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Computing correlators in topological sectors of V= 2 superconformal field
theories ...

Physics Letters B 269 (1991) 96-102

North-Holland PHYSICS LETTERS B

Topological Landau-Ginzburg matter at c=3

E. Verlinde
Institute for Advanced Study, Olden Lane, Princeton, NJ 08540, USA

and #

N.P. Warner
Physics Department, University of Southern California, University Park, Los Angeles, CA 90089-0484, USA
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The topological correlation functions, their prepotential, and the Landau-Ginzburg potential are computed for the N=2 super-
symmetric, c= 3, matter model that is a tensor product of three c=1 models.
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Erik and Herman have had a huge influence on many
areas of theoretical physics ...

In particular, on the resolving the black-hole information
problem via the Fuzzball/Microstate Geomelry Programme

» Anti-branes and supersymmetry breaking in
microstate geometries

» Balanced holography and fuzzball states

» Emergent geometry and D1-D5 CFT



Fuzzball and Microstate Geometries

Bena, Martinec, Mathur and Warner,
2203.04981 Snowmass White Paper: Micro- and Macro-Structure of Black Holes
2204.13113 Fuzzballs and Microstate Geometries: Black-Hole Structure in String Theory
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gravitational back-reaction) comes from the understanding that:

Black holes are really horizonless, strongly-quantum stringy backgrounds
in more than 3+1 dimensions: Fuzzballs

*if you want to avoid extensive, long range non-locality, or the loss of unitarity
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Microstate Geometries: Broader motivation:

* There will always be coherent expressions of the fuzzball phase-space
that can be captured by supergravity = Microstate Geometries

* The only precise, well-defined backgrounds for supporting and doing the
analysis of horizon-scale microstructure.

* The practical: Generic fuzzballs impossible to construct; microstate
geometries provide a precise starting point for exploring different phases of
black-hole physics and studying horizon-scale microstructure

* Supergravity can also describe large-scale collective effects of
strongly-coupled quantum systems: effective geometries and effective
hydrodynamics of fuzzballs



BPS/supersymmetric solutions

* Diverse approaches to constructing such geometries based on different
charge carriers in various duality frames



BPS/supersymmetric solutions

* Diverse approaches to constructing such geometries based on different
charge carriers in various duality frames

* Vast numbers of such geometries that approximate black-hole geometries
arbitrarily closely = Extensive sampling of black-hole phase space



BPS/supersymmetric solutions

* Diverse approaches to constructing such geometries based on different
charge carriers in various duality frames

% Vast numbers of such geometries that approximate black-hole geometries
arbitrarily closely = Extensive sampling of black-hole phase space

* Precision holography of microstate geometries: Superstrata mapped
onto “Supergraviton gas” of D1-D5 system



BPS/supersymmetric solutions

* Diverse approaches to constructing such geometries based on different
charge carriers in various duality frames

% Vast numbers of such geometries that approximate black-hole geometries
arbitrarily closely = Extensive sampling of black-hole phase space

* Precision holography of microstate geometries: Superstrata mapped
onto “Supergraviton gas” of D1-D5 system

* Entropy of states captured by known microstate geometries (superstrata)

SSuperstrata ~ \/Nl N5 ]VlDl/4 < \/Nl N5NP ~ SBlackhole

Shigemori, 2010.04172




BPS/supersymmetric solutions

* Diverse approaches to constructing such geometries based on different
charge carriers in various duality frames

% Vast numbers of such geometries that approximate black-hole geometries
arbitrarily closely = Extensive sampling of black-hole phase space

* Precision holography of microstate geometries: Superstrata mapped
onto “Supergraviton gas” of D1-D5 system

* Entropy of states captured by known microstate geometries (superstrata)

SSuperstrata ~ \/Nl N5 ]VlDl/4 < \/Nl N5NP ~ SBlackhole

Shigemori, 2010.04172

* Superstrata are sampling the “typical sector” of the D1-D5 CFT.
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* Diverse approaches to constructing such geometries based on different
charge carriers in various duality frames

% Vast numbers of such geometries that approximate black-hole geometries
arbitrarily closely = Extensive sampling of black-hole phase space

* Precision holography of microstate geometries: Superstrata mapped
onto “Supergraviton gas” of D1-D5 system

* Entropy of states captured by known microstate geometries (superstrata)

SSuperstrata, ~ \/Nl N5 ]VlDl/4 < \/Nl N5NP ~ SBlackhole

Shigemori, 2010.04172

* Superstrata are sampling the “typical sector” of the D1-D5 CFT.
Entropy of black hole ~ Entropy of string states around superstrata?
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* “(Hawking) radiation” from decays of microstate geometries
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Break supersymmetry by putting (meta-)stable anti-branes into the system

Hugely influential in cosmology: KKLT mechanism ...

This cosmological mechanism is controversial because of stability issues ...

Microstate geometries:

Same mechanism can be applied to microstate geometries ...
= extensive families of “almost BPS™ microstate geometries

.... and instabilities are feature and not a bug

Such brane annihilation will lead to decay and (Hawking?) radiation

Brane-probe analysis of meta-stable microstate geometries

|. Bena, A. Puhm, B.Vercnocke,
Metastable Supertubes and non-extremal Black Hole Microstates (1109.5180)
Non-extremal Black Hole Microstates: Fuzzballs of Fire or Fuzzballs of Fuzz? (1208.3468)

In late 2021, early 2022: A very significant breakthrough by Bah, Heidmann,Weck ...
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Balanced holography, fuzzball states
and black-hole interior geometry
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Describe entanglement, various choices of basis, young and old black holes,
observers and firewalls
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Field Theory: Ishibashi states define state of the the boundary
& Correlation between left and right sides of the system

Free boson in 1+1 dimensions
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Image in the boundary

Correlations replicate reflection at the boundary
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CFT: Vast families of boundary states preserving bulk chiral algebra.

“Ishibashi” states in one-to-one correspondence with conformal blocks

" | Cardy
| ° Lefe-Right
Correlations
k determined by
fusion algebra
- . Cardy and Lewellyn

The image operators depend
on the boundary state, k, and
the “physical operators,” i and j.

More complex boundary conditions =

Much richer and more complex images

But the physics of the left-hand side is fixed
by the right-hand side and the boundary state
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= Affleck-Ludwig boundary entropy of state “a”

Which is consistent with the idea that the interior of the black hole can simply be
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Fuzzball/Microstate Geomeltry Programme

Any structure/operator that appears to be
in the interior of a black hole must be an
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= Topological Entanglement entropy for states with momentum “a’’:
Stop — lOg (S()a)

= Affleck-Ludwig boundary entropy of state “a”

Which is consistent with the idea that the interior of the black hole can simply be
replaced by a suitably complex family of boundary states

Fuzzball/Microstate Geomeltry Programme

Any structure/operator that appears to be
in the interior of a black hole must be an
emergent image of the exterior seen in the
extremely complex state of the fuzzball

The fuzzball

Morpheus: [The black-hole interior]
is the world that has been pulled over
your eyes to blind you from the truth.
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The black-hole-like throat looks like a capped BTZ geometry

Extensively probed in both CFT and in gravity
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String theory tells a very different story ...
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Microstate geometries exhibit truly black-hole-like behaviour
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@/ What is the holographic dual of this process?
What is the holographic dual of a tidal force?




Graviton probes in CFT

How is the simplest physical geometric deviation from AdS described in CFT?

The holographic dictionary between superstrata and the D1-D5 CFT is
well-established ....



Graviton probes in CFT

How is the simplest physical geometric deviation from AdS described in CFT?

The holographic dictionary between superstrata and the D1-D5 CFT is
well-established ....

.. and dropping gravitons into AdS3 has been studied holographically.

Flat °w _eo Flat

~
~
~ -
‘--_—‘



Graviton probes in CFT

How is the simplest physical geometric deviation from AdS described in CFT?

The holographic dictionary between superstrata and the D1-D5 CFT is
well-established ....

.. and dropping gravitons into AdS3 has been studied holographically.

Flat °w _eo Flat

Graviton falling into AdS3 throat
of a supertube is dual to graviton
hitting stack of D1-D5 branes,
splitting into open string states ....

-~ -
-~ -
- =




Graviton probes in CFT

How is the simplest physical geometric deviation from AdS described in CFT?

The holographic dictionary between superstrata and the D1-D5 CFT is
well-established ....
.. and dropping gravitons into AdS3 has been studied holographically.

Flat °w _eo Flat

Graviton falling into AdS3 throat
of a supertube is dual to graviton
hitting stack of D1-D5 branes,
splitting into open string states ....
and re-joining to create graviton.
Lunin, Mathur 2106.03841 0109154

-~ -
-~ -
- =




Graviton probes in CFT

How is the simplest physical geometric deviation from AdS described in CFT?

The holographic dictionary between superstrata and the D1-D5 CFT is
well-established ....
.. and dropping gravitons into AdS3 has been studied holographically.

Flat °w _eo Flat

Graviton falling into AdS3 throat
of a supertube is dual to graviton
hitting stack of D1-D5 branes,
splitting into open string states ....
and re-joining to create graviton.
Lunin, Mathur 2106.03841 0109154

-~ -
-~ -
- =

Graviton return times match
between geometry and CFT




Fractionated states




Fractionated states

The CFT is not so simple: To get the black-hole CFT, the twist operator
must be turned on ... D1-D5 “strands” join and split ...

el >

=

VRVAVAY

NN




Fractionated states

The CFT is not so simple: To get the black-hole CFT, the twist operator
must be turned on ... D1-D5 “strands” join and split ...

] > ‘] >
0 o

- N V‘V‘WY'Y‘“ >

< >

and can fractionate the open string modes ..



Fractionated states

The CFT is not so simple: To get the black-hole CFT, the twist operator
must be turned on ... D1-D5 “strands” join and split ...

< _> <

o o
< i v-mmm -
_ >

and can fractionate the open string modes ..

Infalling graviton excites a very coherent combination of twisted sector states ...



Fractionated states

The CFT is not so simple: To get the black-hole CFT, the twist operator
must be turned on ... D1-D5 “strands” join and split ...

& o
- N 7"‘!‘7‘7‘“ >
< >

and can fractionate the open string modes ..

Infalling graviton excites a very coherent combination of twisted sector states ...

Fractionating of graviton induced modes for 1— 3 has been studied extensively

Bin Guo, Shaun Hampton 2107.11883, 2108.00068



Fractionated states

The CFT is not so simple: To get the black-hole CFT, the twist operator
must be turned on ... D1-D5 “strands” join and split ...

Sl - < >

o o

- N V‘V‘WY'Y‘“ >
< >

and can fractionate the open string modes ..

Infalling graviton excites a very coherent combination of twisted sector states ...

Fractionating of graviton induced modes for 1— 3 has been studied extensively

Bin Guo, Shaun Hampton 2107.11883, 2108.00068
Pure AdS:

0.0020——m™m™—mm

Still periodic with ooors; .
correct period ... |
1— 3 amplitude

goes back to zero

11511

0.0010}

A

0.0005}

00000 T |
0




Fractionated states

The CFT is not so simple: To get the black-hole CFT, the twist operator
must be turned on ... D1-D5 “strands” join and split ...

Sl - < >

a o

- N 7"‘!‘7‘7‘“ >
< >

and can fractionate the open string modes ..

Infalling graviton excites a very coherent combination of twisted sector states ...

Fractionating of graviton induced modes for 1— 3 has been studied extensively

Bin Guo, Shaun Hampton 2107.11883, 2108.00068
Pure AdS:

.02 ™M™M8 —mmmm 7

Still periodic with oo i , ,
correct period | _ . | Fractionated modes recombine
1— 3 amplitude | into single graviton again...

goes back to zero

11511

0.0010}

A

0.0005}

00000 T |
0




Stringy probes and “‘tides” in CFT
Bin Guo, Shaun Hampton 2107.11883, 2108.00068

However, superstrata already carry left-moving momentum charge before
the graviton is dropped in ...

VvV V




Stringy probes and “‘tides” in CFT
Bin Guo, Shaun Hampton 2107.11883, 2108.00068

However, superstrata already carry left-moving momentum charge before
the graviton is dropped in ...

(‘% (‘% —

VvV V




Stringy probes and “‘tides” in CFT

Bin Guo, Shaun Hampton 2107.11883, 2108.00068
However, superstrata already carry left-moving momentum charge before
the graviton is dropped in ...

——< AR AR —

e

—-

The twisting and scattering now creates a growing (non-periodic) component
of the 1= 3 amplitude ~ t2 and the end-state can result in three gravitons ...

_>
>

VvV VUV




Stringy probes and “‘tides” in CFT

Bin Guo, Shaun Hampton 2107.11883, 2108.00068
However, superstrata already carry left-moving momentum charge before
the graviton is dropped in ...

(‘% (‘% —

g >

The twisting and scattering now creates a growing (non-periodic) component

VvV V

of the 1= 3 amplitude ~ t2 and the end-state can result in three gravitons ...




This is a challenging CFT computation and it is only an indicative part of the
story ....



This is a challenging CFT computation and it is only an indicative part of the
story ....

What is the simple, intuitive picture of the CFT dual of tidal force?



This is a challenging CFT computation and it is only an indicative part of the
story ....

What is the simple, intuitive picture of the CFT dual of tidal force?

* Such a simpler, intuitive picture must be the result of large-N and have
everything to do with the coherence underlying microstate geometries



This is a challenging CFT computation and it is only an indicative part of the
story ....

What is the simple, intuitive picture of the CFT dual of tidal force?

* Such a simpler, intuitive picture must be the result of large-N and have
everything to do with the coherence underlying microstate geometries

* |t must underpin the relationship between <HHLL> four-point functions
in the CFT and the corresponding two point <L L> functions in the
holographic geometry, H ...



This is a challenging CFT computation and it is only an indicative part of the
story ....

What is the simple, intuitive picture of the CFT dual of tidal force?

* Such a simpler, intuitive picture must be the result of large-N and have
everything to do with the coherence underlying microstate geometries

* |t must underpin the relationship between <HHLL> four-point functions
in the CFT and the corresponding two point <L L> functions in the
holographic geometry, H ...

Is there a simpler large-N quasi-particle description of the CFT,
defined by requiring simple operator products/scattering with
the twist operator?

Such quasi-particles will more closely represent the holographic
dual of a graviton.



This is a challenging CFT computation and it is only an indicative part of the
story ....

What is the simple, intuitive picture of the CFT dual of tidal force?

* Such a simpler, intuitive picture must be the result of large-N and have
everything to do with the coherence underlying microstate geometries

* |t must underpin the relationship between <HHLL> four-point functions
in the CFT and the corresponding two point <L L> functions in the
holographic geometry, H ...

Is there a simpler large-N quasi-particle description of the CFT,
defined by requiring simple operator products/scattering with
the twist operator?

Such quasi-particles will more closely represent the holographic
dual of a graviton.

Answering these questions will be an essential part of emergent space-time at
strong gravitational coupling...
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