Supersymmetry Breaking, Stringy Effects and Emergence in Microstate Geometries

The Verlinde Symposium

Thursday July 14, 2022

Nick Warner
Research supported supported in part by:
ERC Grant number: 787320QBH Structure and DOE grant DE- SC0011687

The Verlinde Symposium

Thursday July 14, 2022

Nick Warner

Research supported supported in part by: ERC Grant number: 787320QBH Structure and DOE grant DE- SC0011687

The Debut

Chiral Bosonization, Determinants and the String Partition Function

Erik P. Verlinde (Utrecht U.), Herman L. Verlinde (Utrecht U.) (Oct, 1986)
Published in: Nucl.Phys.B 288 (1987) 357
(1) DOI \rightleftarrows cite

Perturbative strings

IASSNS-HEP-88/52 P UPT-88/1111

Lectures on String Perturbation Theory ${ }^{1}$

Erik Verlinde

Institute for Advanced Study
Princeton, NJ 08540
and

Herman Verlinde

Joseph Henry Laboratories

Perturbative strings

IASSNS-HEP-88/52
PUPT-88/1111
October 1988

PhD Graduation 1988

Erik Verlinde

Institute for Advanced Study
Princeton, NJ 08540
and

Herman Verlinde

Joseph Henry Laboratories

Perturbative strings

IASSNS-HEP-88/52 PUPT-88/1111 October 1988

Lectures on String Perturbation Theory ${ }^{1}$

PhD Graduation 1988

Erik Verlinde

Institute for Advanced Study
Princeton, NJ 08540
and
Herman Verlinde
Joseph Henry Laboratories

Erik P. Verlinde (Utrecht U.) (Mar 21, 1988)
Published in: Nucl.Phys.B 300 (1988) 360-376
(2) DOI
Ξ cite
$\ni 1,009$ citations

The DVV Equations

The DVV Equations

Computing correlators in topological sectors of $\mathcal{N}=2$ superconformal field theories ...

```
Physics Letters B 269 (1991) 96-102
North-Holland
```

PHYSICS LETTERS B

Topological Landau-Ginzburg matter at $c=3$
E. Verlinde

Institute for Advanced Study, Olden Lane, Princeton, NJ 08540, USA
and -
N.P. Warner

Physics Department, University of Southern California, University Park, Los Angeles, CA 90089-0484, USA

Received 23 April 1991

The topological correlation functions, their prepotential, and the Landau-Ginzburg potential are computed for the $N=2$ supersymmetric, $c=3$, matter model that is a tensor product of three $c=1$ models.

Erik and Herman have had a huge influence on many areas of theoretical physics ...

Erik and Herman have had a huge influence on many areas of theoretical physics ...

In particular, on the resolving the black-hole information problem via the Fuzzball/Microstate Geometry Programme

Erik and Herman have had a huge influence on many areas of theoretical physics ...

In particular, on the resolving the black-hole information problem via the Fuzzball/Microstate Geometry Programme
\star Anti-branes and supersymmetry breaking in microstate geometries

Erik and Herman have had a huge influence on many areas of theoretical physics ...

In particular, on the resolving the black-hole information problem via the Fuzzball/Microstate Geometry Programme

* Anti-branes and supersymmetry breaking in microstate geometries
* Balanced holography and fuzzball states

Erik and Herman have had a huge influence on many areas of theoretical physics ...

In particular, on the resolving the black-hole information problem via the Fuzzball/Microstate Geometry Programme
^ Anti-branes and supersymmetry breaking in microstate geometries

* Balanced holography and fuzzball states
* Emergent geometry and D1-D5 CFT

Fuzzball and Microstate Geometries

Bena, Martinec, Mathur and Warner, 2203.04981 Snowmass White Paper: Micro- and Macro-Structure of Black Holes 2204.13113 Fuzzballs and Microstate Geometries: Black-Hole Structure in String Theory

Probably the most viable solution to the information problem* (that includes gravitational back-reaction) comes from the understanding that:

Probably the most viable solution to the information problem* (that includes gravitational back-reaction) comes from the understanding that:
Black holes are really horizonless, strongly-quantum stringy backgrounds in more than 3+1 dimensions: Fuzzballs

*if you want to avoid extensive, long range non-locality, or the loss of unitarity

Microstate geometries:

Coherent expressions of fuzzballs within the supergravity limit of string theory.
\Rightarrow Smooth, horizonless solutions of the supergravity equations with the same macroscopic behavior as a black-hole

Microstate geometries:

Coherent expressions of fuzzballs within the supergravity limit of string theory. \Rightarrow Smooth, horizonless solutions of the supergravity equations with the same macroscopic behavior as a black-hole

Microstate Geometries: Broader motivation:

Microstate Geometries: Broader motivation:

* There will always be coherent expressions of the fuzzball phase-space that can be captured by supergravity $=$ Microstate Geometries

Microstate Geometries: Broader motivation:

* There will always be coherent expressions of the fuzzball phase-space that can be captured by supergravity $=$ Microstate Geometries
* The only precise, well-defined backgrounds for supporting and doing the analysis of horizon-scale microstructure.

Microstate Geometries: Broader motivation:

* There will always be coherent expressions of the fuzzball phase-space that can be captured by supergravity $=$ Microstate Geometries
* The only precise, well-defined backgrounds for supporting and doing the analysis of horizon-scale microstructure.
* The practical: Generic fuzzballs impossible to construct; microstate geometries provide a precise starting point for exploring different phases of black-hole physics and studying horizon-scale microstructure

Microstate Geometries: Broader motivation:

* There will always be coherent expressions of the fuzzball phase-space that can be captured by supergravity $=$ Microstate Geometries
* The only precise, well-defined backgrounds for supporting and doing the analysis of horizon-scale microstructure.
* The practical: Generic fuzzballs impossible to construct; microstate geometries provide a precise starting point for exploring different phases of black-hole physics and studying horizon-scale microstructure
* Supergravity can also describe large-scale collective effects of strongly-coupled quantum systems: effective geometries and effective hydrodynamics of fuzzballs

BPS/supersymmetric solutions

丸 Diverse approaches to constructing such geometries based on different charge carriers in various duality frames

BPS/supersymmetric solutions

* Diverse approaches to constructing such geometries based on different charge carriers in various duality frames
* Vast numbers of such geometries that approximate black-hole geometries arbitrarily closely \Rightarrow Extensive sampling of black-hole phase space

BPS/supersymmetric solutions

* Diverse approaches to constructing such geometries based on different charge carriers in various duality frames
* Vast numbers of such geometries that approximate black-hole geometries arbitrarily closely \Rightarrow Extensive sampling of black-hole phase space
* Precision holography of microstate geometries: Superstrata mapped onto "Supergraviton gas" of D1-D5 system

BPS/supersymmetric solutions

* Diverse approaches to constructing such geometries based on different charge carriers in various duality frames
* Vast numbers of such geometries that approximate black-hole geometries arbitrarily closely \Rightarrow Extensive sampling of black-hole phase space
* Precision holography of microstate geometries: Superstrata mapped onto "Supergraviton gas" of D1-D5 system
* Entropy of states captured by known microstate geometries (superstrata)

$$
S_{\text {Superstrata }} \sim \sqrt{N_{1} N_{5}} N_{P}^{1 / 4}<\sqrt{N_{1} N_{5} N_{P}} \sim S_{\text {Black hole }}
$$

Shigemori, 2010.04172

BPS/supersymmetric solutions

夫 Diverse approaches to constructing such geometries based on different charge carriers in various duality frames

* Vast numbers of such geometries that approximate black-hole geometries arbitrarily closely \Rightarrow Extensive sampling of black-hole phase space
* Precision holography of microstate geometries: Superstrata mapped onto "Supergraviton gas" of D1-D5 system
* Entropy of states captured by known microstate geometries (superstrata)

$$
S_{\text {Superstrata }} \sim \sqrt{N_{1} N_{5}} N_{P}^{1 / 4}<\sqrt{N_{1} N_{5} N_{P}} \sim S_{\text {Black hole }}
$$

Shigemori, 2010.04172

* Superstrata are sampling the "typical sector" of the D1-D5 CFT.

BPS/supersymmetric solutions

夫 Diverse approaches to constructing such geometries based on different charge carriers in various duality frames

* Vast numbers of such geometries that approximate black-hole geometries arbitrarily closely \Rightarrow Extensive sampling of black-hole phase space
* Precision holography of microstate geometries: Superstrata mapped onto "Supergraviton gas" of D1-D5 system
* Entropy of states captured by known microstate geometries (superstrata)

$$
S_{\text {Superstrata }} \sim \sqrt{N_{1} N_{5}} N_{P}^{1 / 4}<\sqrt{N_{1} N_{5} N_{P}} \sim S_{\text {Black hole }}
$$

Shigemori, 2010.04172

* Superstrata are sampling the "typical sector" of the D1-D5 CFT. Entropy of black hole ~ Entropy of string states around superstrata?

Current activity

* Exploring new corners of the moduli space of microstate geometries New ways of describing excitations/charges within supergravity
Degenerate corners of the moduli space: "microstate solutions"

Current activity

夫 Exploring new corners of the moduli space of microstate geometries New ways of describing excitations/charges within supergravity
Degenerate corners of the moduli space: "microstate solutions"

* Incorporating stringy effects into microstate geometries; Exploring fuzzballs using stringy excitations of microstate geometries

Current activity

太 Exploring new corners of the moduli space of microstate geometries New ways of describing excitations/charges within supergravity
Degenerate corners of the moduli space: "microstate solutions"

* Incorporating stringy effects into microstate geometries; Exploring fuzzballs using stringy excitations of microstate geometries
* Black-hole-like behavior from microstate geometries
* Trapping and scrambling of matter
* Supersymmetry breaking and the transition to chaotic spectra

Current activity

太 Exploring new corners of the moduli space of microstate geometries New ways of describing excitations/charges within supergravity
Degenerate corners of the moduli space: "microstate solutions"

* Incorporating stringy effects into microstate geometries; Exploring fuzzballs using stringy excitations of microstate geometries
* Black-hole-like behavior from microstate geometries
* Trapping and scrambling of matter
* Supersymmetry breaking and the transition to chaotic spectra
* Constructing non-extremal microstate geometries

New Example: Combining/Colliding left-moving and right-moving momentum waves in the D1-D5 system

Current activity

太 Exploring new corners of the moduli space of microstate geometries New ways of describing excitations/charges within supergravity
Degenerate corners of the moduli space: "microstate solutions"

* Incorporating stringy effects into microstate geometries;

Exploring fuzzballs using stringy excitations of microstate geometries

* Black-hole-like behavior from microstate geometries
* Trapping and scrambling of matter
* Supersymmetry breaking and the transition to chaotic spectra
* Constructing non-extremal microstate geometries

New Example: Combining/Colliding left-moving and right-moving momentum waves in the D1-D5 system

Ganchev, Houppe and Warner, 2107.09677
Ganchev, Giusto, Houppe and Russo, 2112.03287

* "(Hawking) radiation" from decays of microstate geometries

Anti-branes and supersymmetry breaking

Supersymmetry breaking with anti-branes

S. Kachru, J. Pearson and H.Verlinde: Brane/Flux Annihilation and the String Dual of a Non-Supersymmetric Field Theory (0112/97)
Break supersymmetry by putting (meta-)stable anti-branes into the system

Supersymmetry breaking with anti-branes

S. Kachru, J. Pearson and H.Verlinde: Brane/Flux Annihilation and the String Dual of a Non-Supersymmetric Field Theory (0112197)
Break supersymmetry by putting (meta-)stable anti-branes into the system
Hugely influential in cosmology: KKLT mechanism ...

Supersymmetry breaking with anti-branes

S. Kachru, J. Pearson and H.Verlinde: Brane/Flux Annihilation and the String Dual of a Non-Supersymmetric Field Theory (0112/97)
Break supersymmetry by putting (meta-)stable anti-branes into the system
Hugely influential in cosmology: KKLT mechanism ...
This cosmological mechanism is controversial because of stability issues ...

Supersymmetry breaking with anti-branes

S. Kachru, J. Pearson and H.Verlinde: Brane/Flux Annihilation and the String Dual of a Non-Supersymmetric Field Theory (0112/97)
Break supersymmetry by putting (meta-)stable anti-branes into the system
Hugely influential in cosmology: KKLT mechanism ...
This cosmological mechanism is controversial because of stability issues ...
Microstate geometries:
Same mechanism can be applied to microstate geometries ...
\Rightarrow extensive families of "almost BPS" microstate geometries

Supersymmetry breaking with anti-branes

S. Kachru, J. Pearson and H.Verlinde: Brane/Flux Annihilation and the String Dual of a Non-Supersymmetric Field Theory (0112/97)
Break supersymmetry by putting (meta-)stable anti-branes into the system
Hugely influential in cosmology: KKLT mechanism ...
This cosmological mechanism is controversial because of stability issues ...
Microstate geometries:
Same mechanism can be applied to microstate geometries ...
\Rightarrow extensive families of "almost BPS" microstate geometries
.... and instabilities are feature and not a bug

Supersymmetry breaking with anti-branes

S. Kachru, J. Pearson and H.Verlinde: Brane/Flux Annihilation and the String Dual of a Non-Supersymmetric Field Theory (0112197)
Break supersymmetry by putting (meta-)stable anti-branes into the system
Hugely influential in cosmology: KKLT mechanism ...
This cosmological mechanism is controversial because of stability issues ...

Microstate geometries:

Same mechanism can be applied to microstate geometries ...
\Rightarrow extensive families of "almost BPS" microstate geometries
.... and instabilities are feature and not a bug
Such brane annihilation will lead to decay and (Hawking?) radiation

Supersymmetry breaking with anti-branes

S. Kachru, J. Pearson and H.Verlinde: Brane/Flux Annihilation and the String Dual of a Non-Supersymmetric Field Theory (0112197)
Break supersymmetry by putting (meta-)stable anti-branes into the system
Hugely influential in cosmology: KKLT mechanism ...
This cosmological mechanism is controversial because of stability issues ...

Microstate geometries:

Same mechanism can be applied to microstate geometries ...
\Rightarrow extensive families of "almost BPS" microstate geometries
.... and instabilities are feature and not a bug
Such brane annihilation will lead to decay and (Hawking?) radiation
Brane-probe analysis of meta-stable microstate geometries
I. Bena, A. Puhm, B.Vercnocke,

Metastable Supertubes and non-extremal Black Hole Microstates (1109.5180)
Non-extremal Black Hole Microstates: Fuzzballs of Fire or Fuzzballs of Fuzz? (1208.3468)

Supersymmetry breaking with anti-branes

S. Kachru, J. Pearson and H.Verlinde: Brane/Flux Annihilation and the String Dual of a Non-Supersymmetric Field Theory (0112197)
Break supersymmetry by putting (meta-)stable anti-branes into the system
Hugely influential in cosmology: KKLT mechanism ...
This cosmological mechanism is controversial because of stability issues ...

Microstate geometries:

Same mechanism can be applied to microstate geometries ...
\Rightarrow extensive families of "almost BPS" microstate geometries
.... and instabilities are feature and not a bug
Such brane annihilation will lead to decay and (Hawking?) radiation
Brane-probe analysis of meta-stable microstate geometries
I. Bena, A. Puhm, B.Vercnocke,

Metastable Supertubes and non-extremal Black Hole Microstates (1109.5180)
Non-extremal Black Hole Microstates: Fuzzballs of Fire or Fuzzballs of Fuzz? (1208.3468)
In late 202 I, early 2022: A very significant breakthrough by Bah, Heidmann, Weck ...

Supersymmetry breaking in Microstate Geometries

P. Heideman Non-BPS Floating Branes and Bubbling Geometries (2II 2.03279)

I Bah, P. Heideman and P.Weck Schwarzschild-like Topological Solitons (2203.I2625)

Supersymmetry breaking in Microstate Geometries

P. Heideman Non-BPS Floating Branes and Bubbling Geometries (2II 2.03279)

I Bah, P. Heideman and P.Weck Schwarzschild-like Topological Solitons (2203.I2625)
Fully back-reacted, exact, horizonless, smooth non-extremal microstate geometries ... with brane-anti-brane systems .. Schwarzschild-like

Supersymmetry breaking in Microstate Geometries

P. Heideman Non-BPS Floating Branes and Bubbling Geometries (2II 2.03279) I Bah, P. Heideman and P.Weck Schwarzschild-like Topological Solitons (2203.I 2625)

Fully back-reacted, exact, horizonless, smooth non-extremal microstate geometries ... with brane-anti-brane systems .. Schwarzschild-like

Balanced holography, fuzzball states and black-hole interior geometry

Balanced Holography

Passing through the Firewall

Erik Verlinde ${ }^{1}$ and Herman Verlinde ${ }^{2}$ cal Physics, University of Amsterdam, Amster f Physics, Princeton University, Princeton, N (Dated: June 5, 2013)

Balanced Holography

Double the degrees of freedom:
Black hole (interior) + Entanglement environment (exterior)

Passing through the Firewall
Erik Verlinde ${ }^{1}$ and Herman Verlinde ${ }^{2}$ cal Physics, University of Amsterdam, Amster f Physics, Princeton University, Princeton, N (Dated: June 5, 2013)

Balanced Holography

Double the degrees of freedom:
Black hole (interior) + Entanglement environment (exterior)
cal Physics, University of Amsterdam, Amster f Physics, Princeton University, Princeton, N (Dated: June 5, 2013)

Total Hilbert space: $\quad \mathcal{H}=\mathcal{H}_{H} \otimes \mathcal{H}_{E}$
Dimension: $2^{N} \times 2^{N}=2^{2 N}$
States:
$\mathrm{N}+\mathrm{N}=2 \mathrm{~N}$ q-bits
$\Psi=\sum_{i, j} \alpha_{i j}|i\rangle_{H} \otimes|j\rangle_{E}$

Balanced Holography

Double the degrees of freedom:
Black hole (interior) + Entanglement environment (exterior)
Total Hilbert space: $\quad \mathcal{H}=\mathcal{H}_{H} \otimes \mathcal{H}_{E}$
Dimension: $2^{N} \times 2^{N}=2^{2 N}$ States: $\quad \Psi=$ $\sum_{i, j} \alpha_{i j}|i\rangle_{H} \otimes|j\rangle_{E}$
This leads to an entropy of the system that is double the correct answer ...

Balanced Holography

Double the degrees of freedom:

Total Hilbert space: $\quad \mathcal{H}=\mathcal{H}_{H} \otimes \mathcal{H}_{E} \quad \mathrm{~N}+\mathrm{N}=2 \mathrm{~N}$ q-bits
Dimension: $2^{\mathrm{N}} \times 2^{\mathrm{N}}=2^{2 \mathrm{~N}} \quad$ States: $\quad \Psi=\sum_{i, j} \alpha_{i j}|i\rangle_{H} \otimes|j\rangle_{E}$
This leads to an entropy of the system that is double the correct answer ...
Balanced Holography: The physical black-hole Hilbert space is an subspace of N qubits of dimension $2^{\mathrm{N}} \ldots$

The microscopic theory of black holes must provide N constraints on 2 N qubits reducing the physical degrees of freedom to N qubits ...

Balanced Holography

Double the degrees of freedom:

Total Hilbert space: $\quad \mathcal{H}=\mathcal{H}_{H} \otimes \mathcal{H}_{E} \quad \mathrm{~N}+\mathrm{N}=2 \mathrm{~N}$ q-bits
Dimension: $2^{\mathrm{N}} \times 2^{\mathrm{N}}=2^{2 \mathrm{~N}} \quad$ States: $\quad \Psi=\sum_{i, j} \alpha_{i j}|i\rangle_{H} \otimes|j\rangle_{E}$
This leads to an entropy of the system that is double the correct answer ...
Balanced Holography: The physical black-hole Hilbert space is an subspace of N qubits of dimension $2^{\mathrm{N}} \ldots$

The microscopic theory of black holes must provide N constraints on 2 N qubits reducing the physical degrees of freedom to N qubits ...
In some basis the physical degrees of freedom can be reduced to 2^{N} parameters, α_{i} :

$$
\Psi=\sum_{i} \alpha_{i}|i\rangle_{H} \otimes|i\rangle_{E}
$$

Balanced Holography

Double the degrees of freedom:

Total Hilbert space: $\quad \mathcal{H}=\mathcal{H}_{H} \otimes \mathcal{H}_{E} \quad \mathrm{~N}+\mathrm{N}=2 \mathrm{~N}$ q-bits
Dimension: $2^{\mathrm{N}} \times 2^{\mathrm{N}}=2^{2 \mathrm{~N}} \quad$ States: $\quad \Psi=\sum_{i, j} \alpha_{i j}|i\rangle_{H} \otimes|j\rangle_{E}$
This leads to an entropy of the system that is double the correct answer ...
Balanced Holography: The physical black-hole Hilbert space is an subspace of N qubits of dimension $2^{\mathrm{N}} \ldots$

The microscopic theory of black holes must provide N constraints on 2 N qubits reducing the physical degrees of freedom to N qubits ...
In some basis the physical degrees of freedom can be reduced to 2^{N} parameters, α_{i} :

$$
\Psi=\sum_{i} \alpha_{i}|i\rangle_{H} \otimes|i\rangle_{E}
$$

Describe entanglement, various choices of basis, young and old black holes, observers and firewalls ...

Microstructure and Boundary States

Microstructure and Boundary States

Method of images: Double degrees of freedom to describe a system in the presence of a boundary

Microstructure and Boundary States

Method of images: Double degrees of freedom to describe a system in the presence of a boundary

$$
\begin{aligned}
\mathcal{H}_{\text {Total }} & =\mathcal{H}_{\text {Left }} \otimes \mathcal{H}_{\text {Right }} \\
\Psi_{\text {Total }} & =\sum_{i, j} \alpha_{i j}|i\rangle_{\text {Left }} \otimes|j\rangle_{\text {Right }}
\end{aligned}
$$

Microstructure and Boundary States

Method of images: Double degrees of freedom to describe a system in the presence of a boundary and then correlate all the left states with the right states

$$
\begin{aligned}
\mathcal{H}_{\text {Total }} & =\mathcal{H}_{\text {Left }} \otimes \mathcal{H}_{\text {Right }} \\
\Psi_{\text {Total }} & =\sum_{i, j} \alpha_{i j}|i\rangle_{\text {Left }} \otimes|j\rangle_{\text {Right }}
\end{aligned}
$$

Constrain the $\alpha_{i j}$ so that the left exactly reflects the right.

Microstructure and Boundary States

Method of images: Double degrees of freedom to describe a system in the presence of a boundary and then correlate all the left states with the right states

$$
\begin{aligned}
\mathcal{H}_{\text {Total }} & =\mathcal{H}_{\text {Left }} \otimes \mathcal{H}_{\text {Right }} \\
\Psi_{\text {Total }} & =\sum_{i, j} \alpha_{i j}|i\rangle_{\text {Left }} \otimes|j\rangle_{\text {Right }}
\end{aligned}
$$

Constrain the α_{ij} so that the left exactly reflects the right.

Microstructure and Boundary States

Method of images: Double degrees of freedom to describe a system in the presence of a boundary and then correlate all the left states with the right states

$$
\begin{aligned}
\mathcal{H}_{\text {Total }} & =\mathcal{H}_{\text {Left }} \otimes \mathcal{H}_{\text {Right }} \\
\Psi_{\text {Total }} & =\sum_{i, j} \alpha_{i j}|i\rangle_{\text {Left }} \otimes|j\rangle_{\text {Right }}
\end{aligned}
$$

Constrain the α_{ij} so that the left exactly reflects the right.

Microstructure and Boundary States

Method of images: Double degrees of freedom to describe a system in the presence of a boundary and then correlate all the left states with the right states

$$
\begin{aligned}
\mathcal{H}_{\text {Total }} & =\mathcal{H}_{\text {Left }} \otimes \mathcal{H}_{\text {Right }} \\
\Psi_{\text {Total }} & =\sum_{i, j} \alpha_{i j}|i\rangle_{\text {Left }} \otimes|j\rangle_{\text {Right }}
\end{aligned}
$$

Constrain the α_{ij} so that the left exactly reflects the right.

Field Theory: Ishibashi states define state of the the boundary
\Leftrightarrow Correlation between left and right sides of the system
Free boson in 1+1 dimensions

$$
|0\rangle\rangle_{D}^{N}=\exp \left[\mp \sum_{n=1}^{\infty} \frac{1}{n} \alpha_{-n} \tilde{\alpha}_{-n}\right]|0\rangle_{\text {Total }}
$$

Field Theory: Ishibashi states define state of the the boundary
\Leftrightarrow Correlation between left and right sides of the system
Free boson in 1+1 dimensions

$$
|0\rangle\rangle_{\substack{N}}=\exp \left[\mp \sum_{n=1}^{\infty} \frac{1}{n} \alpha_{-n} \tilde{\alpha}_{-n}\right]|0\rangle_{\text {Total }}
$$

Field Theory: Ishibashi states define state of the the boundary
\Leftrightarrow Correlation between left and right sides of the system
Free boson in 1+1 dimensions

Field Theory: Ishibashi states define state of the the boundary
\Leftrightarrow Correlation between left and right sides of the system
Free boson in 1+1 dimensions

Field Theory: Ishibashi states define state of the the boundary
\Leftrightarrow Correlation between left and right sides of the system
Free boson in 1+1 dimensions

Correlations replicate reflection at the boundary

CFT: Vast families of boundary states preserving bulk chiral algebra.
"Ishibashi" states in one-to-one correspondence with conformal blocks

CFT: Vast families of boundary states preserving bulk chiral algebra.
"Ishibashi" states in one-to-one correspondence with conformal blocks

Left-Right Correlations determined by fusion algebra

Cardy and Lewellyn

CFT: Vast families of boundary states preserving bulk chiral algebra.
"Ishibashi" states in one-to-one correspondence with conformal blocks

Left-Right Correlations determined by fusion algebra

Cardy and Lewellyn

The image operators depend on the boundary state, k, and the "physical operators," i and j.

CFT: Vast families of boundary states preserving bulk chiral algebra.
"Ishibashi" states in one-to-one correspondence with conformal blocks

Left-Right Correlations determined by fusion algebra

Cardy and Lewellyn

The image operators depend on the boundary state, k, and the "physical operators," i and j.
More complex boundary conditions \Rightarrow
Much richer and more complex images

CFT: Vast families of boundary states preserving bulk chiral algebra.
"Ishibashi" states in one-to-one correspondence with conformal blocks

Left-Right Correlations determined by fusion algebra

Cardy and Lewellyn

The image operators depend on the boundary state, k, and the "physical operators," i and j.
More complex boundary conditions \Rightarrow
Much richer and more complex images

CFT: Vast families of boundary states preserving bulk chiral algebra.
"Ishibashi" states in one-to-one correspondence with conformal blocks

Left-Right Correlations determined by fusion algebra

Cardy and Lewellyn

The image operators depend on the boundary state, k, and the "physical operators," i and j.
More complex boundary conditions \Rightarrow
Much richer and more complex images

CFT: Vast families of boundary states preserving bulk chiral algebra.
"Ishibashi" states in one-to-one correspondence with conformal blocks

Left-Right Correlations determined by fusion algebra

Cardy and Lewellyn

The image operators depend on the boundary state, k, and the "physical operators," i and j.
More complex boundary conditions \Rightarrow
Much richer and more complex images

But the physics of the left-hand side is fixed by the right-hand side and the boundary state

Applying balanced Holography for BTZ black holes using Liouville gravity

L. McGough , H.Verlinde

Bekenstein-Hawking Entropy as Topological Entanglement Entropy (1308.2342)

Applying balanced Holography for BTZ black holes using Liouville gravity
L. McGough , H.Verlinde

Bekenstein-Hawking Entropy as Topological Entanglement Entropy (1308.2342)
\Rightarrow Topological Entanglement entropy for states with momentum " a ":

$$
S_{\text {top }}=\log \left(S_{0}{ }^{a}\right)
$$

Applying balanced Holography for BTZ black holes using Liouville gravity
L. McGough , H.Verlinde

Bekenstein-Hawking Entropy as Topological Entanglement Entropy (1308.2342)
\Rightarrow Topological Entanglement entropy for states with momentum " a ":

$$
\begin{aligned}
S_{t o p} & =\log \left(S_{0}{ }^{a}\right) \\
& =\text { Affleck-Ludwig boundary entropy of state "a" }
\end{aligned}
$$

Applying balanced Holography for BTZ black holes using Liouville gravity
L. McGough , H.Verlinde

Bekenstein-Hawking Entropy as Topological Entanglement Entropy (1308.2342)
\Rightarrow Topological Entanglement entropy for states with momentum " a ":

$$
\begin{aligned}
S_{t o p} & =\log \left(S_{0}{ }^{a}\right) \\
& =\text { Affleck-Ludwig boundary entropy of state "a" }
\end{aligned}
$$

Which is consistent with the idea that the interior of the black hole can simply be replaced by a suitably complex family of boundary states

Applying balanced Holography for BTZ black holes using Liouville gravity
L. McGough , H.Verlinde

Bekenstein-Hawking Entropy as Topological Entanglement Entropy (1308.2342)
\Rightarrow Topological Entanglement entropy for states with momentum " a ":

$$
\begin{aligned}
S_{t o p} & =\log \left(S_{0}{ }^{a}\right) \\
& =\text { Affleck-Ludwig boundary entropy of state "a" }
\end{aligned}
$$

Which is consistent with the idea that the interior of the black hole can simply be replaced by a suitably complex family of boundary states

Fuzzball/Microstate Geometry Programme

Applying balanced Holography for BTZ black holes using Liouville gravity
L. McGough , H.Verlinde

Bekenstein-Hawking Entropy as Topological Entanglement Entropy (1308.2342)
\Rightarrow Topological Entanglement entropy for states with momentum " a ":

$$
\begin{aligned}
S_{t o p} & =\log \left(S_{0}{ }^{a}\right) \\
& =\text { Affleck-Ludwig boundary entropy of state "a" }
\end{aligned}
$$

Which is consistent with the idea that the interior of the black hole can simply be replaced by a suitably complex family of boundary states

Fuzzball/Microstate Geometry Programme

Any structure/operator that appears to be in the interior of a black hole must be an emergent image of the exterior seen in the extremely complex state of the fuzzball

Applying balanced Holography for BTZ black holes using Liouville gravity
L. McGough , H.Verlinde

Bekenstein-Hawking Entropy as Topological Entanglement Entropy (1308.2342)
\Rightarrow Topological Entanglement entropy for states with momentum " a ":

$$
\begin{aligned}
S_{t o p} & =\log \left(S_{0}{ }^{a}\right) \\
& =\text { Affleck-Ludwig boundary entropy of state "a" }
\end{aligned}
$$

Which is consistent with the idea that the interior of the black hole can simply be replaced by a suitably complex family of boundary states

Fuzzball/Microstate Geometry Programme

Any structure/operator that appears to be in the interior of a black hole must be an emergent image of the exterior seen in the extremely complex state of the fuzzball

The fuzzball

Morpheus: [The black-hole interior] is the world that has been pulled over your eyes to blind you from the truth.

Emergent geometry in the D1-D5 CFT?

E. Verlinde, On the Origin of Gravity and the Laws of Newton, (1001.0785)

Superstrata

Superstrata are the fully back-reacted microstate geometries obtained from momentum excitations of the D1-D5 system. Holographic dictionary is well understood ... and extensively mapped out.

Superstrata

Superstrata are the fully back-reacted microstate geometries obtained from momentum excitations of the D1-D5 system. Holographic dictionary is well understood ... and extensively mapped out.

Purely left-moving momenta; $1 / 8$ BPS states of the "Supergraviton gas"

Superstrata

Superstrata are the fully back-reacted microstate geometries obtained from momentum excitations of the D1-D5 system. Holographic dictionary is well understood ... and extensively mapped out.

Purely left-moving momenta; $1 / 8$ BPS states of the "Supergraviton gas"

Superstrata

Superstrata are the fully back-reacted microstate geometries obtained from momentum excitations of the D1-D5 system. Holographic dictionary is well understood ... and extensively mapped out.

Purely left-moving momenta; $1 / 8$ BPS states of the "Supergraviton gas"

The black-hole-like throat looks like a capped BTZ geometry

Superstrata

Superstrata are the fully back-reacted microstate geometries obtained from momentum excitations of the D1-D5 system. Holographic dictionary is well understood ... and extensively mapped out.

Purely left-moving momenta; $1 / 8$ BPS states of the "Supergraviton gas"

The black-hole-like throat looks like a capped BTZ geometry
Extensively probed in both CFT and in gravity

Simplest, naive probes

For the deepest superstrata, particle/ geodesic return time is $\sim N_{1} N_{5} R_{y}$

Simplest, naive probes

For the deepest superstrata, particle/ geodesic return time is $\sim N_{1} N_{5} R_{y}$

Scattering of waves into the throat: Initial Thermal decay + Echo after $\mathrm{N}_{1} \mathrm{~N}_{5} \mathrm{R}_{\mathrm{y}}$ but the return signal is attenuated and deformed by the geometry
I. Bena, P. Heidmann, R. Monten, N.P. Warner:
1905.05194

Simplest, naive probes

For the deepest superstrata, particle/ geodesic return time is $\sim N_{1} N_{5} R_{y}$

Scattering of waves into the throat: Initial Thermal decay + Echo after $\mathrm{N}_{1} \mathrm{~N}_{5} \mathrm{R}_{\mathrm{y}}$ but the return signal is attenuated and deformed by the geometry
I. Bena, P. Heidmann, R. Monten, N.P. Warner:
1905.05194

Intermediate BTZ Region from the Cap

Simplest, naive probes

For the deepest superstrata, particle/ geodesic return time is $\sim N_{1} N_{5} R_{y}$

Scattering of waves into the throat: Initial Thermal decay + Echo after $\mathrm{N}_{1} \mathrm{~N}_{5} \mathrm{R}_{\mathrm{y}}$ but the return signal is attenuated and deformed by the geometry
I. Bena, P. Heidmann, R. Monten, N.P. Warner:
1905.05194

Stringy effects on probes

Stringy effects on probes

Tidal forces reach string scale in the throat: small deviations (multipole moments) amplified by ultra-relativistic speeds. Tyukov, Walker and Warner 1710.09006

Bena, Martinec, Walker and Warner 1812.05110
Bena, Houppe and Warner: 2006. 13939

Stringy effects on probes

Tidal forces reach string scale in the throat: small deviations (multipole moments) amplified by ultra-relativistic speeds. Tyukov, Walker and Warner 1710.09006

Bena, Martinec, Walker and Warner 1812.05110
Bena, Houppe and Warner: 2006. 13939

$$
\mathrm{AdS}_{2} \times \mathrm{S}^{1}
$$

Compute the tidal excitations of the string
Martinec and Warner 2009.07847
Ceplak, Hampton and Lxi 2106.03841

Stringy effects on probes

Tidal forces reach string scale in the throat: small deviations (multipole moments) amplified by ultra-relativistic speeds. Tyukov, Walker and Warner 1710.09006

Bena, Martinec, Walker and Warner 1812.05110
Bena, Houppe and Warner: 2006. 13939

Compute the tidal excitations of the string
Martinec and Warner 2009.07847
Ceplak, Hampton and Lxi 2106.03841

The probe becomes massive:
Kinetic Energy \rightarrow Mass

Stringy effects on probes

Tidal forces reach string scale in the throat: small deviations (multipole moments) amplified by ultra-relativistic speeds. Tyukov, Walker and Warner 1710.09006

Bena, Martinec, Walker and Warner 1812.05110
Bena, Houppe and Warner: 2006. 13939

Compute the tidal excitations of the string
Martinec and Warner 2009.07847
Ceplak, Hampton and Lxi 2106.03841

$$
\mathrm{AdS}_{2} \times \mathrm{S}^{1}
$$

The probe becomes massive: Kinetic Energy \rightarrow Mass

The probe becomes tidally trapped ... because of the string excitations

String theory \Rightarrow No Echoes

String theory \Rightarrow No Echoes
Microstate geometries exhibit truly black-hole-like behaviour

Stringy effects on probes

Tidal forces reach string scale in the throat: small deviations (multipole moments) amplified by ultra-relativistic speeds. Tyukov, Walker and Warner 1710.09006 Bena, Martinec, Walker and Warner 1812.05110 Bena, Houppe and Warner: 2006. 13939

Compute the tidal excitations of the string
Martinec and Warner 2009.07847
Ceplak, Hampton and Lxi 2106.03841
The probe becomes massive:
Kinetic Energy \rightarrow Mass
The probe becomes tidally trapped ... because of the string excitations

Stringy effects on probes

Tidal forces reach string scale in the throat: small deviations (multipole moments) amplified by ultra-relativistic speeds. Tyukov, Walker and Warner 1710.09006 Bena, Martinec, Walker and Warner 1812.05110 Bena, Houppe and Warner: 2006.13939

Compute the tidal excitations of the string
Martinec and Warner 2009.07847
Ceplak, Hampton and Lxi 2106.03841
The probe becomes massive:
Kinetic Energy \rightarrow Mass
The probe becomes tidally trapped ... because of the string excitations

What is the holographic dual of this process?

Stringy effects on probes

Tidal forces reach string scale in the throat: small deviations (multipole moments) amplified by ultra-relativistic speeds. Tyukov, Walker and Warner 1710.09006 Bena, Martinec, Walker and Warner 1812.05110 Bena, Houppe and Warner: 2006.13939

Compute the tidal excitations of the string
Martinec and Warner 2009.07847
Ceplak, Hampton and Lxi 2106.03841
The probe becomes massive:
Kinetic Energy \rightarrow Mass
The probe becomes tidally trapped ... because of the string excitations

What is the holographic dual of this process? What is the holographic dual of a tidal force?

Graviton probes in CFT

How is the simplest physical geometric deviation from AdS described in CFT?
The holographic dictionary between superstrata and the D1-D5 CFT is well-established

Graviton probes in CFT

How is the simplest physical geometric deviation from AdS described in CFT?
The holographic dictionary between superstrata and the D1-D5 CFT is well-established
.. and dropping gravitons into AdS_{3} has been studied holographically.

Graviton probes in CFT

How is the simplest physical geometric deviation from AdS described in CFT?

The holographic dictionary between superstrata and the D1-D5 CFT is well-established
.. and dropping gravitons into AdS_{3} has been studied holographically.

Graviton falling into AdS_{3} throat of a supertube is dual to graviton hitting stack of D1-D5 branes, splitting into open string states

Graviton probes in CFT

How is the simplest physical geometric deviation from AdS described in CFT?

The holographic dictionary between superstrata and the D1-D5 CFT is well-established
.. and dropping gravitons into AdS_{3} has been studied holographically.

Graviton falling into AdS_{3} throat of a supertube is dual to graviton hitting stack of D1-D5 branes, splitting into open string states and re-joining to create graviton.

Lunin, Mathur 2106.038410109154

Graviton probes in CFT

How is the simplest physical geometric deviation from AdS described in CFT?

The holographic dictionary between superstrata and the D1-D5 CFT is well-established
.. and dropping gravitons into AdS_{3} has been studied holographically.

Graviton falling into AdS_{3} throat of a supertube is dual to graviton hitting stack of D1-D5 branes, splitting into open string states and re-joining to create graviton.

Lunin, Mathur 2106.038410109154

Graviton return times match between geometry and CFT

Fractionated states

Fractionated states

The CFT is not so simple: To get the black-hole CFT, the twist operator must be turned on ... D1-D5 "strands" join and split ...

Fractionated states

The CFT is not so simple: To get the black-hole CFT, the twist operator must be turned on ... D1-D5 "strands" join and split ...

and can fractionate the open string modes ..

Fractionated states

The CFT is not so simple: To get the black-hole CFT, the twist operator must be turned on ... D1-D5 "strands" join and split ...

and can fractionate the open string modes ..
Infalling graviton excites a very coherent combination of twisted sector states ...

Fractionated states

The CFT is not so simple: To get the black-hole CFT, the twist operator must be turned on ... D1-D5 "strands" join and split ...

and can fractionate the open string modes ..
Infalling graviton excites a very coherent combination of twisted sector states ...
Fractionating of graviton induced modes for $1 \rightarrow 3$ has been studied extensively Bin Guo, Shaun Hampton 2107.11883, 2108.00068

Fractionated states

The CFT is not so simple: To get the black-hole CFT, the twist operator must be turned on ... D1-D5 "strands" join and split ...

and can fractionate the open string modes ..
Infalling graviton excites a very coherent combination of twisted sector states ...
Fractionating of graviton induced modes for $1 \rightarrow 3$ has been studied extensively Bin Guo, Shaun Hampton 2107.11883, 2108.00068

Pure AdS:

Still periodic with correct period ... $1 \rightarrow 3$ amplitude goes back to zero

Fractionated states

The CFT is not so simple: To get the black-hole CFT, the twist operator must be turned on ... D1-D5 "strands" join and split ...

and can fractionate the open string modes ..
Infalling graviton excites a very coherent combination of twisted sector states ...
Fractionating of graviton induced modes for $1 \rightarrow 3$ has been studied extensively Bin Guo, Shaun Hampton 2107.11883, 2108.00068

Pure AdS:

Still periodic with correct period ... $1 \rightarrow 3$ amplitude goes back to zero

Fractionated modes recombine into single graviton again...

Stringy probes and "tides" in CFT

Bin Quo, Shaun Hampton 2107.11883, 2108.00068 However, superstrata already carry left-moving momentum charge before the graviton is dropped in ...

Stringy probes and "tides" in CFT

Bin Guo, Shaun Hampton 2107.11883, 2108.00068 However, superstrata already carry left-moving momentum charge before the graviton is dropped in ...

Stringy probes and "tides" in CFT

Bin Guo, Shaun Hampton 2107.11883, 2108.00068 However, superstrata already carry left-moving momentum charge before the graviton is dropped in ...

The twisting and scattering now creates a growing (non-periodic) component of the $1 \rightarrow 3$ amplitude $\sim \mathrm{t}^{2}$ and the end-state can result in three gravitons ...

Stringy probes and "tides" in CFT

 However, superstrata already carry left-moving momentum charge before the graviton is dropped in ...

The twisting and scattering now creates a growing (non-periodic) component of the $1 \rightarrow 3$ amplitude $\sim \mathrm{t}^{2}$ and the end-state can result in three gravitons ...

This is a challenging CFT computation and it is only an indicative part of the story

This is a challenging CFT computation and it is only an indicative part of the story

What is the simple, intuitive picture of the CFT dual of tidal force?

This is a challenging CFT computation and it is only an indicative part of the story

What is the simple, intuitive picture of the CFT dual of tidal force?

* Such a simpler, intuitive picture must be the result of large-N and have everything to do with the coherence underlying microstate geometries

This is a challenging CFT computation and it is only an indicative part of the story

What is the simple, intuitive picture of the CFT dual of tidal force?

* Such a simpler, intuitive picture must be the result of large-N and have everything to do with the coherence underlying microstate geometries
* It must underpin the relationship between <HHLL> four-point functions in the CFT and the corresponding two point <L L> functions in the holographic geometry, H...

This is a challenging CFT computation and it is only an indicative part of the story

What is the simple, intuitive picture of the CFT dual of tidal force?

* Such a simpler, intuitive picture must be the result of large-N and have everything to do with the coherence underlying microstate geometries
* It must underpin the relationship between <HHLL> four-point functions in the CFT and the corresponding two point <L L> functions in the holographic geometry, H...

Is there a simpler large-N quasi-particle description of the CFT, defined by requiring simple operator products/scattering with the twist operator?

Such quasi-particles will more closely represent the holographic dual of a graviton.

This is a challenging CFT computation and it is only an indicative part of the story

What is the simple, intuitive picture of the CFT dual of tidal force?

* Such a simpler, intuitive picture must be the result of large-N and have everything to do with the coherence underlying microstate geometries
* It must underpin the relationship between <HHLL> four-point functions in the CFT and the corresponding two point <L L> functions in the holographic geometry, H...

Is there a simpler large-N quasi-particle description of the CFT, defined by requiring simple operator products/scattering with the twist operator?

Such quasi-particles will more closely represent the holographic dual of a graviton.

Answering these questions will be an essential part of emergent space-time at strong gravitational coupling...

Happy Birthday Erik and Herman!

Happy Birthday

 Erik and Herman!

Happy Birthday Erik and Herman!

It has been a great pleasure to talk and interact with you over the last > 35 years

