
Are you old enough to buy this?
Zero-Knowledge Age Restriction for GNU Taler

Özgür Kesim
31 May 2024

Code Blau GmbH, FU Berlin, TU Dresden

Prolog

Sponsors

NGI Taler and NGI Pointer programs of
the European Commission

Project
Concrete Contracts in the
KMU-innovativ programm

Who am I

Özgür Kesim,

• security consultant for 20+ years,
• PhD candidate at FU Berlin,
• member of GNU Taler dev-team.

oec-taler@kesim.org @oec@mathstodon.xyz

oec-taler@kesim.org
@oec@mathstodon.xyz

What to expect

Deliverable
Present a solution to age restriction and its integration in GNU Taler.

Drive-By
Show concepts from cryptography by example:
Zero-Knowledge protocol, Security Game and Security Proof

Non-goals
Rigorous introduction into GNU Taler
Demos

What to expect

Deliverable
Present a solution to age restriction and its integration in GNU Taler.

Drive-By
Show concepts from cryptography by example:
Zero-Knowledge protocol, Security Game and Security Proof

Non-goals
Rigorous introduction into GNU Taler
Demos

What to expect

Deliverable
Present a solution to age restriction and its integration in GNU Taler.

Drive-By
Show concepts from cryptography by example:
Zero-Knowledge protocol, Security Game and Security Proof

Non-goals
Rigorous introduction into GNU Taler
Demos

Chapters

Introduction

The quest for a solution to age restriction

Integration with GNU Taler

Discussion & Conclusion

Chapters

Introduction

The quest for a solution to age restriction

Integration with GNU Taler

Discussion & Conclusion

Chapters

Introduction

The quest for a solution to age restriction

Integration with GNU Taler

Discussion & Conclusion

Chapters

Introduction

The quest for a solution to age restriction

Integration with GNU Taler

Discussion & Conclusion

Introduction
Age Restriction in E-commerce

Youth protection

Broad consensus in society about the necessity to protect minors
from harmful content.

Also wanted from policy makers:
11. Member states should encourage the use of con-
ditional access tools by content and service providers
in relation to content harmful to minors, such as age-
verification systems, ...

From the Recommendation Rec (2001) 8 of the Committee of Ministers to member states on self-regulation
concerning cyber content of the Council of Europe.

https://rm.coe.int/CoERMPublicCommonSearchServices/DisplayDCTMContent?documentId=0900001680645b44
https://rm.coe.int/CoERMPublicCommonSearchServices/DisplayDCTMContent?documentId=0900001680645b44

Age restriction in E-commerce

Problem:

Verification of minimum age requirements in e-commerce.

Common solutions:

Privacy Ext. authority

1. ID Verification

bad required

2. Restricted Accounts

bad required

3. Attribute-based

good required

Principle of subsidiarity is ignored

Age restriction in E-commerce

Problem:

Verification of minimum age requirements in e-commerce.

Common solutions:

Privacy Ext. authority

1. ID Verification

bad required

2. Restricted Accounts

bad required

3. Attribute-based

good required

Principle of subsidiarity is ignored

Age restriction in E-commerce

Problem:

Verification of minimum age requirements in e-commerce.

Common solutions:
Privacy

Ext. authority

1. ID Verification bad

required

2. Restricted Accounts bad

required

3. Attribute-based good

required

Principle of subsidiarity is ignored

Age restriction in E-commerce

Problem:

Verification of minimum age requirements in e-commerce.

Common solutions:
Privacy Ext. authority

1. ID Verification bad required

2. Restricted Accounts bad required

3. Attribute-based good required

Principle of subsidiarity is ignored

Age restriction in E-commerce

Problem:

Verification of minimum age requirements in e-commerce.

Common solutions:
Privacy Ext. authority

1. ID Verification bad required

2. Restricted Accounts bad required

3. Attribute-based good required

Principle of subsidiarity is ignored

Principle of Subsidiarity

Functions of government
—such as granting and restricting rights—

should be performed
at the lowest level of authority possible,

as long as they can be performed adequately.

For age-restriction, the lowest level of authority is:

Parents, guardians and caretakers

Principle of Subsidiarity

Functions of government
—such as granting and restricting rights—

should be performed
at the lowest level of authority possible,

as long as they can be performed adequately.

For age-restriction, the lowest level of authority is:

Parents, guardians and caretakers

Our goal

A design and implementation of an age restriction scheme
with the following properties:

1. It ties age restriction to the ability to pay (not to ID’s),
2. maintains the anonymity of buyers,
3. maintains unlinkability of transactions,
4. aligns with the principle of subsidiarity,
5. is practical and efficient.

Our goal

A design and implementation of an age restriction scheme
with the following properties:

1. It ties age restriction to the ability to pay (not to ID’s),

2. maintains the anonymity of buyers,
3. maintains unlinkability of transactions,
4. aligns with the principle of subsidiarity,
5. is practical and efficient.

Our goal

A design and implementation of an age restriction scheme
with the following properties:

1. It ties age restriction to the ability to pay (not to ID’s),
2. maintains the anonymity of buyers,

3. maintains unlinkability of transactions,
4. aligns with the principle of subsidiarity,
5. is practical and efficient.

Our goal

A design and implementation of an age restriction scheme
with the following properties:

1. It ties age restriction to the ability to pay (not to ID’s),
2. maintains the anonymity of buyers,
3. maintains unlinkability of transactions,

4. aligns with the principle of subsidiarity,
5. is practical and efficient.

Our goal

A design and implementation of an age restriction scheme
with the following properties:

1. It ties age restriction to the ability to pay (not to ID’s),
2. maintains the anonymity of buyers,
3. maintains unlinkability of transactions,
4. aligns with the principle of subsidiarity,

5. is practical and efficient.

Our goal

A design and implementation of an age restriction scheme
with the following properties:

1. It ties age restriction to the ability to pay (not to ID’s),
2. maintains the anonymity of buyers,
3. maintains unlinkability of transactions,
4. aligns with the principle of subsidiarity,
5. is practical and efficient.

Teaser

The quest for a solution to age
restriction
A journey through cryptic territory

Basic assumption and ideas

Assumption: Bank accounts are under control of adults/guardians.

Sketch of scheme, independent of payment service protocol:

1. Guardians commit to a maximum age

2. Minors attest their adequate age

3. Merchants verify the attestations

4. Minors derive age commitments from
existing ones

5. Exchanges compare the derived age
commitments

6. GOTO 2.

G

Commit

C
Attest

M

Verify

Derive

E

Compare

Basic assumption and ideas

Assumption: Bank accounts are under control of adults/guardians.

Sketch of scheme, independent of payment service protocol:

1. Guardians commit to a maximum age

2. Minors attest their adequate age

3. Merchants verify the attestations

4. Minors derive age commitments from
existing ones

5. Exchanges compare the derived age
commitments

6. GOTO 2.

G

Commit

C
Attest

M

Verify

Derive

E

Compare

Basic assumption and ideas

Assumption: Bank accounts are under control of adults/guardians.

Sketch of scheme, independent of payment service protocol:

1. Guardians commit to a maximum age

2. Minors attest their adequate age

3. Merchants verify the attestations

4. Minors derive age commitments from
existing ones

5. Exchanges compare the derived age
commitments

6. GOTO 2.

G

Commit

C

Attest
M

Verify

Derive

E

Compare

Basic assumption and ideas

Assumption: Bank accounts are under control of adults/guardians.

Sketch of scheme, independent of payment service protocol:

1. Guardians commit to a maximum age

2. Minors attest their adequate age

3. Merchants verify the attestations

4. Minors derive age commitments from
existing ones

5. Exchanges compare the derived age
commitments

6. GOTO 2.

G

Commit

C
Attest

M

Verify

Derive

E

Compare

Basic assumption and ideas

Assumption: Bank accounts are under control of adults/guardians.

Sketch of scheme, independent of payment service protocol:

1. Guardians commit to a maximum age

2. Minors attest their adequate age

3. Merchants verify the attestations

4. Minors derive age commitments from
existing ones

5. Exchanges compare the derived age
commitments

6. GOTO 2.

G

Commit

C
Attest

M

Verify

Derive

E

Compare

Basic assumption and ideas

Assumption: Bank accounts are under control of adults/guardians.

Sketch of scheme, independent of payment service protocol:

1. Guardians commit to a maximum age

2. Minors attest their adequate age

3. Merchants verify the attestations

4. Minors derive age commitments from
existing ones

5. Exchanges compare the derived age
commitments

6. GOTO 2.

G

Commit

C
Attest

M

Verify

Derive

E

Compare

Basic assumption and ideas

Assumption: Bank accounts are under control of adults/guardians.

Sketch of scheme, independent of payment service protocol:

1. Guardians commit to a maximum age

2. Minors attest their adequate age

3. Merchants verify the attestations

4. Minors derive age commitments from
existing ones

5. Exchanges compare the derived age
commitments

6. GOTO 2.

G

Commit

C
Attest

M

Verify

Derive

E

Compare

Basic assumption and ideas

Assumption: Bank accounts are under control of adults/guardians.

Sketch of scheme, independent of payment service protocol:

1. Guardians commit to a maximum age

2. Minors attest their adequate age

3. Merchants verify the attestations

4. Minors derive age commitments from
existing ones

5. Exchanges compare the derived age
commitments

6. GOTO 2.

G

Commit

C
Attest

M

Verify

Derive

E

Compare

Basic assumption and ideas

Assumption: Bank accounts are under control of adults/guardians.

Sketch of scheme, independent of payment service protocol:

1. Guardians commit to a maximum age

2. Minors attest their adequate age

3. Merchants verify the attestations

4. Minors derive age commitments from
existing ones

5. Exchanges compare the derived age
commitments

6. GOTO 2.

G

Commit

C
Attest

M

Verify

Derive

E

Compare

Basic assumption and ideas

Assumption: Bank accounts are under control of adults/guardians.

Sketch of scheme, independent of payment service protocol:

1. Guardians commit to a maximum age

2. Minors attest their adequate age

3. Merchants verify the attestations

4. Minors derive age commitments from
existing ones

5. Exchanges compare the derived age
commitments

6. GOTO 2.

G

Commit

C
Attest

M

Verify

Derive

E

Compare

Helpful figure - Commit

1: b5bb9d
2: 801fa0
3: 19d8de
4: 52f23c

b5bb9d
1

1

801fa0
2

2

19d8de
3

3

52f23c
4

key ID's

age
groups

Helpful figure - Attest and Verify

Contract
...

Age group: 3

Attestation:

19d8de
3

1: b5bb9d
2: 801fa0
3: 19d8de
4: 52f23c

Helpful figure - Derive and Compare

ea0cc4

1

1

b5bb9d
2e3f00

2

2

801fa0
045bdc

3

3

19d8de
2c4f29

4
52f23c

1: ea0cc4
2: 2e3f00
3: 045bdc
4: 2c4f29

1: b5bb9d
2: 801fa0
3: 19d8de
4: 52f23c

b5bb9d
1

1

801fa0
2

2

19d8de
3

3

52f23c
4

Helpful figure

Commit:

1: b5bb9d
2: 801fa0
3: 19d8de
4: 52f23c

b5bb9d
1

1

801fa0
2

2

19d8de
3

3

52f23c
4

key ID's

age
groups

Attest and Verify:

Contract
...

Age group: 3

Attestation:

19d8de
3

1: b5bb9d
2: 801fa0
3: 19d8de
4: 52f23c

Derive and Compare:

ea0cc4

1

1

b5bb9d
2e3f00

2

2

801fa0
045bdc

3

3

19d8de
2c4f29

4
52f23c

1: ea0cc4
2: 2e3f00
3: 045bdc
4: 2c4f29

1: b5bb9d
2: 801fa0
3: 19d8de
4: 52f23c

b5bb9d
1

1

801fa0
2

2

19d8de
3

3

52f23c
4

Specification of the Function Signatures

Searching for functions

with the following signatures

Commit

: (a, ω) 7→ (Q,P) NM×Ω→O×P,

Attest

: (m,P) 7→ T NM×P→T∪{⊥},

Verify

: (m,Q,T) 7→ b NM×O×T→Z2,

Derive

: (Q,P, ω) 7→ (Q′,P′, β) O×P×Ω→O×P×B,

Compare

: (Q,Q′, β) 7→ b O×O×B→Z2,

with Ω,P,O,T,B sufficiently large sets.

We will define basic and security requirements later.

Mnemonics:
O = cOmmitments, Q = Q-mitment (commitment), P = Proofs, P = Proof,
T = aTtestations, T = aTtestation, B = Blindings, β = βlinding.

Specification of the Function Signatures

Searching for functions with the following signatures

Commit : (a, ω) 7→ (Q,P) NM×Ω→O×P,

Attest

: (m,P) 7→ T NM×P→T∪{⊥},

Verify

: (m,Q,T) 7→ b NM×O×T→Z2,

Derive

: (Q,P, ω) 7→ (Q′,P′, β) O×P×Ω→O×P×B,

Compare

: (Q,Q′, β) 7→ b O×O×B→Z2,

with Ω,P,O,T,B sufficiently large sets.

We will define basic and security requirements later.

Mnemonics:
O = cOmmitments, Q = Q-mitment (commitment), P = Proofs,

P = Proof,
T = aTtestations, T = aTtestation, B = Blindings, β = βlinding.

Specification of the Function Signatures

Searching for functions with the following signatures

Commit : (a, ω) 7→ (Q,P) NM×Ω→O×P,

Attest : (m,P) 7→ T NM×P→T∪{⊥},

Verify

: (m,Q,T) 7→ b NM×O×T→Z2,

Derive

: (Q,P, ω) 7→ (Q′,P′, β) O×P×Ω→O×P×B,

Compare

: (Q,Q′, β) 7→ b O×O×B→Z2,

with Ω,P,O,T,B sufficiently large sets.

We will define basic and security requirements later.

Mnemonics:
O = cOmmitments, Q = Q-mitment (commitment), P = Proofs, P = Proof,
T = aTtestations, T = aTtestation,

B = Blindings, β = βlinding.

Specification of the Function Signatures

Searching for functions with the following signatures

Commit : (a, ω) 7→ (Q,P) NM×Ω→O×P,

Attest : (m,P) 7→ T NM×P→T∪{⊥},

Verify : (m,Q,T) 7→ b NM×O×T→Z2,

Derive

: (Q,P, ω) 7→ (Q′,P′, β) O×P×Ω→O×P×B,

Compare

: (Q,Q′, β) 7→ b O×O×B→Z2,

with Ω,P,O,T,B sufficiently large sets.

We will define basic and security requirements later.

Mnemonics:
O = cOmmitments, Q = Q-mitment (commitment), P = Proofs, P = Proof,
T = aTtestations, T = aTtestation,

B = Blindings, β = βlinding.

Specification of the Function Signatures

Searching for functions with the following signatures

Commit : (a, ω) 7→ (Q,P) NM×Ω→O×P,

Attest : (m,P) 7→ T NM×P→T∪{⊥},

Verify : (m,Q,T) 7→ b NM×O×T→Z2,

Derive : (Q,P, ω) 7→ (Q′,P′, β) O×P×Ω→O×P×B,

Compare

: (Q,Q′, β) 7→ b O×O×B→Z2,

with Ω,P,O,T,B sufficiently large sets.

We will define basic and security requirements later.

Mnemonics:
O = cOmmitments, Q = Q-mitment (commitment), P = Proofs, P = Proof,
T = aTtestations, T = aTtestation, B = Blindings, β = βlinding.

Specification of the Function Signatures

Searching for functions with the following signatures

Commit : (a, ω) 7→ (Q,P) NM×Ω→O×P,

Attest : (m,P) 7→ T NM×P→T∪{⊥},

Verify : (m,Q,T) 7→ b NM×O×T→Z2,

Derive : (Q,P, ω) 7→ (Q′,P′, β) O×P×Ω→O×P×B,

Compare : (Q,Q′, β) 7→ b O×O×B→Z2,

with Ω,P,O,T,B sufficiently large sets.

We will define basic and security requirements later.

Mnemonics:
O = cOmmitments, Q = Q-mitment (commitment), P = Proofs, P = Proof,
T = aTtestations, T = aTtestation, B = Blindings, β = βlinding.

Specification of the Function Signatures

Searching for functions with the following signatures

Commit : (a, ω) 7→ (Q,P) NM×Ω→O×P,

Attest : (m,P) 7→ T NM×P→T∪{⊥},

Verify : (m,Q,T) 7→ b NM×O×T→Z2,

Derive : (Q,P, ω) 7→ (Q′,P′, β) O×P×Ω→O×P×B,

Compare : (Q,Q′, β) 7→ b O×O×B→Z2,

with Ω,P,O,T,B sufficiently large sets.

We will define basic and security requirements later.

Mnemonics:
O = cOmmitments, Q = Q-mitment (commitment), P = Proofs, P = Proof,
T = aTtestations, T = aTtestation, B = Blindings, β = βlinding.

Specification of the Function Signatures

Searching for functions with the following signatures

Commit : (a, ω) 7→ (Q,P) NM×Ω→O×P,

Attest : (m,P) 7→ T NM×P→T∪{⊥},

Verify : (m,Q,T) 7→ b NM×O×T→Z2,

Derive : (Q,P, ω) 7→ (Q′,P′, β) O×P×Ω→O×P×B,

Compare : (Q,Q′, β) 7→ b O×O×B→Z2,

with Ω,P,O,T,B sufficiently large sets.

We will define basic and security requirements later.

Mnemonics:
O = cOmmitments, Q = Q-mitment (commitment), P = Proofs, P = Proof,
T = aTtestations, T = aTtestation, B = Blindings, β = βlinding.

Naïve scheme

G

C

E

M

Commit

Attest

Verify

Derive

Compare

(Q, Pa)
(m, Q, T)

(Q
, Q
′ , β

)

Problem of unlinkability

E

C

Derive()

Compare()

(Q
i,

Q i+
1)

Simple use of Derive() and Compare() is problematic.

• Calling Derive() iteratively generates sequence
(Q0,Q1, . . .) of commitments.

• Exchange calls Compare(Qi,Qi+1, .)

=⇒ Exchange identifies sequence
=⇒ Unlinkability broken

Problem of unlinkability

E

C

Derive()

Compare()

(Q
i,

Q i+
1)

Simple use of Derive() and Compare() is problematic.
• Calling Derive() iteratively generates sequence

(Q0,Q1, . . .) of commitments.

• Exchange calls Compare(Qi,Qi+1, .)

=⇒ Exchange identifies sequence
=⇒ Unlinkability broken

Problem of unlinkability

E

C

Derive()

Compare()

(Q
i,

Q i+
1)

Simple use of Derive() and Compare() is problematic.
• Calling Derive() iteratively generates sequence

(Q0,Q1, . . .) of commitments.
• Exchange calls Compare(Qi,Qi+1, .)

=⇒ Exchange identifies sequence
=⇒ Unlinkability broken

Problem of unlinkability

E

C

Derive()

Compare()

(Q
i,

Q i+
1)

Simple use of Derive() and Compare() is problematic.
• Calling Derive() iteratively generates sequence

(Q0,Q1, . . .) of commitments.
• Exchange calls Compare(Qi,Qi+1, .)

=⇒ Exchange identifies sequence

=⇒ Unlinkability broken

Problem of unlinkability

E

C

Derive()

Compare()

(Q
i,

Q i+
1)

Simple use of Derive() and Compare() is problematic.
• Calling Derive() iteratively generates sequence

(Q0,Q1, . . .) of commitments.
• Exchange calls Compare(Qi,Qi+1, .)

=⇒ Exchange identifies sequence
=⇒ Unlinkability broken

Achieving Unlinkability

Given Derive() and Compare(), define the cut&choose protocol
DeriveCompareκ as follows (sketch):

Let κ ∈ N (say: κ = 3)

C: 1. generates (Q1, . . . ,Qκ) and (β1, . . . , βκ) from
Q0 by calling κ times Derive(Q0,P0, ωi)

2. calculates
h0 := H (H(Q1, β1) ∥ · · · ∥ H(Qκ, βκ))

3. sends Q0 and h0 to E

E: 4. saves Q0 and h0 and sends C random
γ ∈ {1, . . . , κ}

C: 5. reveals hγ := H(Qγ , βγ) and all (Qi, βi), except
(Qγ , βγ)

E: 6. compares h0 and
H (H(Q1, β1) ∥ ... ∥ hγ ∥ ... ∥ H(Qκ, βκ))

7. evaluates Compare(Q0,Qi, βi) for all i ̸= γ.

If all steps succeed, Qγ is the new commitment.

Achieving Unlinkability

Given Derive() and Compare(), define the cut&choose protocol
DeriveCompareκ as follows (sketch):

Let κ ∈ N (say: κ = 3)

C: 1. generates (Q1, . . . ,Qκ) and (β1, . . . , βκ) from
Q0 by calling κ times Derive(Q0,P0, ωi)

2. calculates
h0 := H (H(Q1, β1) ∥ · · · ∥ H(Qκ, βκ))

3. sends Q0 and h0 to E

E: 4. saves Q0 and h0 and sends C random
γ ∈ {1, . . . , κ}

C: 5. reveals hγ := H(Qγ , βγ) and all (Qi, βi), except
(Qγ , βγ)

E: 6. compares h0 and
H (H(Q1, β1) ∥ ... ∥ hγ ∥ ... ∥ H(Qκ, βκ))

7. evaluates Compare(Q0,Qi, βi) for all i ̸= γ.

If all steps succeed, Qγ is the new commitment.

Achieving Unlinkability

Given Derive() and Compare(), define the cut&choose protocol
DeriveCompareκ as follows (sketch):

Let κ ∈ N (say: κ = 3)

C: 1. generates (Q1, . . . ,Qκ) and (β1, . . . , βκ) from
Q0 by calling κ times Derive(Q0,P0, ωi)

2. calculates
h0 := H (H(Q1, β1) ∥ · · · ∥ H(Qκ, βκ))

3. sends Q0 and h0 to E

E: 4. saves Q0 and h0 and sends C random
γ ∈ {1, . . . , κ}

C: 5. reveals hγ := H(Qγ , βγ) and all (Qi, βi), except
(Qγ , βγ)

E: 6. compares h0 and
H (H(Q1, β1) ∥ ... ∥ hγ ∥ ... ∥ H(Qκ, βκ))

7. evaluates Compare(Q0,Qi, βi) for all i ̸= γ.

If all steps succeed, Qγ is the new commitment.

Achieving Unlinkability

Given Derive() and Compare(), define the cut&choose protocol
DeriveCompareκ as follows (sketch):

Let κ ∈ N (say: κ = 3)
C: 1. generates (Q1, . . . ,Qκ) and (β1, . . . , βκ) from

Q0 by calling κ times Derive(Q0,P0, ωi)

2. calculates
h0 := H (H(Q1, β1) ∥ · · · ∥ H(Qκ, βκ))

3. sends Q0 and h0 to E

E: 4. saves Q0 and h0 and sends C random
γ ∈ {1, . . . , κ}

C: 5. reveals hγ := H(Qγ , βγ) and all (Qi, βi), except
(Qγ , βγ)

E: 6. compares h0 and
H (H(Q1, β1) ∥ ... ∥ hγ ∥ ... ∥ H(Qκ, βκ))

7. evaluates Compare(Q0,Qi, βi) for all i ̸= γ.

If all steps succeed, Qγ is the new commitment.

Achieving Unlinkability

Given Derive() and Compare(), define the cut&choose protocol
DeriveCompareκ as follows (sketch):

Let κ ∈ N (say: κ = 3)
C: 1. generates (Q1, . . . ,Qκ) and (β1, . . . , βκ) from

Q0 by calling κ times Derive(Q0,P0, ωi)
2. calculates

h0 := H (H(Q1, β1) ∥ · · · ∥ H(Qκ, βκ))

3. sends Q0 and h0 to E

E: 4. saves Q0 and h0 and sends C random
γ ∈ {1, . . . , κ}

C: 5. reveals hγ := H(Qγ , βγ) and all (Qi, βi), except
(Qγ , βγ)

E: 6. compares h0 and
H (H(Q1, β1) ∥ ... ∥ hγ ∥ ... ∥ H(Qκ, βκ))

7. evaluates Compare(Q0,Qi, βi) for all i ̸= γ.

If all steps succeed, Qγ is the new commitment.

Achieving Unlinkability

Given Derive() and Compare(), define the cut&choose protocol
DeriveCompareκ as follows (sketch):

Let κ ∈ N (say: κ = 3)
C: 1. generates (Q1, . . . ,Qκ) and (β1, . . . , βκ) from

Q0 by calling κ times Derive(Q0,P0, ωi)
2. calculates

h0 := H (H(Q1, β1) ∥ · · · ∥ H(Qκ, βκ))

3. sends Q0 and h0 to E

E: 4. saves Q0 and h0 and sends C random
γ ∈ {1, . . . , κ}

C: 5. reveals hγ := H(Qγ , βγ) and all (Qi, βi), except
(Qγ , βγ)

E: 6. compares h0 and
H (H(Q1, β1) ∥ ... ∥ hγ ∥ ... ∥ H(Qκ, βκ))

7. evaluates Compare(Q0,Qi, βi) for all i ̸= γ.

If all steps succeed, Qγ is the new commitment.

Achieving Unlinkability

Given Derive() and Compare(), define the cut&choose protocol
DeriveCompareκ as follows (sketch):

Let κ ∈ N (say: κ = 3)
C: 1. generates (Q1, . . . ,Qκ) and (β1, . . . , βκ) from

Q0 by calling κ times Derive(Q0,P0, ωi)
2. calculates

h0 := H (H(Q1, β1) ∥ · · · ∥ H(Qκ, βκ))

3. sends Q0 and h0 to E

E: 4. saves Q0 and h0 and sends C random
γ ∈ {1, . . . , κ}

C: 5. reveals hγ := H(Qγ , βγ) and all (Qi, βi), except
(Qγ , βγ)

E: 6. compares h0 and
H (H(Q1, β1) ∥ ... ∥ hγ ∥ ... ∥ H(Qκ, βκ))

7. evaluates Compare(Q0,Qi, βi) for all i ̸= γ.

If all steps succeed, Qγ is the new commitment.

Achieving Unlinkability

Given Derive() and Compare(), define the cut&choose protocol
DeriveCompareκ as follows (sketch):

Let κ ∈ N (say: κ = 3)
C: 1. generates (Q1, . . . ,Qκ) and (β1, . . . , βκ) from

Q0 by calling κ times Derive(Q0,P0, ωi)
2. calculates

h0 := H (H(Q1, β1) ∥ · · · ∥ H(Qκ, βκ))

3. sends Q0 and h0 to E

E: 4. saves Q0 and h0 and sends C random
γ ∈ {1, . . . , κ}

C: 5. reveals hγ := H(Qγ , βγ) and all (Qi, βi), except
(Qγ , βγ)

E: 6. compares h0 and
H (H(Q1, β1) ∥ ... ∥ hγ ∥ ... ∥ H(Qκ, βκ))

7. evaluates Compare(Q0,Qi, βi) for all i ̸= γ.

If all steps succeed, Qγ is the new commitment.

Achieving Unlinkability

Given Derive() and Compare(), define the cut&choose protocol
DeriveCompareκ as follows (sketch):

Let κ ∈ N (say: κ = 3)
C: 1. generates (Q1, . . . ,Qκ) and (β1, . . . , βκ) from

Q0 by calling κ times Derive(Q0,P0, ωi)
2. calculates

h0 := H (H(Q1, β1) ∥ · · · ∥ H(Qκ, βκ))

3. sends Q0 and h0 to E

E: 4. saves Q0 and h0 and sends C random
γ ∈ {1, . . . , κ}

C: 5. reveals hγ := H(Qγ , βγ) and all (Qi, βi), except
(Qγ , βγ)

E: 6. compares h0 and
H (H(Q1, β1) ∥ ... ∥ hγ ∥ ... ∥ H(Qκ, βκ))

7. evaluates Compare(Q0,Qi, βi) for all i ̸= γ.

If all steps succeed, Qγ is the new commitment.

Achieving Unlinkability

Given Derive() and Compare(), define the cut&choose protocol
DeriveCompareκ as follows (sketch):

Let κ ∈ N (say: κ = 3)
C: 1. generates (Q1, . . . ,Qκ) and (β1, . . . , βκ) from

Q0 by calling κ times Derive(Q0,P0, ωi)
2. calculates

h0 := H (H(Q1, β1) ∥ · · · ∥ H(Qκ, βκ))

3. sends Q0 and h0 to E

E: 4. saves Q0 and h0 and sends C random
γ ∈ {1, . . . , κ}

C: 5. reveals hγ := H(Qγ , βγ) and all (Qi, βi), except
(Qγ , βγ)

E: 6. compares h0 and
H (H(Q1, β1) ∥ ... ∥ hγ ∥ ... ∥ H(Qκ, βκ))

7. evaluates Compare(Q0,Qi, βi) for all i ̸= γ.

If all steps succeed, Qγ is the new commitment.

Achieving Unlinkability

Given Derive() and Compare(), define the cut&choose protocol
DeriveCompareκ as follows (sketch):

Let κ ∈ N (say: κ = 3)
C: 1. generates (Q1, . . . ,Qκ) and (β1, . . . , βκ) from

Q0 by calling κ times Derive(Q0,P0, ωi)
2. calculates

h0 := H (H(Q1, β1) ∥ · · · ∥ H(Qκ, βκ))

3. sends Q0 and h0 to E

E: 4. saves Q0 and h0 and sends C random
γ ∈ {1, . . . , κ}

C: 5. reveals hγ := H(Qγ , βγ) and all (Qi, βi), except
(Qγ , βγ)

E: 6. compares h0 and
H (H(Q1, β1) ∥ ... ∥ hγ ∥ ... ∥ H(Qκ, βκ))

7. evaluates Compare(Q0,Qi, βi) for all i ̸= γ.
If all steps succeed, Qγ is the new commitment.

Achieving Unlinkability

Given Derive() and Compare(), define the cut&choose protocol
DeriveCompareκ as follows (sketch):

Let κ ∈ N (say: κ = 3)
C: 1. generates (Q1, . . . ,Qκ) and (β1, . . . , βκ) from

Q0 by calling κ times Derive(Q0,P0, ωi)
2. calculates

h0 := H (H(Q1, β1) ∥ · · · ∥ H(Qκ, βκ))

3. sends Q0 and h0 to E

E: 4. saves Q0 and h0 and sends C random
γ ∈ {1, . . . , κ}

C: 5. reveals hγ := H(Qγ , βγ) and all (Qi, βi), except
(Qγ , βγ)

E: 6. compares h0 and
H (H(Q1, β1) ∥ ... ∥ hγ ∥ ... ∥ H(Qκ, βκ))

7. evaluates Compare(Q0,Qi, βi) for all i ̸= γ.
If all steps succeed, Qγ is the new commitment.

Achieving Unlinkability

Given Derive() and Compare(), define the cut&choose protocol
DeriveCompareκ as follows (sketch):

Let κ ∈ N (say: κ = 3)
C: 1. generates (Q1, . . . ,Qκ) and (β1, . . . , βκ) from

Q0 by calling κ times Derive(Q0,P0, ωi)
2. calculates

h0 := H (H(Q1, β1) ∥ · · · ∥ H(Qκ, βκ))

3. sends Q0 and h0 to E

E: 4. saves Q0 and h0 and sends C random
γ ∈ {1, . . . , κ}

C: 5. reveals hγ := H(Qγ , βγ) and all (Qi, βi), except
(Qγ , βγ)

E: 6. compares h0 and
H (H(Q1, β1) ∥ ... ∥ hγ ∥ ... ∥ H(Qκ, βκ))

7. evaluates Compare(Q0,Qi, βi) for all i ̸= γ.

If all steps succeed, Qγ is the new commitment.

Achieving Unlinkability

Given Derive() and Compare(), define the cut&choose protocol
DeriveCompareκ as follows (sketch):

Let κ ∈ N (say: κ = 3)
C: 1. generates (Q1, . . . ,Qκ) and (β1, . . . , βκ) from

Q0 by calling κ times Derive(Q0,P0, ωi)
2. calculates

h0 := H (H(Q1, β1) ∥ · · · ∥ H(Qκ, βκ))

3. sends Q0 and h0 to E

E: 4. saves Q0 and h0 and sends C random
γ ∈ {1, . . . , κ}

C: 5. reveals hγ := H(Qγ , βγ) and all (Qi, βi), except
(Qγ , βγ)

E: 6. compares h0 and
H (H(Q1, β1) ∥ ... ∥ hγ ∥ ... ∥ H(Qκ, βκ))

7. evaluates Compare(Q0,Qi, βi) for all i ̸= γ.

If all steps succeed, Qγ is the new commitment.

Achieving Unlinkability

Given Derive() and Compare(), define the cut&choose protocol
DeriveCompareκ as follows (sketch):

Let κ ∈ N (say: κ = 3)
C: 1. generates (Q1, . . . ,Qκ) and (β1, . . . , βκ) from

Q0 by calling κ times Derive(Q0,P0, ωi)
2. calculates

h0 := H (H(Q1, β1) ∥ · · · ∥ H(Qκ, βκ))

3. sends Q0 and h0 to E

E: 4. saves Q0 and h0 and sends C random
γ ∈ {1, . . . , κ}

C: 5. reveals hγ := H(Qγ , βγ) and all (Qi, βi), except
(Qγ , βγ)

E: 6. compares h0 and
H (H(Q1, β1) ∥ ... ∥ hγ ∥ ... ∥ H(Qκ, βκ))

7. evaluates Compare(Q0,Qi, βi) for all i ̸= γ.
If all steps succeed, Qγ is the new commitment.

Achieving Unlinkability

With DeriveCompareκ

• E learns nothing about Qγ or H(Qγ),
• trusts outcome with κ−1

κ certainty,
• i.e. C has 1

κ chance to cheat.

=⇒ Gives us unlinkability at the price of (adjustable)
uncertainty!

Notes:

• similar to the cut&choose refresh protocol in GNU Taler
• still need to define Derive() and Compare().

Achieving Unlinkability

With DeriveCompareκ

• E learns nothing about Qγ or H(Qγ),
• trusts outcome with κ−1

κ certainty,
• i.e. C has 1

κ chance to cheat.
=⇒ Gives us unlinkability at the price of (adjustable)

uncertainty!

Notes:

• similar to the cut&choose refresh protocol in GNU Taler
• still need to define Derive() and Compare().

Achieving Unlinkability

With DeriveCompareκ

• E learns nothing about Qγ or H(Qγ),
• trusts outcome with κ−1

κ certainty,
• i.e. C has 1

κ chance to cheat.
=⇒ Gives us unlinkability at the price of (adjustable)

uncertainty!

Notes:

• similar to the cut&choose refresh protocol in GNU Taler
• still need to define Derive() and Compare().

Refined scheme

G

C M

E

Commit(a)

(Q, P
a)

Attest(m,Pa)

(Tm,Q)

Verify(m,Q,Tm)

Q
7→

Q γ

De
riv

eC
om

pa
re κ

Refined scheme

G

C M

ECommit(a)

(Q, P
a)

Attest(m,Pa)

(Tm,Q)

Verify(m,Q,Tm)

Q
7→

Q γ

De
riv

eC
om

pa
re κ

Refined scheme

G

C M

ECommit(a)

(Q, P
a)

Attest(m,Pa)

(Tm,Q)

Verify(m,Q,Tm)

Q
7→

Q γ

De
riv

eC
om

pa
re κ

Refined scheme

G

C M

E

Commit(a)

(Q, P
a)

Attest(m,Pa)

(Tm,Q)

Verify(m,Q,Tm)

Q
7→

Q γ

De
riv

eC
om

pa
re κ

Refined scheme

G

C M

E

Commit(a)

(Q, P
a)

Attest(m,Pa)

(Tm,Q)

Verify(m,Q,Tm)

Q
7→

Q γ

De
riv

eC
om

pa
re κ

Refined scheme

G

C M

E

Commit(a)

(Q, P
a)

Attest(m,Pa)

(Tm,Q)

Verify(m,Q,Tm)

Q
7→

Q γ

De
riv

eC
om

pa
re κ

Refined scheme

G

C M

E

Commit(a)

(Q, P
a)

Attest(m,Pa)

(Tm,Q)

Verify(m,Q,Tm)

Q
7→

Q γ

De
riv

eC
om

pa
re κ

Refined scheme

G

C M

ECommit(a)

(Q, P
a)

Attest(m,Pa)

(Tm,Q)

Verify(m,Q,Tm)

Q
7→

Q γ

De
riv

eC
om

pa
re κ

Sensible solutions

Quest for functions should lead to sensible solutions.

F. e. Verify() should not simply always return true.

We need more requirements.

Sensible solutions

Quest for functions should lead to sensible solutions.

F. e. Verify() should not simply always return true.

We need more requirements.

Sensible solutions

Quest for functions should lead to sensible solutions.

F. e. Verify() should not simply always return true.

We need more requirements.

Requirements

Basic Requirements

Candidate functions

(Commit,Attest,Verify,Derive,Compare)

must meet basic requirements:

• Existence of attestations
• Efficacy of attestations
• Derivability of commitments and attestations

More details in the published paper and Appendix.

Basic Requirements

Candidate functions

(Commit,Attest,Verify,Derive,Compare)

must meet basic requirements:

• Existence of attestations
• Efficacy of attestations
• Derivability of commitments and attestations

More details in the published paper and Appendix.

Security Requirements

Candidate functions must also meet security requirements, defined
via security games:

Requirement: Unforgeability of minimum age
↔ Game: Forging an attestation

Requirement: Non-disclosure of age
↔ Game: Age disclosure by commitment or attestation

Requirement: Unlinkability of commitments and attestations
↔ Game: Distinguishing derived commitments and attestations

Meeting the security requirements means that adversaries can win
those games only with negligible advantage.

Adversaries are arbitrary polynomial-time algorithms, acting on all
relevant input.

Security Requirements

Candidate functions must also meet security requirements, defined
via security games:

Requirement: Unforgeability of minimum age

↔ Game: Forging an attestation

Requirement: Non-disclosure of age
↔ Game: Age disclosure by commitment or attestation

Requirement: Unlinkability of commitments and attestations
↔ Game: Distinguishing derived commitments and attestations

Meeting the security requirements means that adversaries can win
those games only with negligible advantage.

Adversaries are arbitrary polynomial-time algorithms, acting on all
relevant input.

Security Requirements

Candidate functions must also meet security requirements, defined
via security games:

Requirement: Unforgeability of minimum age
↔ Game: Forging an attestation

Requirement: Non-disclosure of age
↔ Game: Age disclosure by commitment or attestation

Requirement: Unlinkability of commitments and attestations
↔ Game: Distinguishing derived commitments and attestations

Meeting the security requirements means that adversaries can win
those games only with negligible advantage.

Adversaries are arbitrary polynomial-time algorithms, acting on all
relevant input.

Security Requirements

Candidate functions must also meet security requirements, defined
via security games:

Requirement: Unforgeability of minimum age
↔ Game: Forging an attestation

Requirement: Non-disclosure of age

↔ Game: Age disclosure by commitment or attestation

Requirement: Unlinkability of commitments and attestations
↔ Game: Distinguishing derived commitments and attestations

Meeting the security requirements means that adversaries can win
those games only with negligible advantage.

Adversaries are arbitrary polynomial-time algorithms, acting on all
relevant input.

Security Requirements

Candidate functions must also meet security requirements, defined
via security games:

Requirement: Unforgeability of minimum age
↔ Game: Forging an attestation

Requirement: Non-disclosure of age
↔ Game: Age disclosure by commitment or attestation

Requirement: Unlinkability of commitments and attestations
↔ Game: Distinguishing derived commitments and attestations

Meeting the security requirements means that adversaries can win
those games only with negligible advantage.

Adversaries are arbitrary polynomial-time algorithms, acting on all
relevant input.

Security Requirements

Candidate functions must also meet security requirements, defined
via security games:

Requirement: Unforgeability of minimum age
↔ Game: Forging an attestation

Requirement: Non-disclosure of age
↔ Game: Age disclosure by commitment or attestation

Requirement: Unlinkability of commitments and attestations

↔ Game: Distinguishing derived commitments and attestations

Meeting the security requirements means that adversaries can win
those games only with negligible advantage.

Adversaries are arbitrary polynomial-time algorithms, acting on all
relevant input.

Security Requirements

Candidate functions must also meet security requirements, defined
via security games:

Requirement: Unforgeability of minimum age
↔ Game: Forging an attestation

Requirement: Non-disclosure of age
↔ Game: Age disclosure by commitment or attestation

Requirement: Unlinkability of commitments and attestations
↔ Game: Distinguishing derived commitments and attestations

Meeting the security requirements means that adversaries can win
those games only with negligible advantage.

Adversaries are arbitrary polynomial-time algorithms, acting on all
relevant input.

Security Requirements

Candidate functions must also meet security requirements, defined
via security games:

Requirement: Unforgeability of minimum age
↔ Game: Forging an attestation

Requirement: Non-disclosure of age
↔ Game: Age disclosure by commitment or attestation

Requirement: Unlinkability of commitments and attestations
↔ Game: Distinguishing derived commitments and attestations

Meeting the security requirements means that adversaries can win
those games only with negligible advantage.

Adversaries are arbitrary polynomial-time algorithms, acting on all
relevant input.

Security Requirements

Candidate functions must also meet security requirements, defined
via security games:

Requirement: Unforgeability of minimum age
↔ Game: Forging an attestation

Requirement: Non-disclosure of age
↔ Game: Age disclosure by commitment or attestation

Requirement: Unlinkability of commitments and attestations
↔ Game: Distinguishing derived commitments and attestations

Meeting the security requirements means that adversaries can win
those games only with negligible advantage.

Adversaries are arbitrary polynomial-time algorithms, acting on all
relevant input.

Security Requirements
Simplified Example

Game GFA
A : Forging an attest

1. (a, ω) $←− NM−1 × Ω

2. (Q,P)← Commit(a, ω)
3. (m,T)← A(a,Q,P)
4. Return 0 if m ≤ a
5. Return Verify(m,Q,T)

Adversary A wins the game, if GFA
A returns 1.

Requirement: Unforgeability of minimum age

∀
A∈A(NM×O×P→NM×T)

: Pr
[
GFA
A = 1

]
≤ ϵ

Security Requirements
Simplified Example

Game GFA
A : Forging an attest

1. (a, ω) $←− NM−1 × Ω

2. (Q,P)← Commit(a, ω)
3. (m,T)← A(a,Q,P)
4. Return 0 if m ≤ a
5. Return Verify(m,Q,T)

Adversary A wins the game, if GFA
A returns 1.

Requirement: Unforgeability of minimum age

∀
A∈A(NM×O×P→NM×T)

: Pr
[
GFA
A = 1

]
≤ ϵ

Security Requirements
Simplified Example

Game GFA
A : Forging an attest

1. (a, ω) $←− NM−1 × Ω

2. (Q,P)← Commit(a, ω)

3. (m,T)← A(a,Q,P)
4. Return 0 if m ≤ a
5. Return Verify(m,Q,T)

Adversary A wins the game, if GFA
A returns 1.

Requirement: Unforgeability of minimum age

∀
A∈A(NM×O×P→NM×T)

: Pr
[
GFA
A = 1

]
≤ ϵ

Security Requirements
Simplified Example

Game GFA
A : Forging an attest

1. (a, ω) $←− NM−1 × Ω

2. (Q,P)← Commit(a, ω)
3. (m,T)← A(a,Q,P)

4. Return 0 if m ≤ a
5. Return Verify(m,Q,T)

Adversary A wins the game, if GFA
A returns 1.

Requirement: Unforgeability of minimum age

∀
A∈A(NM×O×P→NM×T)

: Pr
[
GFA
A = 1

]
≤ ϵ

Security Requirements
Simplified Example

Game GFA
A : Forging an attest

1. (a, ω) $←− NM−1 × Ω

2. (Q,P)← Commit(a, ω)
3. (m,T)← A(a,Q,P)
4. Return 0 if m ≤ a

5. Return Verify(m,Q,T)

Adversary A wins the game, if GFA
A returns 1.

Requirement: Unforgeability of minimum age

∀
A∈A(NM×O×P→NM×T)

: Pr
[
GFA
A = 1

]
≤ ϵ

Security Requirements
Simplified Example

Game GFA
A : Forging an attest

1. (a, ω) $←− NM−1 × Ω

2. (Q,P)← Commit(a, ω)
3. (m,T)← A(a,Q,P)
4. Return 0 if m ≤ a
5. Return Verify(m,Q,T)

Adversary A wins the game, if GFA
A returns 1.

Requirement: Unforgeability of minimum age

∀
A∈A(NM×O×P→NM×T)

: Pr
[
GFA
A = 1

]
≤ ϵ

Security Requirements
Simplified Example

Game GFA
A : Forging an attest

1. (a, ω) $←− NM−1 × Ω

2. (Q,P)← Commit(a, ω)
3. (m,T)← A(a,Q,P)
4. Return 0 if m ≤ a
5. Return Verify(m,Q,T)

Adversary A wins the game, if GFA
A returns 1.

Requirement: Unforgeability of minimum age

∀
A∈A(NM×O×P→NM×T)

: Pr
[
GFA
A = 1

]
≤ ϵ

Security Requirements
Simplified Example

Game GFA
A : Forging an attest

1. (a, ω) $←− NM−1 × Ω

2. (Q,P)← Commit(a, ω)
3. (m,T)← A(a,Q,P)
4. Return 0 if m ≤ a
5. Return Verify(m,Q,T)

Adversary A wins the game, if GFA
A returns 1.

Requirement: Unforgeability of minimum age

∀
A∈A(NM×O×P→NM×T)

: Pr
[
GFA
A = 1

]
≤ ϵ

Our task

Finding functions

(Commit,Attest,Verify,Derive,Compare)

that meet the basic and security requirements.

A solution to our quest

Instantiation with ECDSA

We propose a solution based on ECDSA.

Think: One key-pair per age group.

Definition of Commit with ECDSA

1: b5bb9d
2: 801fa0
3: 19d8de
4: 52f23c

b5bb9d
1

1

801fa0
2

2

19d8de
3

3

52f23c
4

key ID's

age
groups

To Commit to age group a ∈ {1, . . . ,M}
1. Guardian generates ECDSA-keypairs, one per age

group:

〈(q1, p1), . . . , (qM, pM)〉

2. Guardian then drops all private keys pi for i > a:⟨
(q1, p1), . . . , (qa, pa), (qa+1,⊥), . . . , (qM,⊥)

⟩
then set

Commitment: Q⃗ := (q1, , qM)

Proof: P⃗a := (p1, . . . , pa,⊥, . . . ,⊥)

3. Guardian gives child 〈Q⃗, P⃗a〉

Definition of Commit with ECDSA

1: b5bb9d
2: 801fa0
3: 19d8de
4: 52f23c

b5bb9d
1

1

801fa0
2

2

19d8de
3

3

52f23c
4

key ID's

age
groups

To Commit to age group a ∈ {1, . . . ,M}
1. Guardian generates ECDSA-keypairs, one per age

group:

〈(q1, p1), . . . , (qM, pM)〉

2. Guardian then drops all private keys pi for i > a:⟨
(q1, p1), . . . , (qa, pa), (qa+1,⊥), . . . , (qM,⊥)

⟩

then set

Commitment: Q⃗ := (q1, , qM)

Proof: P⃗a := (p1, . . . , pa,⊥, . . . ,⊥)

3. Guardian gives child 〈Q⃗, P⃗a〉

Definition of Commit with ECDSA

1: b5bb9d
2: 801fa0
3: 19d8de
4: 52f23c

b5bb9d
1

1

801fa0
2

2

19d8de
3

3

52f23c
4

key ID's

age
groups

To Commit to age group a ∈ {1, . . . ,M}
1. Guardian generates ECDSA-keypairs, one per age

group:

〈(q1, p1), . . . , (qM, pM)〉

2. Guardian then drops all private keys pi for i > a:⟨
(q1, p1), . . . , (qa, pa), (qa+1,⊥), . . . , (qM,⊥)

⟩
then set

Commitment: Q⃗ := (q1, , qM)

Proof: P⃗a := (p1, . . . , pa,⊥, . . . ,⊥)
3. Guardian gives child 〈Q⃗, P⃗a〉

Definition of Commit with ECDSA

1: b5bb9d
2: 801fa0
3: 19d8de
4: 52f23c

b5bb9d
1

1

801fa0
2

2

19d8de
3

3

52f23c
4

key ID's

age
groups

To Commit to age group a ∈ {1, . . . ,M}
1. Guardian generates ECDSA-keypairs, one per age

group:

〈(q1, p1), . . . , (qM, pM)〉

2. Guardian then drops all private keys pi for i > a:⟨
(q1, p1), . . . , (qa, pa), (qa+1,⊥), . . . , (qM,⊥)

⟩
then set
Commitment: Q⃗ := (q1, , qM)

Proof: P⃗a := (p1, . . . , pa,⊥, . . . ,⊥)
3. Guardian gives child 〈Q⃗, P⃗a〉

Definition of Commit with ECDSA

1: b5bb9d
2: 801fa0
3: 19d8de
4: 52f23c

b5bb9d
1

1

801fa0
2

2

19d8de
3

3

52f23c
4

key ID's

age
groups

To Commit to age group a ∈ {1, . . . ,M}
1. Guardian generates ECDSA-keypairs, one per age

group:

〈(q1, p1), . . . , (qM, pM)〉

2. Guardian then drops all private keys pi for i > a:⟨
(q1, p1), . . . , (qa, pa), (qa+1,⊥), . . . , (qM,⊥)

⟩
then set
Commitment: Q⃗ := (q1, , qM)

Proof: P⃗a := (p1, . . . , pa,⊥, . . . ,⊥)

3. Guardian gives child 〈Q⃗, P⃗a〉

Definition of Commit with ECDSA

1: b5bb9d
2: 801fa0
3: 19d8de
4: 52f23c

b5bb9d
1

1

801fa0
2

2

19d8de
3

3

52f23c
4

key ID's

age
groups

To Commit to age group a ∈ {1, . . . ,M}
1. Guardian generates ECDSA-keypairs, one per age

group:

〈(q1, p1), . . . , (qM, pM)〉

2. Guardian then drops all private keys pi for i > a:⟨
(q1, p1), . . . , (qa, pa), (qa+1,⊥), . . . , (qM,⊥)

⟩
then set
Commitment: Q⃗ := (q1, , qM)

Proof: P⃗a := (p1, . . . , pa,⊥, . . . ,⊥)
3. Guardian gives child 〈Q⃗, P⃗a〉

Attest and Verify with ECDSA

1: b5bb9d
2: 801fa0
3: 19d8de
4: 52f23c

b5bb9d
1

1

801fa0
2

2

19d8de
3

3

52f23c
4

key ID's

age
groups

Contract
...

Age group: 3

Attestation:

19d8de
3

1: b5bb9d
2: 801fa0
3: 19d8de
4: 52f23c

Child has

• ordered public-keys Q⃗ = (q1, , qM),

• (some) private-keys P⃗ = (p1, . . . , pa,⊥, . . . ,⊥).

To Attest a minimum age (group) m ≤ a:
Sign a message with ECDSA using private key pm.
The signature σm is the attestation.

Merchant gets

• ordered public-keys Q⃗ = (q1, . . . , qM)

• Signature σm

To Verify a minimum age (group) m:
Verify the ECDSA-Signature σm with public key qm.

Attest and Verify with ECDSA

1: b5bb9d
2: 801fa0
3: 19d8de
4: 52f23c

b5bb9d
1

1

801fa0
2

2

19d8de
3

3

52f23c
4

key ID's

age
groups

Contract
...

Age group: 3

Attestation:

19d8de
3

1: b5bb9d
2: 801fa0
3: 19d8de
4: 52f23c

Child has

• ordered public-keys Q⃗ = (q1, , qM),

• (some) private-keys P⃗ = (p1, . . . , pa,⊥, . . . ,⊥).

To Attest a minimum age (group) m ≤ a:
Sign a message with ECDSA using private key pm.
The signature σm is the attestation.

Merchant gets

• ordered public-keys Q⃗ = (q1, . . . , qM)

• Signature σm

To Verify a minimum age (group) m:
Verify the ECDSA-Signature σm with public key qm.

Attest and Verify with ECDSA

1: b5bb9d
2: 801fa0
3: 19d8de
4: 52f23c

b5bb9d
1

1

801fa0
2

2

19d8de
3

3

52f23c
4

key ID's

age
groups

Contract
...

Age group: 3

Attestation:

19d8de
3

1: b5bb9d
2: 801fa0
3: 19d8de
4: 52f23c

Child has

• ordered public-keys Q⃗ = (q1, , qM),

• (some) private-keys P⃗ = (p1, . . . , pa,⊥, . . . ,⊥).

To Attest a minimum age (group) m ≤ a:
Sign a message with ECDSA using private key pm.
The signature σm is the attestation.

Merchant gets

• ordered public-keys Q⃗ = (q1, . . . , qM)

• Signature σm

To Verify a minimum age (group) m:
Verify the ECDSA-Signature σm with public key qm.

Attest and Verify with ECDSA

1: b5bb9d
2: 801fa0
3: 19d8de
4: 52f23c

b5bb9d
1

1

801fa0
2

2

19d8de
3

3

52f23c
4

key ID's

age
groups

Contract
...

Age group: 3

Attestation:

19d8de
3

1: b5bb9d
2: 801fa0
3: 19d8de
4: 52f23c

Child has

• ordered public-keys Q⃗ = (q1, , qM),

• (some) private-keys P⃗ = (p1, . . . , pa,⊥, . . . ,⊥).

To Attest a minimum age (group) m ≤ a:
Sign a message with ECDSA using private key pm.
The signature σm is the attestation.

Merchant gets

• ordered public-keys Q⃗ = (q1, . . . , qM)

• Signature σm

To Verify a minimum age (group) m:
Verify the ECDSA-Signature σm with public key qm.

Reminder: Derive and Compare

ea0cc4

1

1

b5bb9d
2e3f00

2

2

801fa0
045bdc

3

3

19d8de
2c4f29

4
52f23c

1: ea0cc4
2: 2e3f00
3: 045bdc
4: 2c4f29

1: b5bb9d
2: 801fa0
3: 19d8de
4: 52f23c

b5bb9d
1

1

801fa0
2

2

19d8de
3

3

52f23c
4

Derive and Compare with ECDSA

Child has Q⃗ = (q1, . . . , qM) and P⃗ = (p1, . . . , pa,⊥, . . . ,⊥).

To Derive new Q⃗′ and P⃗′: Choose random β ∈ Zg and calculate

Q⃗′ =
(
q′

1, , q′
M
)

:=
(
β ∗ q1, , β ∗ qM

)
,

P⃗′ =
(
p′

1, . . . , p′
a,⊥, . . . ,⊥

)
:=

(
βp1, . . . , βpa,⊥, . . . ,⊥

)

Note:
• β ∗ qi is scalar multiplication on the elliptic curve.
• p′

i ∗ G = (βpi) ∗ G = β ∗ (pi ∗ G) = β ∗ qi = q′
i

=⇒ p′
i actually is private key to q′

i

Exchange gets Q⃗ = (q1, . . . , qM), Q⃗′ = (q′1, . . . , q′M) and β

To Compare, calculate: (β ∗ q1, . . . , β ∗ qM)
?
= (q′

1, . . . , q′
M)

Derive and Compare with ECDSA

Child has Q⃗ = (q1, . . . , qM) and P⃗ = (p1, . . . , pa,⊥, . . . ,⊥).

To Derive new Q⃗′ and P⃗′: Choose random β ∈ Zg and calculate

Q⃗′ =
(
q′

1, , q′
M
)

:=
(
β ∗ q1, , β ∗ qM

)
,

P⃗′ =
(
p′

1, . . . , p′
a,⊥, . . . ,⊥

)
:=

(
βp1, . . . , βpa,⊥, . . . ,⊥

)

Note:
• β ∗ qi is scalar multiplication on the elliptic curve.
• p′

i ∗ G = (βpi) ∗ G = β ∗ (pi ∗ G) = β ∗ qi = q′
i

=⇒ p′
i actually is private key to q′

i

Exchange gets Q⃗ = (q1, . . . , qM), Q⃗′ = (q′1, . . . , q′M) and β

To Compare, calculate: (β ∗ q1, . . . , β ∗ qM)
?
= (q′

1, . . . , q′
M)

Derive and Compare with ECDSA

Child has Q⃗ = (q1, . . . , qM) and P⃗ = (p1, . . . , pa,⊥, . . . ,⊥).

To Derive new Q⃗′ and P⃗′: Choose random β ∈ Zg and calculate

Q⃗′ =
(
q′

1, , q′
M
)

:=
(
β ∗ q1, , β ∗ qM

)
,

P⃗′ =
(
p′

1, . . . , p′
a,⊥, . . . ,⊥

)
:=

(
βp1, . . . , βpa,⊥, . . . ,⊥

)
Note:
• β ∗ qi is scalar multiplication on the elliptic curve.
• p′

i ∗ G = (βpi) ∗ G = β ∗ (pi ∗ G) = β ∗ qi = q′
i

=⇒ p′
i actually is private key to q′

i

Exchange gets Q⃗ = (q1, . . . , qM), Q⃗′ = (q′1, . . . , q′M) and β

To Compare, calculate: (β ∗ q1, . . . , β ∗ qM)
?
= (q′

1, . . . , q′
M)

Derive and Compare with ECDSA

Child has Q⃗ = (q1, . . . , qM) and P⃗ = (p1, . . . , pa,⊥, . . . ,⊥).

To Derive new Q⃗′ and P⃗′: Choose random β ∈ Zg and calculate

Q⃗′ =
(
q′

1, , q′
M
)

:=
(
β ∗ q1, , β ∗ qM

)
,

P⃗′ =
(
p′

1, . . . , p′
a,⊥, . . . ,⊥

)
:=

(
βp1, . . . , βpa,⊥, . . . ,⊥

)
Note:
• β ∗ qi is scalar multiplication on the elliptic curve.
• p′

i ∗ G = (βpi) ∗ G = β ∗ (pi ∗ G) = β ∗ qi = q′
i

=⇒ p′
i actually is private key to q′

i

Exchange gets Q⃗ = (q1, . . . , qM), Q⃗′ = (q′1, . . . , q′M) and β

To Compare, calculate: (β ∗ q1, . . . , β ∗ qM)
?
= (q′

1, . . . , q′
M)

Instantiation with ECDSA

Functions (Commit, Attest, Verify, Derive, Compare)
as defined in the instantiation with ECDSA

• meet the basic requirements,

• also meet all security requirements.

Security proofs by reduction, details are in the paper.

Example: Proof of Unforgeability

Game GFA
A : Forging an attest

1. (a, ω)
$←− NM−1 × Ω

2. (Q, P)← Commit(a, ω)

3. (m, T)← A(a, Q, P)
4. Return 0 if m ≤ a
5. Return Verify(m, Q, T)

Requirement:

∀
A

: Pr
[
GFA
A = 1

]
≤ ϵ

Proof by reduction:

1. Adversary wins if 1 = Verify(m,Q,T).

2. That means: σ was a valid ECDSA-signature,
validated with qm.

3. But adversary does not have the private key
pm to qm.

=⇒ So winning this game would require to
existentially forge the signature, which is
negligible.

Example: Proof of Unforgeability

Game GFA
A : Forging an attest

1. (a, ω)
$←− NM−1 × Ω

2. (Q, P)← Commit(a, ω)

3. (m, T)← A(a, Q, P)
4. Return 0 if m ≤ a
5. Return Verify(m, Q, T)

Requirement:

∀
A

: Pr
[
GFA
A = 1

]
≤ ϵ

Proof by reduction:
1. Adversary wins if 1 = Verify(m,Q,T).

2. That means: σ was a valid ECDSA-signature,
validated with qm.

3. But adversary does not have the private key
pm to qm.

=⇒ So winning this game would require to
existentially forge the signature, which is
negligible.

Example: Proof of Unforgeability

Game GFA
A : Forging an attest

1. (a, ω)
$←− NM−1 × Ω

2. (Q, P)← Commit(a, ω)

3. (m, T)← A(a, Q, P)
4. Return 0 if m ≤ a
5. Return Verify(m, Q, T)

Requirement:

∀
A

: Pr
[
GFA
A = 1

]
≤ ϵ

Proof by reduction:
1. Adversary wins if 1 = Verify(m,Q,T).

2. That means: σ was a valid ECDSA-signature,
validated with qm.

3. But adversary does not have the private key
pm to qm.

=⇒ So winning this game would require to
existentially forge the signature, which is
negligible.

Example: Proof of Unforgeability

Game GFA
A : Forging an attest

1. (a, ω)
$←− NM−1 × Ω

2. (Q, P)← Commit(a, ω)

3. (m, T)← A(a, Q, P)
4. Return 0 if m ≤ a
5. Return Verify(m, Q, T)

Requirement:

∀
A

: Pr
[
GFA
A = 1

]
≤ ϵ

Proof by reduction:
1. Adversary wins if 1 = Verify(m,Q,T).

2. That means: σ was a valid ECDSA-signature,
validated with qm.

3. But adversary does not have the private key
pm to qm.

=⇒ So winning this game would require to
existentially forge the signature, which is
negligible.

Example: Proof of Unforgeability

Game GFA
A : Forging an attest

1. (a, ω)
$←− NM−1 × Ω

2. (Q, P)← Commit(a, ω)

3. (m, T)← A(a, Q, P)
4. Return 0 if m ≤ a
5. Return Verify(m, Q, T)

Requirement:

∀
A

: Pr
[
GFA
A = 1

]
≤ ϵ

Proof by reduction:
1. Adversary wins if 1 = Verify(m,Q,T).

2. That means: σ was a valid ECDSA-signature,
validated with qm.

3. But adversary does not have the private key
pm to qm.

=⇒ So winning this game would require to
existentially forge the signature, which is
negligible.

Integration with GNU Taler

GNU Taler
https://www.taler.net

E

C M

with
dr

aw
ref

res
h

purchase

deposit

• Protocol suite for online payment services
• Based on Chaum’s blind signatures
• Taxable, efficient, free software
• Allows for change and refund
• Privacy preserving: anonymous and

unlinkable payments

• Coins are public-/private key-pairs (Cp, cs).
• Exchange blindly signs H(Cp) with denomination key dp:

β(σp) = BlindSign
(
β (H(Cp)) , dp

)
• Verification:

1 ?
= SigCheck

(
H(Cp),Dp, σp

)
(Dp = public key of denomination and σp = signature)

GNU Taler
https://www.taler.net

E

C M

with
dr

aw
ref

res
h

purchase

deposit

• Protocol suite for online payment services
• Based on Chaum’s blind signatures
• Taxable, efficient, free software
• Allows for change and refund
• Privacy preserving: anonymous and

unlinkable payments
• Coins are public-/private key-pairs (Cp, cs).
• Exchange blindly signs H(Cp) with denomination key dp:

β(σp) = BlindSign
(
β (H(Cp)) , dp

)
• Verification:

1 ?
= SigCheck

(
H(Cp),Dp, σp

)
(Dp = public key of denomination and σp = signature)

Integration with GNU Taler
Binding age restriction to coins

To bind an age commitment Q to a coin Cp, instead of blindly
signing H(Cp)

β(σp) = BlindSign
(
β (H(Cp)) , dp

)
E now blindly signs H(Cp ‖ H(Q))

β(σp) = BlindSign
(
β (H(Cp ‖ H(Q))) , dp

)
Therefore, verfication of a coin now requires H(Q), too:

1 ?
= SigCheck

(
H (Cp ‖ H(Q)) ,Dp, σp

)

Integration with GNU Taler
Integrated schemes

C

E

M

G

withdraw, using

H(Cp∥ H(Q
))

ref
res

h
+

De
riv

eC
om

pa
re κ

purchase + (Tm,Q)

deposit +
H
(Q

)

Commit(a)

(Q, P
a)

Attest(m,Q,Pa) Verify(m,Q,Tm)

Age restriction in the wallet

Discussion & Conclusion

Discussion
Technical aspects and challenges

• Our solution can in principle be used with any token-based
payment scheme

However, GNU Taler best aligned with our design goals
(security, privacy and efficiency).

• Subsidiarity requires bank accounts being owned by adults.
However, scheme can be adapted

• Know-Your-Customer (KYC) provides age information
• Parents can set age on a long-term wallet of a child
• cut&choose protocol age-withdraw implemented

Discussion
Technical aspects and challenges

• Our solution can in principle be used with any token-based
payment scheme
However, GNU Taler best aligned with our design goals
(security, privacy and efficiency).

• Subsidiarity requires bank accounts being owned by adults.
However, scheme can be adapted

• Know-Your-Customer (KYC) provides age information
• Parents can set age on a long-term wallet of a child
• cut&choose protocol age-withdraw implemented

Discussion
Technical aspects and challenges

• Our solution can in principle be used with any token-based
payment scheme
However, GNU Taler best aligned with our design goals
(security, privacy and efficiency).

• Subsidiarity requires bank accounts being owned by adults.

However, scheme can be adapted

• Know-Your-Customer (KYC) provides age information
• Parents can set age on a long-term wallet of a child
• cut&choose protocol age-withdraw implemented

Discussion
Technical aspects and challenges

• Our solution can in principle be used with any token-based
payment scheme
However, GNU Taler best aligned with our design goals
(security, privacy and efficiency).

• Subsidiarity requires bank accounts being owned by adults.
However, scheme can be adapted

• Know-Your-Customer (KYC) provides age information
• Parents can set age on a long-term wallet of a child
• cut&choose protocol age-withdraw implemented

Discussion
Technical aspects and challenges

• Our solution can in principle be used with any token-based
payment scheme
However, GNU Taler best aligned with our design goals
(security, privacy and efficiency).

• Subsidiarity requires bank accounts being owned by adults.
However, scheme can be adapted

• Know-Your-Customer (KYC) provides age information

• Parents can set age on a long-term wallet of a child
• cut&choose protocol age-withdraw implemented

Discussion
Technical aspects and challenges

• Our solution can in principle be used with any token-based
payment scheme
However, GNU Taler best aligned with our design goals
(security, privacy and efficiency).

• Subsidiarity requires bank accounts being owned by adults.
However, scheme can be adapted

• Know-Your-Customer (KYC) provides age information
• Parents can set age on a long-term wallet of a child

• cut&choose protocol age-withdraw implemented

Discussion
Technical aspects and challenges

• Our solution can in principle be used with any token-based
payment scheme
However, GNU Taler best aligned with our design goals
(security, privacy and efficiency).

• Subsidiarity requires bank accounts being owned by adults.
However, scheme can be adapted

• Know-Your-Customer (KYC) provides age information
• Parents can set age on a long-term wallet of a child
• cut&choose protocol age-withdraw implemented

Discussion
Legal aspects and applicability

• The scheme only makes sense when cheating can be
discouraged, f.e. economically

• There will be limits where the scheme is considered
acceptable.

• Our scheme offers an alternative to identity management
systems (IMS), where applicable

Discussion
Legal aspects and applicability

• The scheme only makes sense when cheating can be
discouraged, f.e. economically

• There will be limits where the scheme is considered
acceptable.

• Our scheme offers an alternative to identity management
systems (IMS), where applicable

Discussion
Legal aspects and applicability

• The scheme only makes sense when cheating can be
discouraged, f.e. economically

• There will be limits where the scheme is considered
acceptable.

• Our scheme offers an alternative to identity management
systems (IMS), where applicable

Discussion
Potential for misuse

• Instead of age groups, couldn’t the scheme encode arbitrary
semantics?

• Yes, but implementation in GNU Taler only allows for
arithmetic comparison.

• Note that augmented coin material (coin + age commitment)
remains fungible.

• Problem of tainting already exists with denomitations keys:
• They could be used to seperate the anonymity set of users.

• GNU Taler defines the role of an Auditor:
• a seperate entity to supervise the operation of the exchange.

Discussion
Potential for misuse

• Instead of age groups, couldn’t the scheme encode arbitrary
semantics?

• Yes, but implementation in GNU Taler only allows for
arithmetic comparison.

• Note that augmented coin material (coin + age commitment)
remains fungible.

• Problem of tainting already exists with denomitations keys:
• They could be used to seperate the anonymity set of users.

• GNU Taler defines the role of an Auditor:
• a seperate entity to supervise the operation of the exchange.

Discussion
Potential for misuse

• Instead of age groups, couldn’t the scheme encode arbitrary
semantics?

• Yes, but implementation in GNU Taler only allows for
arithmetic comparison.

• Note that augmented coin material (coin + age commitment)
remains fungible.

• Problem of tainting already exists with denomitations keys:
• They could be used to seperate the anonymity set of users.

• GNU Taler defines the role of an Auditor:
• a seperate entity to supervise the operation of the exchange.

Discussion
Potential for misuse

• Instead of age groups, couldn’t the scheme encode arbitrary
semantics?

• Yes, but implementation in GNU Taler only allows for
arithmetic comparison.

• Note that augmented coin material (coin + age commitment)
remains fungible.

• Problem of tainting already exists with denomitations keys:

• They could be used to seperate the anonymity set of users.

• GNU Taler defines the role of an Auditor:
• a seperate entity to supervise the operation of the exchange.

Discussion
Potential for misuse

• Instead of age groups, couldn’t the scheme encode arbitrary
semantics?

• Yes, but implementation in GNU Taler only allows for
arithmetic comparison.

• Note that augmented coin material (coin + age commitment)
remains fungible.

• Problem of tainting already exists with denomitations keys:
• They could be used to seperate the anonymity set of users.

• GNU Taler defines the role of an Auditor:
• a seperate entity to supervise the operation of the exchange.

Discussion
Potential for misuse

• Instead of age groups, couldn’t the scheme encode arbitrary
semantics?

• Yes, but implementation in GNU Taler only allows for
arithmetic comparison.

• Note that augmented coin material (coin + age commitment)
remains fungible.

• Problem of tainting already exists with denomitations keys:
• They could be used to seperate the anonymity set of users.

• GNU Taler defines the role of an Auditor:

• a seperate entity to supervise the operation of the exchange.

Discussion
Potential for misuse

• Instead of age groups, couldn’t the scheme encode arbitrary
semantics?

• Yes, but implementation in GNU Taler only allows for
arithmetic comparison.

• Note that augmented coin material (coin + age commitment)
remains fungible.

• Problem of tainting already exists with denomitations keys:
• They could be used to seperate the anonymity set of users.

• GNU Taler defines the role of an Auditor:
• a seperate entity to supervise the operation of the exchange.

Conclusion

Age restriction is a technical, ethical and legal challenge.

Existing solutions are

• without strong protection of privacy or
• based on identity management systems (IMS)

Our scheme offers an option that

• aligns with subsidiarity
• preserves privacy
• is efficient
• and an alternative to IMS

Conclusion

Age restriction is a technical, ethical and legal challenge.

Existing solutions are

• without strong protection of privacy or
• based on identity management systems (IMS)

Our scheme offers an option that

• aligns with subsidiarity
• preserves privacy
• is efficient
• and an alternative to IMS

Conclusion

Age restriction is a technical, ethical and legal challenge.

Existing solutions are

• without strong protection of privacy or
• based on identity management systems (IMS)

Our scheme offers an option that

• aligns with subsidiarity
• preserves privacy
• is efficient
• and an alternative to IMS

Thank you!
Questions?

oec-taler@kesim.org
@oec@mathstodon.xyz

Interested in GNU Taler?
Intro: https://taler.net

Learn: https://docs.taler.net
Develop: https://git.taler.net, https://bugs.taler.net
Connect: https://ich.taler.net

NGI Taler: https://ngi.taler.net

https://taler.net
https://docs.taler.net
https://git.taler.net
https://bugs.taler.net
https://ich.taler.net
https://ngi.taler.net

Taler Overview

Basic Requirements - Details

back to Basic Requirements

Existence of attestations

∀
a∈NM
ω∈Ω

: Commit(a, ω) =: (Q,P) =⇒ Attest(m,Q,P) =
{

T ∈ T, if m ≤ a
⊥ otherwise

Efficacy of attestations

Verify(m,Q,T) =


1, if ∃

P∈P
: Attest(m,Q,P) = T

0 otherwise

∀n≤a : Verify
(
n,Q,Attest(n,Q,P)

)
= 1.

...
Derivability of commitments and attestations ...

More details in the published paper.

Basic Requirements - Details

back to Basic Requirements

Existence of attestations

∀
a∈NM
ω∈Ω

: Commit(a, ω) =: (Q,P) =⇒ Attest(m,Q,P) =
{

T ∈ T, if m ≤ a
⊥ otherwise

Efficacy of attestations

Verify(m,Q,T) =


1, if ∃

P∈P
: Attest(m,Q,P) = T

0 otherwise

∀n≤a : Verify
(
n,Q,Attest(n,Q,P)

)
= 1.

...

Derivability of commitments and attestations ...

More details in the published paper.

Basic Requirements - Details

back to Basic Requirements

Existence of attestations

∀
a∈NM
ω∈Ω

: Commit(a, ω) =: (Q,P) =⇒ Attest(m,Q,P) =
{

T ∈ T, if m ≤ a
⊥ otherwise

Efficacy of attestations

Verify(m,Q,T) =


1, if ∃

P∈P
: Attest(m,Q,P) = T

0 otherwise

∀n≤a : Verify
(
n,Q,Attest(n,Q,P)

)
= 1.

...
Derivability of commitments and attestations ...

More details in the published paper.

Basic Requirements - Details

back to Basic Requirements

Existence of attestations

∀
a∈NM
ω∈Ω

: Commit(a, ω) =: (Q,P) =⇒ Attest(m,Q,P) =
{

T ∈ T, if m ≤ a
⊥ otherwise

Efficacy of attestations

Verify(m,Q,T) =


1, if ∃

P∈P
: Attest(m,Q,P) = T

0 otherwise

∀n≤a : Verify
(
n,Q,Attest(n,Q,P)

)
= 1.

...
Derivability of commitments and attestations ...

More details in the published paper.

Basic Requirements - Details

back to Basic Requirements

Existence of attestations

∀
a∈NM
ω∈Ω

: Commit(a, ω) =: (Q,P) =⇒ Attest(m,Q,P) =
{

T ∈ T, if m ≤ a
⊥ otherwise

Efficacy of attestations

Verify(m,Q,T) =


1, if ∃

P∈P
: Attest(m,Q,P) = T

0 otherwise

∀n≤a : Verify
(
n,Q,Attest(n,Q,P)

)
= 1.

...
Derivability of commitments and attestations ...

More details in the published paper.

Reminder: RSA blind signature

In RSA, a public key (e,N) and private key (d,N) have the property

xed = x mod N

Bob (B) creates a blind signature of a message m for Alice (A):

A: • chooses random integer b
• calculates m′ := m ∗ be (blinding)
• sends m′ to B.

B: • signs m′, by calculating σ′ := (m′)d mod N (B doesn’t learn m)
• sends σ′ to A.

Note: (m′)d = (m ∗ be)d = md ∗ bed = md ∗ b mod N

A: • unblinds σ′ by calculating

σ := σ′ ∗ b−1(= md)

=⇒ σ is a valid RSA signature to message m.

back to taler or binding

Reminder: RSA blind signature

In RSA, a public key (e,N) and private key (d,N) have the property

xed = x mod N

Bob (B) creates a blind signature of a message m for Alice (A):

A: • chooses random integer b
• calculates m′ := m ∗ be (blinding)
• sends m′ to B.

B: • signs m′, by calculating σ′ := (m′)d mod N (B doesn’t learn m)
• sends σ′ to A.

Note: (m′)d = (m ∗ be)d = md ∗ bed = md ∗ b mod N

A: • unblinds σ′ by calculating

σ := σ′ ∗ b−1(= md)

=⇒ σ is a valid RSA signature to message m.

back to taler or binding

Reminder: RSA blind signature

In RSA, a public key (e,N) and private key (d,N) have the property

xed = x mod N

Bob (B) creates a blind signature of a message m for Alice (A):

A: • chooses random integer b

• calculates m′ := m ∗ be (blinding)
• sends m′ to B.

B: • signs m′, by calculating σ′ := (m′)d mod N (B doesn’t learn m)
• sends σ′ to A.

Note: (m′)d = (m ∗ be)d = md ∗ bed = md ∗ b mod N

A: • unblinds σ′ by calculating

σ := σ′ ∗ b−1(= md)

=⇒ σ is a valid RSA signature to message m.

back to taler or binding

Reminder: RSA blind signature

In RSA, a public key (e,N) and private key (d,N) have the property

xed = x mod N

Bob (B) creates a blind signature of a message m for Alice (A):

A: • chooses random integer b
• calculates m′ := m ∗ be (blinding)

• sends m′ to B.

B: • signs m′, by calculating σ′ := (m′)d mod N (B doesn’t learn m)
• sends σ′ to A.

Note: (m′)d = (m ∗ be)d = md ∗ bed = md ∗ b mod N

A: • unblinds σ′ by calculating

σ := σ′ ∗ b−1(= md)

=⇒ σ is a valid RSA signature to message m.

back to taler or binding

Reminder: RSA blind signature

In RSA, a public key (e,N) and private key (d,N) have the property

xed = x mod N

Bob (B) creates a blind signature of a message m for Alice (A):

A: • chooses random integer b
• calculates m′ := m ∗ be (blinding)
• sends m′ to B.

B: • signs m′, by calculating σ′ := (m′)d mod N (B doesn’t learn m)
• sends σ′ to A.

Note: (m′)d = (m ∗ be)d = md ∗ bed = md ∗ b mod N

A: • unblinds σ′ by calculating

σ := σ′ ∗ b−1(= md)

=⇒ σ is a valid RSA signature to message m.

back to taler or binding

Reminder: RSA blind signature

In RSA, a public key (e,N) and private key (d,N) have the property

xed = x mod N

Bob (B) creates a blind signature of a message m for Alice (A):

A: • chooses random integer b
• calculates m′ := m ∗ be (blinding)
• sends m′ to B.

B: • signs m′, by calculating σ′ := (m′)d mod N (B doesn’t learn m)
• sends σ′ to A.

Note: (m′)d = (m ∗ be)d = md ∗ bed = md ∗ b mod N

A: • unblinds σ′ by calculating

σ := σ′ ∗ b−1(= md)

=⇒ σ is a valid RSA signature to message m.

back to taler or binding

Reminder: RSA blind signature

In RSA, a public key (e,N) and private key (d,N) have the property

xed = x mod N

Bob (B) creates a blind signature of a message m for Alice (A):

A: • chooses random integer b
• calculates m′ := m ∗ be (blinding)
• sends m′ to B.

B: • signs m′, by calculating σ′ := (m′)d mod N (B doesn’t learn m)

• sends σ′ to A.
Note: (m′)d = (m ∗ be)d = md ∗ bed = md ∗ b mod N

A: • unblinds σ′ by calculating

σ := σ′ ∗ b−1(= md)

=⇒ σ is a valid RSA signature to message m.

back to taler or binding

Reminder: RSA blind signature

In RSA, a public key (e,N) and private key (d,N) have the property

xed = x mod N

Bob (B) creates a blind signature of a message m for Alice (A):

A: • chooses random integer b
• calculates m′ := m ∗ be (blinding)
• sends m′ to B.

B: • signs m′, by calculating σ′ := (m′)d mod N (B doesn’t learn m)
• sends σ′ to A.

Note: (m′)d = (m ∗ be)d = md ∗ bed = md ∗ b mod N

A: • unblinds σ′ by calculating

σ := σ′ ∗ b−1(= md)

=⇒ σ is a valid RSA signature to message m.

back to taler or binding

Reminder: RSA blind signature

In RSA, a public key (e,N) and private key (d,N) have the property

xed = x mod N

Bob (B) creates a blind signature of a message m for Alice (A):

A: • chooses random integer b
• calculates m′ := m ∗ be (blinding)
• sends m′ to B.

B: • signs m′, by calculating σ′ := (m′)d mod N (B doesn’t learn m)
• sends σ′ to A.

Note: (m′)d = (m ∗ be)d = md ∗ bed = md ∗ b mod N

A: • unblinds σ′ by calculating

σ := σ′ ∗ b−1(= md)

=⇒ σ is a valid RSA signature to message m.

back to taler or binding

Reminder: RSA blind signature

In RSA, a public key (e,N) and private key (d,N) have the property

xed = x mod N

Bob (B) creates a blind signature of a message m for Alice (A):

A: • chooses random integer b
• calculates m′ := m ∗ be (blinding)
• sends m′ to B.

B: • signs m′, by calculating σ′ := (m′)d mod N (B doesn’t learn m)
• sends σ′ to A.

Note: (m′)d = (m ∗ be)d = md ∗ bed = md ∗ b mod N

A: • unblinds σ′ by calculating

σ := σ′ ∗ b−1(= md)

=⇒ σ is a valid RSA signature to message m.

back to taler or binding

Reminder: RSA blind signature

In RSA, a public key (e,N) and private key (d,N) have the property

xed = x mod N

Bob (B) creates a blind signature of a message m for Alice (A):

A: • chooses random integer b
• calculates m′ := m ∗ be (blinding)
• sends m′ to B.

B: • signs m′, by calculating σ′ := (m′)d mod N (B doesn’t learn m)
• sends σ′ to A.

Note: (m′)d = (m ∗ be)d = md ∗ bed = md ∗ b mod N

A: • unblinds σ′ by calculating

σ := σ′ ∗ b−1(= md)

=⇒ σ is a valid RSA signature to message m.

back to taler or binding

Reminder: RSA blind signature

In RSA, a public key (e,N) and private key (d,N) have the property

xed = x mod N

Bob (B) creates a blind signature of a message m for Alice (A):

A: • chooses random integer b
• calculates m′ := m ∗ be (blinding)
• sends m′ to B.

B: • signs m′, by calculating σ′ := (m′)d mod N (B doesn’t learn m)
• sends σ′ to A.

Note: (m′)d = (m ∗ be)d = md ∗ bed = md ∗ b mod N

A: • unblinds σ′ by calculating

σ := σ′ ∗ b−1(= md)

=⇒ σ is a valid RSA signature to message m.
back to taler or binding

Instantiation with Edx25519

But... isn’t ECDSA considered to be difficult to implement
correctly?

We also formally define another signature scheme, Edx25519:

• based on EdDSA (Bernstein et al.),
• generates compatible signatures,
• allows for key derivation from both, private and public keys,

independently and
• is already in use in GNUnet.

Current implementation of age restriction in GNU Taler uses
Edx25519.

Instantiation with Edx25519

But... isn’t ECDSA considered to be difficult to implement
correctly?

We also formally define another signature scheme, Edx25519:

• based on EdDSA (Bernstein et al.),
• generates compatible signatures,
• allows for key derivation from both, private and public keys,

independently and
• is already in use in GNUnet.

Current implementation of age restriction in GNU Taler uses
Edx25519.

Related Work

• Current privacy-perserving systems all based on
attribute-based credentials (Koning et al., Schanzenbach et
al., Camenisch et al., Au et al.)

• Attribute-based approach lacks support:
• Complex for consumers and retailers
• Requires trusted additional authority

• Other approaches tie age-restriction to ability to pay (”debit
cards for kids”)

• Advantage: mandatory to payment process
• Not privacy friendly

	Prolog
	Introduction
	The quest for a solution to age restriction
	Requirements
	A solution to our quest
	Integration with GNU Taler
	Discussion & Conclusion
	Appendix

