CIEM1110-1: Numerical modeling, lecture 3.1

Nonlinear FEM: solution procedure

Frans van der Meer
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Agenda for today

Characteristics of nonlinear problems

Virtual work interpretation of weak form

Sources of nonlinearity

General formulation for the nonlinear system of equations
Incremental-iterative solution procedure
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Characteristics of nonlinear problems

In nonlinear simulations, we simulate a process

Often this is quasi-static — no actual time, but still time steps’ or increments

Even if we are only interested in a final state, a number of increments can be needed to get there
The classical output of a nonlinear finite element simulation is a force-displacement curve

F

Remember: this is a 1D representation of an nq.s-dimensional solution
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Interpreting the weak formulation as virtual work equation (continuum mechanics)

Weak form (before assuming linear elasticity):

—/sz:adﬂ—l—/w-bdﬁ—l— w-td[' =0, V w
Q Q

I't

Let w < du (just a change of symbol):
—/ Vséu:JdQ—i—/ 5u-bdﬂ+/ ju-tdl'=0, V Jdu
Q Q I't
With V*éu = de we can give a physical interpretation to the weak form:

—/5s:adQ+/5u-bdQ+ ou-tdl'=0, V du
Q Q

'y

%
TUDelft 3-14



Interpreting the weak formulation as virtual work equation (continuum mechanics)

Weak form (before assuming linear elasticity):

—/sz:adﬂ—l—/w-bdﬁ—l— w-tdl'=0, V w
Q Q

I't

Let w < du (just a change of symbol):
—/ Vs5u:0d§2+/ 5u-bdﬂ+/ ju-tdl'=0, V Jdu
Q Q I't
With V°éu = d¢ we can give a physical interpretation to the weak form:

—/5s:adQ+/5u-bdQ+ ou-tdl'=0, V du
- Ja - Ja

I'y

7
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Wint Wext
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Interpreting the weak formulation as virtual work equation (continuum mechanics)

Weak form (before assuming linear elasticity):

—/sz:adﬂ—l—/w-bdﬁ—l— w-td[' =0, V w
Q Q

'y

Let w < du (just a change of symbol):
—/ Vséu:JdQ—i—/ 5u-bdﬂ+/ ju-tdl'=0, V Jdu
Q Q I't
With V*éu = de we can give a physical interpretation to the weak form:

—/5s:adQ+/5u-bdQ+ ou-tdl'=0, V du
Q Q

'y

After discretization (with ju = Nda and e = Bda):

(5aT/BTa'dQ:5aT (/ NTbdQ +
Q Q

't
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Interpreting the weak formulation as virtual work equation (continuum mechanics)

Weak form (before assuming linear elasticity):

—/sz:adﬂ—l—/w-bdﬁ—l— w-td[' =0, V w
Q Q

'y

Let w < du (just a change of symbol):
—/ VScSu:O'dQ—i—/ 5u-bdﬂ+/ ju-tdl'=0, V Jdu
Q Q I't
With V*éu = de we can give a physical interpretation to the weak form:

—/5s:adQ+/5u-bdQ+ ou-tdl'=0, V du
Q Q

'y

After discretization (with ju = Nda and e = Bda):

(5aT/BTa'dQ:5aT (/ NTbdQ +
Q Q

't

NTtdF> - / BlodQ = / NbdQ+ | NTtdr
JQ . JQ I\

7

Y
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Back to the linear case

This is the general discretized equilibrium equation:

/BTJdQ: /NdeQ+ NTtdr
Q - Ja Ty

~ 7

Y Y

fint fext
Assuming linear elasticity, we could substitute o = DBa to get

/BTDBan:/NdeQ+ NT¢dr — Ka = f..
Q Q

Ty
Linearity is assumed twice there
e = Ba (kinematic relation)
and

o = De (constitutive relation)
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Sources of nonlinearity

This remains the general discretized equilibrium equation:

/BTJdQ: /NdeQ+ NTtdr
Q - Ja Ty

~ 7

Y Y

fint fext
For large displacements, we can have a nonlinear kinematic relation:
Oe
= with B = —
e = g(a) om
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Sources of nonlinearity

This remains the general discretized equilibrium equation:

/BTadQ: /NdeQ+ NTtdr
Q - JQ Ty

~ 7

A A

fint fext
For large displacements, we can have a nonlinear kinematic relation:
Oe
= with B = —
e = g(a) om

For instance, so-called true strain, which can in 1D be defined as

z
ﬂzlnizln(1+Vu)

S o

lo

Note: for Vu <« 1, we have ¢ =~ Vu
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Sources of nonlinearity

This remains the general discretized equilibrium equation:

/BTadQ: /NdeQ+ NTtdr
Q - Ja Ty

~ 7

Y Y

fint fext
For large displacements, we can have a nonlinear kinematic relation:
Oe
= with B = —
e = g(a) om
and for modeling material behavior a nonlinear constitutive relation:
o = o(e, history) with D = 0o
- 9 y _ 85
, o o o
For instance damage or plasticity
(1—d)FE
1
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Problem statement

We want to solve a nonlinear system of equations:

/BTadQ: /NdeQ—|— NTtdr
Q - JQ Ty

7

Y Y

fing (a) fext (t)
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Problem statement

We want to solve a nonlinear system of equations:

/BTa-dQ: /NdeQ+ NTtdr
Q - JQ Iy

7

Y Y

fint (a) fexe (1)

- Internal force is a nonlinear function of a
- For given a we can compute fi,; = /BTO' d§2
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Problem statement

We want to solve a nonlinear system of equations:

/BTa-dQ: /NdeQ+ NTtdr
K Q ~ K Q |

v

- External force changes in increments

fint (a) fext (1) - At every increment ¢ = t", fox¢ iS known
/ - Possibly f.x; = 0 and Dirichlet boundary conditions change

- Internal force is a nonlinear function of a

- For given a we can compute fi,; = /BTO' d§2
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Problem statement

We want to solve a nonlinear system of equations:

/BTa-dQ: /NdeQ+ NTtdr
Q - JQ Iy

7

- External force changes in increments

fint (a) fext (1) - At every increment ¢ = t", fox¢ iS known
/ - Possibly f.x; = 0 and Dirichlet boundary conditions change

- Internal force is a nonlinear function of a

- For given a we can compute fi,; = /BTO' d§2

For linear fi,: (a) we get a linear system of equations for every increment: Ka" = 7,

— But what about a nonlinar fi,(a)?
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Problem statement

We want to solve a nonlinear system of equations:

/BTa-dQ: /NdeQ+ NTtdr
Q - JQ Iy

7

- External force changes in increments

fint (a) fext (1) - At every increment ¢ = t", fox¢ iS known
/ - Possibly f.x; = 0 and Dirichlet boundary conditions change

- Internal force is a nonlinear function of a
- For given a we can compute fi, = /BTO' d(

_ M

For linear fi,: (a) we get a linear system of equations for every increment: Ka" = 7,
— But what about a nonlinar fi,(a)?

— For every increment, we will need to iterate

%
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Incremental-iterative solution algorithm

In every time-step we solve a nonlinear system of equations with Newton-Raphson (or Newton’s) method

Require: Solution from previous time step a”

Require: Nonlinear relation fin:(a) with K(a) = Zhnt

1: Get new external force vector: £7 11!

ext

2: Initialize new solution at old one: a" ' = a”

3: Compute internal force and stiffness: £ (a”*1), K"*!(a" 1)

4: Evaluate residual: r = £27" — £

5: repeat

6: Solve linear system of equations: K"*'Aa =r

7. Update solution: a"™' = a"™' + Aa

8.  Compute internal force and stiffness: /' (a"™"), K"*!(a"™)
o:  Evaluateresidual: r = £ — f1!

10: until |r| < tolerance
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Incremental-iterative solution algorithm

In every time-step we solve a nonlinear system of equations with Newton-Raphson (or Newton’s) method

Require: Solution from previous time step a”

Require: Nonlinear relation fin:(a) with K(a) = Zhnt

1: Get new external force vector: £7 11!

ext

2: Initialize new solution at old one: a" ' = a”

3: Compute internal force and stiffness: £ (a”*1), K"*!(a" 1)

4: Evaluate residual: r = £27" — £

5: repeat

6: Solve linear system of equations: K"*'Aa =r

7. Update solution: a" ™! = a"™! + Aa

8.  Compute internal force and stiffness: /' (a"™"), K"*!(a"™)
o:  Evaluateresidual: r = £ — f1!

10: until |r| < tolerance
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Incremental-iterative solution algorithm, including time step loop

afi nt

Require: Nonlinear relation fi,;(a) with K(a) = =32

1: Initialize n = 0,a° = 0
while n < number of time steps do
Get new external force vector: £

ext

1:an

2:

3

4 Initialize new solution at old one: a™*
5. Compute internal force and stiffness: £ (a”*1), K"t (a" 1)
6:  Evaluate residual: r = £27" — £

7 repeat

8 Solve linear system of equations: K"t*Aa =r

9

Update solution: a"™! = a”*! + Aa

10: Compute internal force and stiffness: ' (a" ™), K"*!(a"™)
} ; . _ +1 —+1

11: Evaluate residual: r = £} — £

12: until |r| < tolerance

13: n=n-+1
14: end while
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What about boundary conditions?

Require: Nonlinear relation fi, (a) with K(a) = %
1: Initializen = 0,a” = 0
2: while n < number of time steps do
3 Get new external force vector: £
4 Initialize new solution at old one: a" ™' = a”
5. Compute internal force and stiffness: £ (a”*1), K"t (a" ')
6 Evaluate residual: r = 77" — £
7 repeat
8 Solve linear system of equations: K"t'Aa =r
9 Update solution: a”™! = a”™! + Aa
10: Compute internal force and stiffness: /' (a"™"), K"*!(a"™)
1m: Evaluate residual: r = 27" — £
12: until |r| < tolerance
13: n=n-++1

14: end while
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What about boundary conditions?

Require: Nonlinear relation fi, (a) with K(a) =

afint
Oa

1: Initialize n = 0,a° = 0

2:
3
4
o
6
7
8
9

10:
11:
12:
13:

while n < number of time steps do

ext

Get new external force vector

Initialize new solution at old one: a" ™' = a”
Compute internal force and stiffness: ' (a"™"), K"*!(a"™)
Evaluate residual: r = 77" — £
repeat
Solve linear system of equations: K"t'Aa =r
Update solution: a"™! = a"*! + Aa
Compute internal force and stiffness: /' (a"™"), K"*!(a"™)
Evaluate residual: r = £ — £

ext int

until |r| < tolerance
n=n-++1

14: end while
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What about boundary conditions?

Require: Nonlinear relation fi,.; (a) with K(a) = aflnt

. Initialize n = 0,a° = 0

- Point loads also go here
while . < number of time steps do / - Possibly increasing step by step

Get new external force vector

2:

3 ext

4 Initialize new solution at old one: =a"

5: Compute internal force and stiffness: flﬁjl( ) K (an Tt
: . +1 +1

6 Evaluate residual: r = £ — £

7 repeat

8 Solve linear system of equations: K"t'Aa =r

9

Update solution: a"™! = a"*! + Aa

10: Compute internal force and stiffness: /' (a"™"), K"*!(a"™)
_ . ) +1 +1

11: Evaluate residual: r = £ — £

12: until |r| < tolerance

13: n=n-+1
14: end while
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What about boundary conditions?

Require: Nonlinear relation fi,.; (a) with K(a) = 8flnt

. Initialize n = 0,a° = 0

- Point loads also go here
while . < number of time steps do / - Possibly increasing step by step

Get new external force vector

ext

2:

3

4 Initialize new solution at old one: —a”

5:  Compute internal force and stiffness: flﬁjl( mth), KM (amtt)
6 Evaluate residual: r = £t — £ !

7

8

9

ext int

repeat

Solve linear system of equations(K”“Aa — rJ

Update solution: a"™! = a"*! + Aa

10: Compute internal force and stiffness: /' (a"™"), K"*!(a"™)
_ . ) +1 +1

11: Evaluate residual: r = £ — £

12: until |r| < tolerance

13: n=n-+1
14: end while
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What about boundary conditions?

Require: Nonlinear relation i (a) with K(a) = %t - Neumann boundary conditions

. Initialize n = 0,a° = 0

- Point loads also go here
while . < number of time steps do / - Possibly increasing step by step
: Get new external force vector

ext

2:
3
4 Initialize new solution at old one: =a"

5. Compute internal force and stiffness: f"“( ntlhy K (an T - Dirichlet boundary conditions
6

7

8

9

int

Evaluate residual: r = £*+1 — £ ! - Enforced by manipulating system of egs.

ext int

repeat / - Au, contains increments in first iteration
' i - Au. = 0 in other iterations

Solve linear system of equatlons(K”“Aa — r]

Update solution: a"™! = a"*! + Aa
10: Compute internal force and stiffness: /' (a"™"), K"*!(a"™)
1: Evaluate residual: r = £27" — £
12: until |r| < tolerance
13: n=n++1

14: end while
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Convergence

Require: Nonlinear relation fi,(a) with K(a) = %
1: Initializen = 0,a” = 0
2: while n < number of time steps do
3 Get new external force vector: £
4 Initialize new solution at old one: a" ™' = a”
5. Compute internal force and stiffness: £ (a”*1), K"t (a" 1)
6:  Evaluate residual: r = £27" — £
7 repeat
8 Solve linear system of equations: K"t*Aa =r
9 Update solution: a”*! = a"*™ 4+ Aa
10: Compute internal force and stiffness: ' (a" ™), K"*!(a"™)
1m: Evaluate residual: r = 27" — £
12: unti(\r| < toIeranceJ
13: n=n-++1

14: end while
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Convergence

8fi nt

Require: Nonlinear relation fi,,¢(a) with K(a) = =32

1. Initializen = 0,a° =0
while n < number of time steps do

Get new external force vector: £

ext

1

Initialize new solution at old one: a” ™! = a®

int

Evaluate residual: r = 11 — 711

ext int

repeat

2:

3

4

5:  Compute internal force and stiffness: £ (a™*/), K"t (a"t1)
6

7

8 Solve linear system of equations: K"/ *Aa =r

9

Update solution: a"*! = a™*! +

- Different norms are possible

- Additional criterion: max # of iterations

- Convergence is not always guaranteed

- Non-converged solutions should not be kept
- Adaptive step size may be needed

- Linearization is crucial

10: Compute internal force and stiffriess: £ ' (a™ 1), K" (a™ 1)

int

1: Evaluate residual: r = f* 11

ext

12: unti(\r| < toIeranceJ
13: n=n-++1
14: end while
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Convergence

Require: Nonlinear relation fi.:(a) witf{K(a) = %J

1: Initialize n = 0,a° = 0
while n < number of time steps do
Get new external force vector: £

ext

1

Initialize new solution at old one: a” ™! = a®

int

Evaluate residual: r = 11 — 711

ext int

repeat

2:

3

4

5:  Compute internal force and stiffness: £f7! (a™*/), K"t (a"t1)
6

7

8 Solve linear system of equations: K"/ *Aa =r

9

Update solution: a”*! = a™*! +

- Different norms are possible

- Additional criterion: max # of iterations

- Convergence is not always guaranteed

- Non-converged solutions should not be kept
- Adaptive step size may be needed

- Linearization is crucial

10: Compute internal force and stiffriess: £ ' (a™1), K" ™ (a™ )

int

1: Evaluate residual: r = f*11

ext

12: unti(\r| < toIeranceJ
13: n=n-++1
14: end while
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Linearization

In the algorithm we have K as the derivative of fi,; to a with :

£ = / BlodQ
Q

Applying the product rule and chain rule of differentation:

6BT T@a'as
K= | Sao+B 5 5299

Do Oe .
We already had 5 = D and a B, so we get:

T
K = / 810' + B 'DBAN
For the geometrically linear situation, we get:
K = / B DB dQ
Q

Very similar to the matrix for linear FEM, but D should be the consistent linearization of o (¢)

]
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Linearization and convergence

Theoretically, consistent linearization offers quadratic convergence

%
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Linearization and convergence
iter = 1, scaled residual = 6.9130e-02

iter 2, scaled residual 2.9266e-04
Theoretically, consistent linearization offers quadratic convergence iter = 3, scaled residual = 1.8541e-08
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Linearization and convergence

iter = 1, scaled residual = 6.9130e-02
iter = 2, scaled residual = 2.9266e-04
Theoretically, consistent linearization offers quadratic convergence iter = 3, scaled residual = 1.8541le-08

Unfortunately, the conditions for the proof of quadratic convergence do not always apply
e smoothness of fi,(a)
e sufficiently close initial guess
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Linearization and convergence

iter = 1, scaled residual = 6.9130e-02
iter = 2, scaled residual = 2.9266e-04
Theoretically, consistent linearization offers quadratic convergence iter = 3, scaled residual = 1.8541le-08

Unfortunately, the conditions for the proof of quadratic convergence do not always apply
e smoothness of fi,(a)

e sufficiently close initial guess

Outside of these conditions, there is no guarantee for convergence

Sometimes a modified Newton-Raphson is helpful for robustness

F
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Linearization and convergence

Theoretically, consistent linearization offers quadratic convergence

iter =

iter
iter

1,
2,
3,

scaled
scaled
scaled

Unfortunately, the conditions for the proof of quadratic convergence do not always apply

e smoothness of fi,(a)

e sufficiently close initial guess
Outside of these conditions, there is no guarantee for convergence
Sometimes a modified Newton-Raphson is helpful for robustness

F

Although this requires many more iterations

]
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iter =

iter
iter
iter
iter
iter
iter
iter
iter
iter
iter
iter
iter
iter
iter
iter
iter
iter
iter
iter
iter

iter =

~ ~ ~

~

~ ~ ~

WooJdJouUl b WDNR

~

NNRRRRRRRRRPR
HoOoOwWoOJoaUd WNRO

scaled
scaled
scaled
scaled
scaled
scaled
scaled
scaled
scaled

residual =

residual

N

residual =

residual
residual
residual
residual
residual
residual
residual
residual
residual

scaled
scaled
scaled
scaled
scaled
scaled
scaled
scaled
scaled
scaled
scaled
scaled
scaled

O dFRPPFPEPEDNDDN

residual =

residual
residual
residual
residual
residual
residual
residual
residual
residual
residual
residual

OFRrRFEFMMNDWOLIOREDNDNW

residual =

o)

=

.9130e-02
.9266e-04
.8541e-08

.3269e-02
.2279e-02
.9872e-02
.6512e-02
.3107e-02
.0113e-02
.6675e-03
.7517e-03
.2868e-03

.1826e-03
.3574e-03
.7438e-03
.2890e-03
.5234e-04
.0348e-04
.1959e-04
.8374e-04
.8341e-04
.0931e-04
.5459%e-04
.1417e-04

432605



Modifled Newton-Raphson

The algorithm remains the same but K is updated once per time step
e Convergence will be slower
e Reduced change of divergence or oscillatory behavior

Alternatives:
e Useincomplete linearization for D (secant matrix)
e Useiinitial elastic stiffness matrix K°

]
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Recap of agenda for today

Characteristics of nonlinear problems

Virtual work interpretation of weak form

Sources of nonlinearity

General formulation for the nonlinear system of equations

a bk 0N~

Incremental-iterative solution procedure
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