathrm{P}}=\left(p_{1}, \ldots, p_{\mathrm{a}}, \perp, \ldots, \perp\right)\).
To Derive new \(\overrightarrow{\mathrm{Q}}^{\prime}\) and \(\overrightarrow{\mathrm{P}}^{\prime}\) : Choose random \(\beta \in \mathbb{Z}_{\mathrm{g}}\) and calculate
\[
\begin{aligned}
\vec{Q}^{\prime}=\left(q_{1}^{\prime}, \ldots \ldots \ldots, q_{\mathrm{M}}^{\prime}\right) & :=\left(\beta * q_{1}, \ldots \ldots, \beta * q_{\mathrm{M}}\right), \\
\overrightarrow{\mathrm{P}}^{\prime}=\left(p_{1}^{\prime}, \ldots, p_{\mathrm{a}}^{\prime}, \perp, \ldots, \perp\right) & :=\left(\beta p_{1}, \ldots, \beta p_{\mathrm{a}}, \perp, \ldots, \perp\right)
\end{aligned}
\]

\section*{Derive and Compare with ECDSA}

Child has \(\overrightarrow{\mathrm{Q}}=\left(q_{1}, \ldots, q_{\mathrm{M}}\right)\) and \(\overrightarrow{\mathrm{P}}=\left(p_{1}, \ldots, p_{\mathrm{a}}, \perp, \ldots, \perp\right)\).
To Derive new \(\overrightarrow{\mathrm{Q}}^{\prime}\) and \(\overrightarrow{\mathrm{P}}^{\prime}\) : Choose random \(\beta \in \mathbb{Z}_{g}\) and calculate
\[
\begin{aligned}
\overrightarrow{\mathrm{Q}}^{\prime}=\left(q_{1}^{\prime}, \ldots \ldots, q_{\mathrm{M}}^{\prime}\right) & :=\left(\beta * q_{1}, \ldots \ldots, \beta * q_{\mathrm{M}}\right), \\
\overrightarrow{\mathrm{P}}^{\prime}=\left(p_{1}^{\prime}, \ldots, p_{\mathrm{a}}^{\prime}, \perp, \ldots, \perp\right) & :=\left(\beta p_{1}, \ldots, \beta p_{\mathrm{a}}, \perp, \ldots, \perp\right)
\end{aligned}
\]

Note:
- \(\beta * q_{i}\) is scalar multiplication on the elliptic curve.
- \(p_{i}^{\prime} * G=\left(\beta p_{i}\right) * G=\beta *\left(p_{i} * G\right)=\beta * q_{i}=q_{i}^{\prime}\)
\(\Longrightarrow \quad p_{i}^{\prime}\) actually is private key to \(q_{i}^{\prime}\)

\section*{Derive and Compare with ECDSA}

Child has \(\vec{Q}=\left(q_{1}, \ldots, q_{\mathrm{M}}\right)\) and \(\overrightarrow{\mathrm{P}}=\left(p_{1}, \ldots, p_{\mathrm{a}}, \perp, \ldots, \perp\right)\).
To Derive new \(\overrightarrow{\mathrm{Q}}^{\prime}\) and \(\overrightarrow{\mathrm{P}}^{\prime}\) : Choose random \(\beta \in \mathbb{Z}_{g}\) and calculate
\[
\begin{aligned}
\overrightarrow{\mathrm{Q}}^{\prime}=\left(q_{1}^{\prime}, \ldots \ldots \ldots, q_{\mathrm{M}}^{\prime}\right) & :=\left(\beta * q_{1}, \ldots \ldots, \beta * q_{\mathrm{M}}\right), \\
\overrightarrow{\mathrm{P}}^{\prime}=\left(p_{1}^{\prime}, \ldots, p_{\mathrm{a}}^{\prime}, \perp, \ldots, \perp\right) & :=\left(\beta p_{1}, \ldots, \beta p_{\mathrm{a}}, \perp, \ldots, \perp\right)
\end{aligned}
\]

Note:
- \(\beta * q_{i}\) is scalar multiplication on the elliptic curve.
- \(p_{i}^{\prime} * G=\left(\beta p_{i}\right) * G=\beta *\left(p_{i} * G\right)=\beta * q_{i}=q_{i}^{\prime}\)
\(\Longrightarrow \quad p_{i}^{\prime}\) actually is private key to \(q_{i}^{\prime}\)

Exchange gets \(\overrightarrow{\mathrm{Q}}=\left(q_{1}, \ldots, q_{\mathrm{M}}\right), \overrightarrow{\mathrm{Q}}^{\prime}=\left(q_{1}^{\prime}, \ldots, q_{\mathrm{M}}^{\prime}\right)\) and \(\beta\)
To Compare, calculate: \(\left(\beta * q_{1}, \ldots, \beta * q_{\mathrm{M}}\right) \stackrel{?}{=}\left(q_{1}^{\prime}, \ldots, q_{\mathrm{M}}^{\prime}\right)\)

\section*{Instantiation with ECDSA}

Functions (Commit, Attest, Verify, Derive, Compare) as defined in the instantiation with ECDSA
- meet the basic requirements,
- also meet all security requirements.

Security proofs by reduction, details are in the paper.

\section*{Example: Proof of Unforgeability}

\section*{Proof by reduction:}

Game \(G_{\mathcal{A}}^{\text {FA }}\) : Forging an attest
1. \((\mathrm{a}, \omega) \stackrel{\$}{\stackrel{N}{M-1}} \times \Omega\)
2. \((\mathrm{Q}, \mathrm{P}) \leftarrow \operatorname{Commit}(\mathrm{a}, \omega)\)
3. \((\mathrm{m}, \mathrm{T}) \leftarrow \mathcal{A}(\mathrm{a}, \mathrm{Q}, \mathrm{P})\)
4. Return 0 if \(m \leq a\)
5. Return Verify (m, Q, T)

Requirement:
\(\underset{\mathcal{A}}{\forall}: \operatorname{Pr}\left[G_{\mathcal{A}}^{\mathrm{FA}}=1\right] \leq \epsilon\)

\section*{Example: Proof of Unforgeability}

\section*{Proof by reduction:}
1. Adversary wins if \(1=\operatorname{Verify}(m, Q, T)\).

Game \(G_{\mathcal{A}}^{\text {FA }}\) : Forging an attest
1. \((\mathrm{a}, \omega) \stackrel{\$}{\stackrel{N}{M}-1} \times \Omega\)
2. \((\mathrm{Q}, \mathrm{P}) \leftarrow \operatorname{Commit}(\mathrm{a}, \omega)\)
3. \((\mathrm{m}, \mathrm{T}) \leftarrow \mathcal{A}(\mathrm{a}, \mathrm{Q}, \mathrm{P})\)
4. Return 0 if \(m \leq a\)
5. Return Verify (m, Q, T)

Requirement:
\(\underset{\mathcal{A}}{\forall}: \operatorname{Pr}\left[G_{\mathcal{A}}^{\mathrm{FA}}=1\right] \leq \epsilon\)

\section*{Example: Proof of Unforgeability}

\section*{Proof by reduction:}

Game \(G_{\mathcal{A}}^{\text {FA }}\) : Forging an attest
1. \((\mathrm{a}, \omega) \stackrel{\$}{\leftarrow} \mathbb{N}_{\mathrm{M}-1} \times \Omega\)
2. \((\mathrm{Q}, \mathrm{P}) \leftarrow \operatorname{Commit}(\mathrm{a}, \omega)\)
3. \((\mathrm{m}, \mathrm{T}) \leftarrow \mathcal{A}(\mathrm{a}, \mathrm{Q}, \mathrm{P})\)
4. Return 0 if \(m \leq a\)
5. Return Verify (m, Q, T)

\section*{Requirement:}
\(\forall_{\mathcal{A}}: \operatorname{Pr}\left[G_{\mathcal{A}}^{\mathrm{FA}}=1\right] \leq \epsilon\)
1. Adversary wins if \(1=\operatorname{Verify}(\mathrm{m}, \mathrm{Q}, \mathrm{T})\).
2. That means: \(\sigma\) was a valid ECDSA-signature, validated with \(q_{m}\).

\section*{Example: Proof of Unforgeability}

\section*{Proof by reduction:}
1. Adversary wins if \(1=\operatorname{Verify}(m, Q, T)\).
2. That means: \(\sigma\) was a valid ECDSA-signature, validated with \(q_{m}\).
3. But adversary does not have the private key \(p_{m}\) to \(q_{m}\).

\section*{Example: Proof of Unforgeability}

\section*{Proof by reduction:}
1. Adversary wins if \(1=\operatorname{Verify}(m, Q, T)\).
2. That means: \(\sigma\) was a valid ECDSA-signature, validated with \(q_{m}\).
3. But adversary does not have the private key \(p_{m}\) to \(q_{m}\).
\(\Longrightarrow\) So winning this game would require to existentially forge the signature, which is negligible.

Integration with GNU Taler

\section*{GNU Taler}
https://www.taler.net

- Protocol suite for online payment services
- Based on Chaum's blind signatures
- Taxable, efficient, free software
- Allows for change and refund
- Privacy preserving: anonymous and unlinkable payments

\section*{GNU Taler}
https://www.taler.net

- Protocol suite for online payment services
- Based on Chaum's blind signatures
- Taxable, efficient, free software
- Allows for change and refund
- Privacy preserving: anonymous and unlinkable payments
- Coins are public-/private key-pairs \(\left(C_{p}, C_{s}\right)\).
- Exchange blindly signs \(H\left(C_{p}\right)\) with denomination key \(d_{p}\) :
\[
\beta\left(\sigma_{p}\right)=\operatorname{BlindSign}\left(\beta\left(H\left(C_{p}\right)\right), d_{p}\right)
\]
- Verification:
\[
\begin{gathered}
1 \stackrel{?}{=} \operatorname{Sig} \operatorname{Check}\left(H\left(C_{p}\right), D_{p}, \sigma_{p}\right) \\
\left(D_{p}=\text { public key of denomination and } \sigma_{p}=\text { signature }\right)
\end{gathered}
\]

\section*{Integration with GNU Taler}

\section*{Binding age restriction to coins}

To bind an age commitment Q to a coin \(C_{p}\), instead of blindly signing \(H\left(C_{p}\right)\)
\[
\beta\left(\sigma_{p}\right)=\operatorname{BlindSign}\left(\beta\left(H\left(C_{p}\right)\right), d_{p}\right)
\]
\(\mathcal{E}\) now blindly signs \(H\left(C_{p} \| H(Q)\right)\)
\[
\beta\left(\sigma_{p}\right)=\operatorname{BlindSign}\left(\beta\left(H\left(C_{p} \| H(Q)\right)\right), d_{p}\right)
\]

Therefore, verfication of a coin now requires \(H(Q)\), too:
\[
1 \stackrel{?}{=} \operatorname{Sig} \operatorname{Check}\left(H\left(C_{p} \| H(Q)\right), D_{p}, \sigma_{p}\right)
\]

\section*{Integration with GNU Taler}

Integrated schemes


\section*{Age restriction in the wallet}

\section*{Digital cash withdrawal}
```

Exchange
https://exchange-age.taler.ar/
Details
Withdraw
Transaction fees
5.0 ARS
-0.7 ARS
Total
4.3 ARS

```

\section*{Age restriction}
```

Not restricted \vee

```
Not restricted \vee
Not restricted
under }
under 10
under 12
under 14
under 16
under 18
```


Discussion \& Conclusion

Discussion

Technical aspects and challenges

- Our solution can in principle be used with any token-based payment scheme

Discussion

Technical aspects and challenges

- Our solution can in principle be used with any token-based payment scheme
However, GNU Taler best aligned with our design goals (security, privacy and efficiency).

Discussion

Technical aspects and challenges

- Our solution can in principle be used with any token-based payment scheme

However, GNU Taler best aligned with our design goals (security, privacy and efficiency).

- Subsidiarity requires bank accounts being owned by adults.

Discussion

Technical aspects and challenges

- Our solution can in principle be used with any token-based payment scheme
However, GNU Taler best aligned with our design goals (security, privacy and efficiency).
- Subsidiarity requires bank accounts being owned by adults. However, scheme can be adapted

Discussion

Technical aspects and challenges

- Our solution can in principle be used with any token-based payment scheme

However, GNU Taler best aligned with our design goals (security, privacy and efficiency).

- Subsidiarity requires bank accounts being owned by adults. However, scheme can be adapted
- Know-Your-Customer (KYC) provides age information

Discussion

Technical aspects and challenges

- Our solution can in principle be used with any token-based payment scheme

However, GNU Taler best aligned with our design goals (security, privacy and efficiency).

- Subsidiarity requires bank accounts being owned by adults. However, scheme can be adapted
- Know-Your-Customer (KYC) provides age information
- Parents can set age on a long-term wallet of a child

Discussion

Technical aspects and challenges

- Our solution can in principle be used with any token-based payment scheme
However, GNU Taler best aligned with our design goals (security, privacy and efficiency).
- Subsidiarity requires bank accounts being owned by adults. However, scheme can be adapted
- Know-Your-Customer (KYC) provides age information
- Parents can set age on a long-term wallet of a child
- cut\&choose protocol age-withdraw implemented

Discussion

Legal aspects and applicability

- The scheme only makes sense when cheating can be discouraged, f.e. economically

Discussion

Legal aspects and applicability

- The scheme only makes sense when cheating can be discouraged, f.e. economically
- There will be limits where the scheme is considered acceptable.

Discussion

Legal aspects and applicability

- The scheme only makes sense when cheating can be discouraged, f.e. economically
- There will be limits where the scheme is considered acceptable.
- Our scheme offers an alternative to identity management systems (IMS), where applicable

Discussion

Potential for misuse

- Instead of age groups, couldn't the scheme encode arbitrary semantics?

Discussion

Potential for misuse

- Instead of age groups, couldn't the scheme encode arbitrary semantics?
- Yes, but implementation in GNU Taler only allows for arithmetic comparison.

Discussion

Potential for misuse

- Instead of age groups, couldn't the scheme encode arbitrary semantics?
- Yes, but implementation in GNU Taler only allows for arithmetic comparison.
- Note that augmented coin material (coin + age commitment) remains fungible.

Discussion

Potential for misuse

- Instead of age groups, couldn't the scheme encode arbitrary semantics?
- Yes, but implementation in GNU Taler only allows for arithmetic comparison.
- Note that augmented coin material (coin + age commitment) remains fungible.
- Problem of tainting already exists with denomitations keys:

Discussion

Potential for misuse

- Instead of age groups, couldn't the scheme encode arbitrary semantics?
- Yes, but implementation in GNU Taler only allows for arithmetic comparison.
- Note that augmented coin material (coin + age commitment) remains fungible.
- Problem of tainting already exists with denomitations keys:
- They could be used to seperate the anonymity set of users.

Discussion

Potential for misuse

- Instead of age groups, couldn't the scheme encode arbitrary semantics?
- Yes, but implementation in GNU Taler only allows for arithmetic comparison.
- Note that augmented coin material (coin + age commitment) remains fungible.
- Problem of tainting already exists with denomitations keys:
- They could be used to seperate the anonymity set of users.
- GNU Taler defines the role of an Auditor:

Discussion

Potential for misuse

- Instead of age groups, couldn't the scheme encode arbitrary semantics?
- Yes, but implementation in GNU Taler only allows for arithmetic comparison.
- Note that augmented coin material (coin + age commitment) remains fungible.
- Problem of tainting already exists with denomitations keys:
- They could be used to seperate the anonymity set of users.
- GNU Taler defines the role of an Auditor:
- a seperate entity to supervise the operation of the exchange.

Conclusion

Age restriction is a technical, ethical and legal challenge.

Conclusion

Age restriction is a technical, ethical and legal challenge.
Existing solutions are

- without strong protection of privacy or
- based on identity management systems (IMS)

Conclusion

Age restriction is a technical, ethical and legal challenge.
Existing solutions are

- without strong protection of privacy or
- based on identity management systems (IMS)

Our scheme offers an option that

- aligns with subsidiarity
- preserves privacy
- is efficient
- and an alternative to IMS

Thank you!

 Questions?oec-taler@kesim.org
@oec@mathstodon.xyz

Interested in GNU Taler?
Intro: https://taler.net
Learn: https://docs.taler.net
Develop: https://git.taler.net, https://bugs.taler.net
Connect: https://ich.taler.net
NGI Taler: https://ngi.taler.net

Taler Overview

Basic Requirements - Details

back to Basic Requirements

Existence of attestations

$$
\underset{\substack{a \in \mathbb{N} M \\
\omega \in \Omega}}{\forall}: \operatorname{Commit}(a, \omega)=:(Q, P) \Longrightarrow \operatorname{Attest}(m, Q, P)=\left\{\begin{array}{l}
T \in \mathbb{T}, \text { if } m \leq a \\
\perp \text { otherwise }
\end{array}\right.
$$

Basic Requirements - Details

back to Basic Requirements

Existence of attestations

$$
\underset{\substack{a \in \mathbb{N}_{M} \\
\omega \in \Omega}}{\forall}: \operatorname{Commit}(a, \omega)=:(Q, P) \Longrightarrow \operatorname{Attest}(m, Q, P)=\left\{\begin{array}{l}
T \in \mathbb{T}, \text { if } m \leq a \\
\perp \text { otherwise }
\end{array}\right.
$$

Efficacy of attestations

$$
\begin{aligned}
& \operatorname{Verify}(\mathrm{m}, \mathrm{Q}, \mathrm{~T})=\left\{\begin{array}{l}
1, \text { if } \underset{\mathrm{P} \in \mathbb{P}}{\exists}: \operatorname{Attest}(\mathrm{m}, \mathrm{Q}, \mathrm{P})=\mathrm{T} \\
0 \text { otherwise }
\end{array}\right. \\
& \forall_{n \leq \mathrm{a}}: \operatorname{Verify}(n, Q, \operatorname{Attest}(n, Q, P))=1 .
\end{aligned}
$$

Basic Requirements - Details

back to Basic Requirements

Existence of attestations

$$
\underset{\substack{a \in \mathbb{N} M \\
\omega \in \Omega}}{\forall}: \operatorname{Commit}(a, \omega)=:(Q, P) \Longrightarrow \operatorname{Attest}(m, Q, P)=\left\{\begin{array}{l}
T \in \mathbb{T}, \text { if } m \leq a \\
\perp \text { otherwise }
\end{array}\right.
$$

Efficacy of attestations

$$
\begin{aligned}
& \operatorname{Verify}(\mathrm{m}, \mathrm{Q}, \mathrm{~T})=\left\{\begin{array}{l}
1, \text { if } \underset{\mathrm{P} \in \mathbb{P}}{\exists}: \operatorname{Attest}(\mathrm{m}, \mathrm{Q}, \mathrm{P})=\mathrm{T} \\
0 \text { otherwise }
\end{array}\right. \\
& \forall_{n \leq \mathrm{a}}: \operatorname{Verify}(n, Q, \operatorname{Attest}(n, Q, P))=1 .
\end{aligned}
$$

Derivability of commitments and attestations ...

Basic Requirements - Details

back to Basic Requirements

Existence of attestations

$$
\underset{\substack{a \in \mathbb{N} M \\
\omega \in \Omega}}{\forall}: \operatorname{Commit}(a, \omega)=:(Q, P) \Longrightarrow \operatorname{Attest}(m, Q, P)=\left\{\begin{array}{l}
T \in \mathbb{T}, \text { if } m \leq a \\
\perp \text { otherwise }
\end{array}\right.
$$

Efficacy of attestations

$$
\begin{aligned}
& \operatorname{Verify}(\mathrm{m}, \mathrm{Q}, \mathrm{~T})=\left\{\begin{array}{l}
1, \text { if } \underset{\mathrm{P} \in \mathbb{P}}{\exists}: \operatorname{Attest}(\mathrm{m}, \mathrm{Q}, \mathrm{P})=\mathrm{T} \\
0 \text { otherwise }
\end{array}\right. \\
& \forall_{n \leq \mathrm{a}}: \operatorname{Verify}(n, Q, \operatorname{Attest}(n, Q, P))=1 .
\end{aligned}
$$

Derivability of commitments and attestations ...

Basic Requirements - Details

back to Basic Requirements

Existence of attestations

$$
\underset{\substack{a \in \mathbb{N} M \\
\omega \in \Omega}}{\forall}: \operatorname{Commit}(a, \omega)=:(Q, P) \Longrightarrow \operatorname{Attest}(m, Q, P)=\left\{\begin{array}{l}
T \in \mathbb{T}, \text { if } m \leq a \\
\perp \text { otherwise }
\end{array}\right.
$$

Efficacy of attestations

$$
\begin{aligned}
& \operatorname{Verify}(\mathrm{m}, \mathrm{Q}, \mathrm{~T})=\left\{\begin{array}{l}
1, \text { if } \underset{\mathrm{P} \in \mathbb{P}}{\exists}: \operatorname{Attest}(\mathrm{m}, \mathrm{Q}, \mathrm{P})=\mathrm{T} \\
0 \text { otherwise }
\end{array}\right. \\
& \forall_{n \leq \mathrm{a}}: \operatorname{Verify}(n, Q, \operatorname{Attest}(n, Q, P))=1 .
\end{aligned}
$$

Derivability of commitments and attestations ...

More details in the published paper.

Reminder: RSA blind signature

In RSA, a public key (e, N) and private key (d, N) have the property

$$
x^{e d}=x \bmod N
$$

Reminder: RSA blind signature

In RSA, a public key (e, N) and private key (d, N) have the property

$$
x^{e d}=x \bmod N
$$

Bob (B) creates a blind signature of a message m for Alice (A):

Reminder: RSA blind signature

In RSA, a public key (e, N) and private key (d, N) have the property

$$
x^{e d}=x \bmod N
$$

Bob (B) creates a blind signature of a message m for Alice (A):
A: - chooses random integer b

Reminder: RSA blind signature

In RSA, a public key (e, N) and private key (d, N) have the property

$$
x^{e d}=x \bmod N
$$

Bob (B) creates a blind signature of a message m for Alice (A):
A: - chooses random integer b

- calculates $m^{\prime}:=m * b^{e}$
(blinding)

Reminder: RSA blind signature

In RSA, a public key (e, N) and private key (d, N) have the property

$$
x^{e d}=x \bmod N
$$

Bob (B) creates a blind signature of a message m for Alice (A):
A: - chooses random integer b

- calculates $m^{\prime}:=m * b^{e}$
(blinding)
- sends m^{\prime} to B.

Reminder: RSA blind signature

In RSA, a public key (e, N) and private key (d, N) have the property

$$
x^{e d}=x \bmod N
$$

Bob (B) creates a blind signature of a message m for Alice (A):
A: - chooses random integer b

- calculates $m^{\prime}:=m * b^{e}$
(blinding)
- sends m^{\prime} to B.

Reminder: RSA blind signature

In RSA, a public key (e, N) and private key (d, N) have the property

$$
x^{e d}=x \bmod N
$$

Bob (B) creates a blind signature of a message m for Alice (A):
A: - chooses random integer b

- calculates $m^{\prime}:=m * b^{e}$
- sends m^{\prime} to B.

B: - signs m^{\prime}, by calculating $\sigma^{\prime}:=\left(m^{\prime}\right)^{d} \bmod N(B$ doesn't learn $m)$

Reminder: RSA blind signature

In RSA, a public key (e, N) and private key (d, N) have the property

$$
x^{e d}=x \bmod N
$$

Bob (B) creates a blind signature of a message m for Alice (A):
A: - chooses random integer b

- calculates $m^{\prime}:=m * b^{e}$
- sends m^{\prime} to B.

B: - signs m^{\prime}, by calculating $\sigma^{\prime}:=\left(m^{\prime}\right)^{d} \bmod N(B$ doesn't learn $m)$

- sends σ^{\prime} to A .

Reminder: RSA blind signature

In RSA, a public key (e, N) and private key (d, N) have the property

$$
x^{e d}=x \bmod N
$$

Bob (B) creates a blind signature of a message m for Alice (A):
A: - chooses random integer b

- calculates $m^{\prime}:=m * b^{e}$
- sends m^{\prime} to B.

B: - signs m^{\prime}, by calculating $\sigma^{\prime}:=\left(m^{\prime}\right)^{d} \bmod N(B$ doesn't learn $m)$

- sends σ^{\prime} to A .

Note: $\left(m^{\prime}\right)^{d}=\left(m * b^{e}\right)^{d}=m^{d} * b^{e d}=m^{d} * b \bmod N$

Reminder: RSA blind signature

In RSA, a public key (e, N) and private key (d, N) have the property

$$
x^{e d}=x \bmod N
$$

Bob (B) creates a blind signature of a message m for Alice (A):
A: - chooses random integer b

- calculates $m^{\prime}:=m * b^{e}$
- sends m^{\prime} to B.

B: - signs m^{\prime}, by calculating $\sigma^{\prime}:=\left(m^{\prime}\right)^{d} \bmod N(B$ doesn't learn $m)$

- sends σ^{\prime} to A .

Note: $\left(m^{\prime}\right)^{d}=\left(m * b^{e}\right)^{d}=m^{d} * b^{e d}=m^{d} * b \bmod N$

Reminder: RSA blind signature

In RSA, a public key (e, N) and private key (d, N) have the property

$$
x^{e d}=x \bmod N
$$

Bob (B) creates a blind signature of a message m for Alice (A):
A: - chooses random integer b

- calculates $m^{\prime}:=m * b^{e}$
- sends m^{\prime} to B.

B: - signs m^{\prime}, by calculating $\sigma^{\prime}:=\left(m^{\prime}\right)^{d} \bmod N(B$ doesn't learn $m)$

- sends σ^{\prime} to A .

Note: $\left(m^{\prime}\right)^{d}=\left(m * b^{e}\right)^{d}=m^{d} * b^{e d}=m^{d} * b \bmod N$
A: - unblinds σ^{\prime} by calculating

$$
\sigma:=\sigma^{\prime} * b^{-1}\left(=m^{d}\right)
$$

Reminder: RSA blind signature

In RSA, a public key (e, N) and private key (d, N) have the property

$$
x^{e d}=x \bmod N
$$

Bob (B) creates a blind signature of a message m for Alice (A):
A: - chooses random integer b

- calculates $m^{\prime}:=m * b^{e}$
- sends m^{\prime} to B.

B: - signs m^{\prime}, by calculating $\sigma^{\prime}:=\left(m^{\prime}\right)^{d} \bmod N \quad(B$ doesn't learn $m)$

- sends σ^{\prime} to A .

Note: $\left(m^{\prime}\right)^{d}=\left(m * b^{e}\right)^{d}=m^{d} * b^{e d}=m^{d} * b \bmod N$
A: - unblinds σ^{\prime} by calculating

$$
\sigma:=\sigma^{\prime} * b^{-1}\left(=m^{d}\right)
$$

$\Longrightarrow \quad \sigma$ is a valid RSA signature to message m.

Instantiation with Edx25519

But... isn't ECDSA considered to be difficult to implement correctly?

Instantiation with Edx25519

But... isn't ECDSA considered to be difficult to implement correctly?

We also formally define another signature scheme, Edx25519:

- based on EdDSA (Bernstein et al.),
- generates compatible signatures,
- allows for key derivation from both, private and public keys, independently and
- is already in use in GNUnet.

Current implementation of age restriction in GNU Taler uses Edx25519.

Related Work

- Current privacy-perserving systems all based on attribute-based credentials (Koning et al., Schanzenbach et al., Camenisch et al., Au et al.)
- Attribute-based approach lacks support:
- Complex for consumers and retailers
- Requires trusted additional authority
- Other approaches tie age-restriction to ability to pay ("debit cards for kids")
- Advantage: mandatory to payment process
- Not privacy friendly

