Post-quantum Plaintext-awareness

Ehsan Ebrahimi and Jeroen Van Wier

University of Luxembourg

PQCypto 2022

Plaintext-awareness for PKE

 Intuitively, adversary generating a valid ciphertext is aware of its underlying plaintext

Plaintext-awareness for PKE

- Intuitively, adversary generating a valid ciphertext is aware of its underlying plaintext
- It is introduced in the Random Oracle Model to prove the CCA security of the OAEP transform [Bellare-Rogaway, Eurocrypt 1994]

Plaintext-awareness for PKE

- Intuitively, adversary generating a valid ciphertext is aware of its underlying plaintext
- It is introduced in the Random Oracle Model to prove the CCA security of the OAEP transform [Bellare-Rogaway, Eurocrypt 1994]

• It has been formalized in the standard model as well [Bellare-Palacio, ASIACRYPT 2004]

Adversary's goal: Generating a valid ciphertext for which its corresponding plaintext is unknown

Adversary's goal: Generating a valid ciphertext for which its corresponding plaintext is unknown

• PAO: Adversary can make one decryption query

Adversary's goal: Generating a valid ciphertext for which its corresponding plaintext is unknown

- PAO: Adversary can make one decryption query
- PA1: Adversary can make many decryption queries

Adversary's goal: Generating a valid ciphertexts for which its corresponding plaintext is unknown

- PAO: Adversary can make one decryption query
- PA1: Adversary can make many decryption queries
- PA2: Adversary can make many decryption queries and eavesdrop some ciphertexts

More Formal Definition: PAO, PA1

For ∀ PT adversary A , ∃ a PT plaintext extractor A* such that for ∀ PT distinguisher D the following two games are indistinguishable where R is the random tape of A:

More Formal Definition: PA2

• For \forall PT adversary A, \exists a PT plaintext extractor A^* such that for \forall PT plaintext-creator P and for \forall PT distinguisher D the following two games are indistinguishable where R is the random tape of A:

Real-world Game:				
$m \leftarrow A^{\text{Dec}_{sk}}(pk)$				
$c^* \leftarrow P(m)$				
$x \leftarrow A^{\textit{Dec}_{sk}}(pk, c^*)$				
$b \leftarrow D(x)$				

Fake Game: $m \leftarrow A^{A^*(R,pk)}(pk)$ $c^* \leftarrow P(m)$ $x \leftarrow A^{A^*(R,c^*,pk)}(pk,c^*)$ $b \leftarrow D(x)$

- 1. A quantum adversary given pk can implement the encryption scheme in a quantum device
 - Does it break PA notions?

- 1. A quantum adversary given pk can implement the encryption scheme in a quantum device
 - Does it break PA notion?

$$\sum \frac{1}{\sqrt{|M|}} |m\rangle$$

- 1. A quantum adversary given pk can implement the encryption scheme in a quantum device
 - Does it break PA notion?

$$\sum \frac{1}{\sqrt{|M|}} |m\rangle \longrightarrow Enc_{pk} \sum \frac{1}{\sqrt{|M|}} |Enc_{pk}(m;r)\rangle$$

- 1. A quantum adversary given pk can implement the encryption scheme in a quantum device
 - Does it break PA notion?

$$\sum \frac{1}{\sqrt{|M|}} |m\rangle \longrightarrow Enc_{pk} \longrightarrow \sum \frac{1}{\sqrt{|M|}} |Enc_{pk}(m;r)\rangle \longrightarrow \text{measure} \longrightarrow \begin{array}{c} \text{Random} \\ \text{valid} \\ \text{ciphertext} \end{array}$$

- 1. A quantum adversary given pk can implement the encryption scheme in a quantum device
 - Does it break PA notion?

$$\sum \frac{1}{\sqrt{|M|}} |m\rangle \longrightarrow \sum \frac{1}{\sqrt{|M|}} |Enc_{pk}(m;r)\rangle \longrightarrow \text{measure} \longrightarrow \begin{array}{c} \text{Random} \\ \text{valid} \\ \text{ciphertext} \end{array}$$

- A quantum adversary given pk can implement the encryption scheme in a quantum device
 - Does it break PA notion?

$$\sum \frac{1}{\sqrt{|M|}} |m\rangle \longrightarrow \sum \frac{1}{\sqrt{|M|}} |Enc_{pk}(m;r)\rangle \longrightarrow \text{measure} \longrightarrow \begin{array}{c} \text{Random} \\ \text{valid} \\ \text{ciphertext} \end{array}$$

• We consider standard implementation: $|m, y\rangle \rightarrow |m, y \oplus Enc_{pk}(m; r)\rangle$

- 1. A quantum adversary given pk can implement the encryption scheme
- 2. It has been used in some existing proof in a high-level [Ebrahimi, PKC 2022]

- 1. A quantum adversary given pk can implement the encryption scheme
- 2. It has been used in some existing proof in a high-level [Ebrahimi, PKC 2022]
- 3. PA2 + IND-CPA ⇒ IND-CCA but PA2 + IND-qCPA ⇒ IND-qCCA [Boneh-Zhandry's Definition, Crypto 2013]

- 1. A quantum adversary given pk can implement the encryption scheme
- 2. It has been used in some existing proof in a high-level [Ebrahimi, PKC 2022]

- 3. PA2 + IND-CPA \implies IND-CCA but PA2 + IND-qCPA \implies IND-qCCA
 - ? + IND-qCPA \implies IND-qCCA

- Number of decryption queries:
 - one or many

- Number of decryption queries:
 - one or many
- Access to the decryption oracle:
 - classical or quantum

- Number of decryption queries:
 - one or many
- Access to the decryption oracle:
 - classical or quantum
- Eavesdropping ability:
 - only classical

- Number of decryption queries:
 - one or many
- Access to the decryption oracle:
 - classical or quantum
- Eavesdropping ability:
 - only classical

Six Security notions

pqPAO- C_{Dec} , pqPA1- C_{Dec}

For ∀ QPT adversary A , ∃ a QPT plaintext extractor A* such that for ∀ QPT distinguisher D the following two games are indistinguishable where Q_{int} is the internal quantum register of A:

$pqPAO-Q_{Dec}$, $pqPA1-Q_{Dec}$

For ∀ QPT adversary A , ∃ a QPT plaintext extractor A* such that for ∀ QPT distinguisher D the following two games are indistinguishable where Q_{int} is the internal quantum register of A:

pqPA2-*C_{Dec}*

• For \forall QPT adversary A, \exists a QPT plaintext extractor A^* such that for for \forall QPT plaintext-creator P, \forall QPT distinguisher D the following two games are indistinguishable where Q_{int} is the internal quantum register of A:

Real-world Game:	Fake Game:
$m \leftarrow A^{\textit{Dec}_{sk}}(pk)$	$m \leftarrow A^{A^*(Q_{int})}(pk)$
$c^* \leftarrow P(m)$	$c^* \leftarrow P(m)$
$\rho \leftarrow A^{\textit{Dec}_{sk}}(pk, c^*)$	$\rho \leftarrow A^{A^*(Q_{int}, c^*, pk)}(pk, c^*)$
$b \leftarrow D(\rho)$	$b \leftarrow D(\rho)$

pqPA2-*Q_{Dec}*

• For \forall QPT adversary A, \exists a QPT plaintext extractor A^* such that for \forall QPT plaintext-creator P, \forall QPT distinguisher D the following two games are indistinguishable where Q_{int} is the internal quantum register of A:

Real-world Game:	Fake Game:
$m \leftarrow A^{U_{Dec_{sk}}}(pk)$	$m \leftarrow A^{A^*(Q_{int})}(pk)$
$c^* \leftarrow P(m)$	$c^* \leftarrow P(m)$
$\boldsymbol{\rho} \leftarrow A^{\boldsymbol{U_{Dec_{sk}}}}(pk,c^*)$	$\boldsymbol{\rho} \leftarrow A^{A^*(Q_{int}, c^*, pk)}(pk, c^*)$
$b \leftarrow D(\rho)$	$b \leftarrow D(\rho)$

Table of Implications and non-implications

	$pqPA2-Q_{dec}$	pqPA2-C _{dec}	pqPA1-Q _{dec}	$pqPA1-C_{dec}$	$pqPA0\text{-}Q_{dec}$	$pqPA0-C_{dec}$
$pqPA2-Q_{dec}$		$\Rightarrow^{Theorem}$	$\Rightarrow^{Theorem 2}$	\Rightarrow	\Rightarrow	⇒
$pqPA2\text{-}C_{dec}$	$\Rightarrow^{Theorem} 4$		\Rightarrow	$\Rightarrow^{Theorem}$	$\Rightarrow^{Corollary} 2$	\Rightarrow
$pqPA1-Q_{dec}$	⇒	$\Rightarrow^{Theorem}$ 5		$\Rightarrow^{Theorem}$	$\Rightarrow^{Theorem 3}$	\Rightarrow
$pqPA1-C_{dec}$	≯	≯	$\Rightarrow^{Theorem} 4$		≯	$\Rightarrow^{Theorem 3}$
$pqPA0-Q_{dec}$	⇒	⇒	⇒	$\Rightarrow^{Theorem 6}$		$\Rightarrow^{Theorem}$
$pqPA0\text{-}C_{dec}$	⇒	⇒	⇒	\$	$\Rightarrow^{Corollary}$	

• Take a PKE = (Gen, Enc, Dec) that is one-way and $pqPAi - C_{Dec}$. Commit to a valid ciphertext $c_v = Enc(m; r)$: $Com(c_v) = (c_{com}, r_{open})$

- Take a PKE = (Gen, Enc, Dec) that is one-way and $pqPAi C_{Dec}$. Commit to a valid ciphertext $c_v = Enc(m; r)$: $Com(c_v) = (c_{com}, r_{open})$
- Change *Dec* to *Dec'*:
 - A periodic function f on c_v is embedded in Dec'
 - A query to Dec' on (\bot, c_v) reveals r and r_{open}

- Take a PKE = (Gen, Enc, Dec) that is one-way and $pqPAi C_{Dec}$. Commit to a valid ciphertext $c_v = Enc(m; r)$: $Com(c_v) = (c_{com}, r_{open})$
- Change *Dec* to *Dec'*:
 - A periodic function f on c_v is embedded in Dec'
 - A query to Dec' on (\bot, c_v) reveals r and r_{open}
- Distinguisher checks if $c_v := Enc(m; r)$ and $verif(c_{com}, c_v, r_{open}) = 1$

- Take a PKE = (Gen, Enc, Dec) that is one-way and $pqPAi C_{Dec}$. Commit to a valid ciphertext $c_v = Enc(m; r)$: $Com(c_v) = (c_{com}, r_{open})$
- Change *Dec* to *Dec'*:
 - A periodic function f on c_v is embedded in Dec'
 - Simon's algorithm can output c_v using quantum queries
 - A query to Dec' on (\bot, c_v) reveals r and r_{open}
- Distinguisher checks if $c_v := Enc(m; r)$ and $verif(c_{com}, c_v, r_{open}) = 1$

• Take a $pqPA1 - Q_{Dec} PKE = (Gen, Enc, Dec)$ that is IND-qCPA secure

- Take a $pqPA1 Q_{Dec} PKE = (Gen, Enc, Dec)$ that is IND-qCPA secure
- Make it malleable by defining: Enc'(m) = Enc(m)||0 and Dec'(c||b) = Dec(c)

- Take a $pqPA1 Q_{Dec} PKE = (Gen, Enc, Dec)$ that is IND-qCPA secure
- Make it malleable by defining: Enc'(m) = Enc(m)||0 and Dec'(c||b) = Dec(c)
- Show that PKE' = (Gen, Enc', Dec') is $pqPA1 Q_{Dec}$

- Take a $pqPA1 Q_{Dec} PKE = (Gen, Enc, Dec)$ that is IND-qCPA secure
- Make it malleable by defining: Enc'(m) = Enc(m)||0 and Dec'(c||b) = Dec(c)
- Show that PKE' = (Gen, Enc', Dec') is $pqPA1 Q_{Dec}$
- Adversary A sends two messages 0^n , 1^n to P and gets a ciphertext c||0, queries c||1 as a decryption query

- Take a $pqPA1 Q_{Dec} PKE = (Gen, Enc, Dec)$ that is IND-qCPA secure
- Make it malleable by defining: Enc'(m) = Enc(m)||0 and Dec'(c||b) = Dec(c)
- Show that PKE' = (Gen, Enc', Dec') is $pqPA1 Q_{Dec}$
- Adversary A sends two messages 0^n , 1^n to P and gets a ciphertext c||0, queries c||1 as a decryption query
- Show that if PKE=(Gen, Enc', Dec') is pqPA2 C_{Dec}, then it is not IND-qCPA secure

• Take a PKE = (Gen, Enc, Dec) that is one-way and $pqPA0 - Q_{Dec}$. Commit to a valid ciphertext $c_v := Enc(m; r)$: $Com(c_v) = (c_{com}, r_{open})$

- Take a PKE = (Gen, Enc, Dec) that is one-way and $pqPA0 Q_{Dec}$. Commit to a valid ciphertext $c_v := Enc(m; r)$: $Com(c_v) = (c_{com}, r_{open})$
- Write $c_v = c_v^1 \oplus c_v^2$ and $r_{open} = r_{open}^1 \oplus r_{open}^2$. Change *Dec* to *Dec*' that reveals one of c_v^1, c_v^2 and r_{open}^1, r_{open}^2 randomly in each query. It reveals r as well.

- Take a PKE = (Gen, Enc, Dec) that is one-way and $pqPA0 Q_{Dec}$. Commit to a valid ciphertext $c_v := Enc(m; r)$: $Com(c_v) = (c_{com}, r_{open})$
- Write $c_v = c_v^1 \oplus c_v^2$ and $r_{open} = r_{open}^1 \oplus r_{open}^2$. Change *Dec* to *Dec*' that reveals one of c_v^1, c_v^2 and r_{open}^1, r_{open}^2 randomly in each query. It reveals r as well.
- Show that PKE remains $pqPA0 Q_{Dec}$ with this new Dec'

- Take a PKE = (Gen, Enc, Dec) that is one-way and $pqPA0 Q_{Dec}$. Commit to a valid ciphertext $c_v := Enc(m; r)$: $Com(c_v) = (c_{com}, r_{open})$
- Write $c_v = c_v^1 \oplus c_v^2$ and $r_{open} = r_{open}^1 \oplus r_{open}^2$. Change *Dec* to *Dec*' that reveals one of c_v^1, c_v^2 and r_{open}^1, r_{open}^2 randomly in each query. It reveals r as well.
- Show that PKE remains $pqPA0 Q_{Dec}$ with this new Dec'
- Adversary with many decryption queries can get c_v and checks if c_v : = Enc(m; r) and $verif(c_{com}, c_v, r_{open}) = 1$

Relation with IND-qCCA

• Any public-key encryption scheme Enc that is $pqPA2 - Q_{Dec}$ plaintext-aware and IND-qCPA secure is IND-qCCA secure.

Achievability

• We lift a $pqPA2 - C_{Dec}$ plaintext-aware encryption scheme to a $pqPA2 - Q_{Dec}$ plaintext-aware encryption scheme using a quantum secure PRP

• We formalized the plaintext-awareness notions in the superposition-access model that led to six security notions

- We formalized the plaintext-awareness notions in the superposition-access model that led to six security notions
- We studied the relations between these six security notions

- We formalized the plaintext-awareness notions in the superposition-access model that led to six security notions
- We studied the relations between these six security notions
- We show the relation with IND-qCCA notion

- We formalized the plaintext-awareness notions in the superposition-access model that led to six security notions
- We studied the relations between these six security notions
- We show the relation with IND-qCCA notion
- We lift a post-quantum PA2 encryption scheme to a $pqPA2 Q_{Dec}$ plaintext-aware encryption scheme using a quantum-secure PRP

Thank you for listening